立式加工中心进给传动系统的分析与设计研究

合集下载

立式加工中心工作台Z轴进给传动系统设计

立式加工中心工作台Z轴进给传动系统设计

立式加工中心工作台Z轴进给传动系统设计1. 引言本文档旨在介绍立式加工中心工作台Z轴进给传动系统的设计方案。

该方案旨在提高运动的精确度、稳定性和效率,从而满足现代制造业对高精度加工的需求。

2. 设计要求立式加工中心工作台Z轴进给传动系统的设计要求如下:- 高精度:能够实现微小加工精度要求,最小单位需达到0.001毫米;- 稳定性:能够抵抗振动和冲击,确保加工过程的稳定性;- 高效率:能够提高加工速度和效率,减少加工时间。

3. 设计原理立式加工中心工作台Z轴进给传动系统设计方案基于以下原理:- 采用精密滚珠丝杠传动:使用高精度、低摩擦的滚珠丝杠传动机构,实现Z轴的精确移动;- 应用伺服电机控制:通过伺服电机控制滚珠丝杠传动系统,实现精确的位置控制和速度控制;- 配备位置传感器:在滚珠丝杠传动系统中安装位置传感器,实时检测工作台Z轴的位置,以实现闭环控制。

4. 设计方案基于上述设计原理,立式加工中心工作台Z轴进给传动系统的设计方案如下:4.1 滚珠丝杠传动机构- 选择高精度的滚珠丝杠,确保传动精度;- 采用预加载技术,提高传动系统的刚性和精密度;- 选择适当的滚珠丝杠螺距,以满足加工的需求。

4.2 伺服电机控制系统- 选择适合的伺服电机,具有高转矩和高响应速度;- 配备精密的位置检测装置,以实现精确的位置控制;- 使用先进的控制算法,实现平稳的速度控制。

4.3 位置传感器- 安装高精度的位置传感器,实时检测工作台Z轴的位置;- 将位置传感器的信号反馈给伺服电机控制系统,实现闭环控制;- 通过闭环控制,实现对工作台Z轴位置的精确控制。

5. 结论通过采用精密滚珠丝杠传动、伺服电机控制和位置传感器反馈的设计方案,现代立式加工中心工作台Z轴进给传动系统可以实现高精度、稳定性和高效率的加工。

该设计方案能够满足制造业对精确加工的要求,提高产品质量和加工效率。

立式数控铣床进给传动系统设计

立式数控铣床进给传动系统设计

课程设计任务书目录1.概述 (3)1.1技术要求 (3)1.2总体设计方案 (3)2.滚珠丝杠螺母副的选型和计算 (3)2.1主切削力及其切削分力计算 (3)2.2导轨摩擦力的计算 (4)2.3计算滚珠丝杠螺母副的轴向负载力 (4)2.4滚珠丝杠的动载荷计算与直径估算 (5)3.工作台部件的装配图设计 (9)4.滚珠丝杠螺母副的承载能力校验 (9)4.1滚珠丝杆螺母副临界压缩载荷的校验 (9)4.2滚珠丝杆螺母副临界转速的校验 (9)4.3滚珠丝杆螺母副额定寿命的校验 (10)5.计算机械传动系统的刚度 (10)5.1机械传动系统的刚度计算 (10)5.2滚珠丝杠螺母副扭转刚度的计算 (11)6.驱动电动机的选型与计算 (11)6.1计算折算到电动机轴上的负载惯量。

(11)6.2计算折算到电动机轴上的负载力矩 (12)6.3 计算坐标轴折算到电动机轴上的各种所需力矩 (13)6.4选择驱动电动机的型号 (14)7.确定滚珠丝杠螺母副的精度等级和规格型号 (14)7.1确定滚珠丝杠螺母副的精度等级 (14)7.2滚珠丝杠螺母副的规格型号 (15)8. 课程设计总结 (15)9.参考文献 (15)1.概述1.1技术要求工作台、工件和夹具的总质量m=918kg,其中,工作台的质量510kg;工作台的最大行程Lp=600 mm;工作台快速移动速度18000mm/min;工作台采用贴塑导轨,导轨的动摩擦系数为0.15,静摩擦系数为0.12;工作台的定位精度为30μm,重复定位精度为15μm;机床的工作寿命为20000h(即工作时间为10年)。

机床采用主轴伺服电动机,额定功率为5.5kw,机床采用端面铣刀进行强力切削,铣刀直径125mm,主轴转速310r/min。

切削状况如下:数控铣床的切削状况1.2总体设计方案为了满足以上技术要求,采取以下技术方案:(1)工作台工作面尺寸(宽度×长度)确定为400mm×1200mm。

JCS018加工中心研究特选

JCS018加工中心研究特选
自动换刀过程 如图所示表达了刀库上刀具、 主轴上刀具和机械手的相对位置关系。上一 工序加工完毕,主轴处于“准停”位置,由 自动换刀装置换刀,其过程如下:
行业实操
17
五、典型部件结构(3)
自动换刀装置(ATC)(2)
刀套下转90° 本机床的刀库位于立柱左侧,刀具在 刀库中的安装方向与主轴垂直,如图7-24所示。换刀 之前,刀库2转动将待换刀具5送到换刀位置,之后把 带有刀具5的刀套4向下翻转90°,使得刀具轴线与主 轴轴线平行。
具有自动装卸刀具的机械手 在加工中心机床上 刀具的自动更换,多数借助机械手来进行。
具有主轴准停机构、刀杆自动夹紧松开机构和 刀柄切屑自动清除装置 这是加工中心机床主轴 部件中三个主要组成部分,也是加工中心机床 能够顺利地实现自动换刀所需具备的结构保证。
具有自动排屑、自动润滑和自动报警的系统等。
行业实操
28
五、典型部件结构(9)
机械手结构 (3)
抓刀动作结束时,齿条17上的挡环12压下位置开关14, 发出拔刀信号,于是液压缸15的上腔通压力油,活塞 杆推动机械手臂轴16下降拔刀。在轴16下降时,传动 盘10随之下降,其下端的销子8插入连接盘5的销孔中, 连接盘5和其下面的齿轮4也是用螺钉联接的,它们空 套在轴16上。当拔刀动作完成后,轴16上的挡环2压 下位置开关1,发出换刀信号。这时液压缸20的右腔 通压力油,活塞杆推着齿条19向左移动,使齿轮4和 连接盘5转动,通过销子8,由传动盘带动机械手转 180°,交换主轴上和刀库上的刀具位置。
轨迹控制方式
直线/圆弧方式或空间直线/螺旋方式
纸带代码
EIA/ISO
程序格式
写地址式可变程序段
脉冲当量
0.001㎜/脉冲

x5032立式铣床进给系统改造定稿大学论文

x5032立式铣床进给系统改造定稿大学论文

学号2011040191037密级武汉东湖学院本科生毕业论文(设计) X5032立式铣床进给传动系统改造院(系)名称:专业名称:学生姓名:指导教师:二〇一六年五月八日郑重声明我郑重声明:本人恪守学术道德,崇尚严谨学风,所呈交的学术论文是本人在老师的指导下,独立进行研究工作所取得的结果。

除文中明确注明和引用的内容外,本论文不包含任何他人已经发表和撰写过得内容。

论文为本人亲自撰写,并对所写内容负责。

本人签名:日期:摘要数控机床是当代机械制造业中实现机电一体化先进设备的代表。

伴随着先进制造业的发展,旧机床的数控化改造,尤其是普通机床数控化改造早已成为摆在我们面前迫切而艰巨的任务。

本课题是对X5032铣床进给系统的数控改造方案,在数控技术的历史、现状和发展的基础之上,通过对X5032旧机床的分析,结合机床改造的思路,提出了数控化改造的方案。

主要是针对机械部分进行改造,即对丝杠、驱动元件步进电机和减速齿轮的改造。

改造后的铣床不仅能加工平面、铣削键槽、等简单的零件外,还能加工形状复杂(如圆弧面加工、斜面及凸轮等)的零件,具有精度高、效率高及加工产品范围广等特点。

机床经过改造后,可以凸显机床强大的工作能力和深度的可靠性,加工精度和生产率同时有较大的提高,给企业提供一条切实可行的路径。

[关键词]数控改造;进给传动;X5032铣床目录第一章引言 (1)1.1数控机床的发展简史 (1)1.2数控机床发展趋势 (1)1.2.1高速性、高效性、高精度、高可靠性 (1)1.2.3开放性 (3)1.3课题背景、意义 (3)1.4研究目标 (4)第二章机械传动系统的改造设计 (5)2.1机械传动系统改造设计方案 (5)2.1.1改造设计任务 (5)2.1.2总体方案设计的确定 (5)2.2机械传动系统改造设计与计算 (6)2.2.1已知条件 (6)2.2.2进给系统计算,设计 (8)2.2.2.1纵向(X向)设计计算 (8)2.2.2.2横向(Y向)设计计算 (20)2.3数控铣床的导轨 (28)第三章数控机床控制方式选择 (31)3.1步进电机的开环控制 (31)3.1.1步进电机的工作原理 (31)3.1.2开环控制系统构成 (31)3.2数控机床开环系统速度计算 (32)第四章结论与展望 (32)第五章致谢 (33)参考文献 (35)第一章引言1.1数控机床的发展简史从第一台电子计算机诞生开始,美国北密执安的小型飞机承包商帕尔森斯公为了制造飞机机翼轮廓的板状样板,提出了采用数字控制技术进行加工的思路,1949年由帕尔森斯企业与美国麻省理工学院伺服机构研究院合作开始从事数控机床的研制工作,1952年,研究出第一台实验性数控系统,并把它安装在一台立式铣床上,成为全球第一台数控机床,完美实现了同时控制三轴的运动。

JCS-018立式加工中心主轴箱及进给系统设计

JCS-018立式加工中心主轴箱及进给系统设计

摘要:本次设计通过对现有加工中心的分析研究,提出一种新的设计方案,其自动化程度更高,结构也相对比较简单.这一点在论文会得以体现.本方案中,主轴箱采用交流调速电机实现无级变速,在X、Y、Z三个方向上的进给运动均采用滚珠丝杠,而动力则由步进电动机通过调隙齿轮来传递,并且采用单片机进行数字控制.控制系统采用MCS-51系列单片机,通过扩展程序存储器、数据存储器和I/O 接口实现硬件电路的设计.论文中也对软件系统的设计做出了相关说明.关键词:交流调速电机滚珠丝杠步进电机单片机系统扩展Abstract: This design tries a new method after the analyze and research of the exited machining center with the higher automatization degrees and the simpler configuration,which will be explained in the paper. In the method, AC adjustable-speed motor is used for the realization of the level shift in variable speed,and in the motion of, we all adopt ball bearing thread haulm for the X、Y、Z direction,The power of which is step by step electromotor transferred by gear that used for adjusting gaps.And more,we used singlechip for numerical control.The control system introduces MCS-51 series singlechip,and the realization of hardware circuit was accomplished by enlarging program memorizer、data memorizer and I/O meet meatus.Also,the paper explained the design for software system. Keywords: AC adjustable-speed motor、ball bearing thread haulm、the step by step electromotor、the enlarge for SCM system目录前言 (1)1、机床总体方案设计 (1)1.1 机床总体尺寸参数的选定 (1)1.2 机床主要部件及运动方式的选定 (2)1.3 机床总体布局的确定 (3)2、主传动的设计计算 (8)2.1 电机的选择 (8)2.2 齿轮传动的设计计算 (9)2.3 轴的设计计算 (13)2.4 离合器的选用 (21)3、进给系统的设计计算 (22)3.1 概述 (22)3.2 设计计算 (22)3.3 工作台部件的装配图设计 (29)3.4 滚珠丝杠螺母副的承载能力的校验 (30)3.5 计算机械传动系统的刚度 (31)3.6 驱动电动机的选型与计算 (33)3.7 机械传动系统的动态分析 (36)3.8 机械传动系统的误差计算与分析 (37)3.9 确定滚珠丝杠螺母副的精度等级和规格型号 (38)3.10 滚珠丝杆副的预紧方式 (38)3.11 齿轮传动消隙 (39)4、控制系统的设计 (39)4.1 控制系统总体方案的拟订 (39)4.2 总控制系统硬件电路设计 (39)参考文献 (56)谢辞 (57)科技译文 (58)前言加工中心集计算机技术、电子技术、自动化控制、传感测量、机械制造、网络通信技术于一体,是典型的机电一体化产品,它的发展和运用,开创了制造业的新时代,改变了制造业的生产方式、产业结构、管理方式,使世界制造业的格局发生了巨大变化。

数控机床进给传动系统定位误差的实验研究

数控机床进给传动系统定位误差的实验研究

第 4期
陈完成等 : 数控 机 床 进 给 传 动 系 统 定 位 误 差 的 实 验 研 究
2 1
栅 进行 标定 . 4为测试 原理 图 图
给时 , 丝杠螺母 会产生 10 2 0W 的热量 , 而 因热 0 - 0 进 膨胀 引起进 给系统的定位误差 . 6为 2种 系统 由于 图 丝杠热膨胀 引起的位置飘移 的测试结 果 比较 .
摘 要 : 通过 对 立 式加 工 中心进 给 传 动 系 统 的 受 力 变形 及 热 变形 的 实 测 , 析 比 较 了典 型 系统 的 定 位 误 差 , 分 用 直 线光 栅 尺 配 合 旋 转 编 码 器 可 提 高进 给 定 位 的精 度 .
关键词 : 数控 机 床 ; 给 系统 ; 位 误 差 进 定
热变形 进行 了测试 , 用 H D NHAI 并 EI E N VM1 1光 0
收 稿 E 期 :0 7 5—2 t 2 0 —0 1
作 者 简 介 : 完 成 (9 6一) 男 , 北石 家 庄人 , 家 庄 职 业 技 术学 院 副教 授 陈 15 、 河 石
维普资讯
Au 2 7 g. 00
Vo . No. 1 19 4
文章 编 号 : 0 94 7 ( 0 7 0 .0 0 0 1 0 . 8 3 2 0 ) 4 0 2 .2
数控机床进给传动 系统定位误 差的实验研究
陈完 成 , 赵 晓平
( 家庄 职 业技 术 学 院 机 电工程 系, 石 河北 石 家庄 00 8 ) 5 0 1
中 图 分 类 号 : G 5 T 69 文献标识码 : A
1 引 言
过 数控 系统进 行补 偿
尽 管数 控 机床 的设 计 多种 多 样 , 但其 进 给传 动 装 置的结 构大致 相 同 . 1为 某立 式 加 工 中 心 的进 图 给机 构 .

立式数控加工中心的进给系统和主轴系统分析

立式数控加工中心的进给系统和主轴系统分析

立式数控加工中心的进给系统和主轴系统分析立式数控加工中心是一种常用于金属加工的先进设备,可以实现高效、精确的加工过程。

其中,进给系统和主轴系统是立式数控加工中心的两个核心部分。

本文将对立式数控加工中心的进给系统和主轴系统进行详细的分析和解释。

进给系统是立式数控加工中心的关键部件之一,在加工过程中负责控制工件的运动速度和位置。

它由进给电机、进给螺杆、导轨、伺服系统等组成。

进给电机通过传动装置将动力传递给进给螺杆,通过螺杆的旋转实现工件在三个坐标轴上的移动。

而导轨则起到支撑和导向工件的作用。

进给系统的主要功能是实现加工过程中工件的精确定位和运动控制。

通过在电脑数控系统中设定加工程序,可以精确控制进给系统的运动速度、加速度和位置,实现复杂零件的加工。

进给系统的精度和可靠性对加工质量和效率起着重要的影响。

因此,在设计和选择进给系统时,需要考虑其精度、刚性、稳定性等因素。

与进给系统相比,主轴系统在立式数控加工中心中的作用更为重要。

主轴系统是控制刀具转速和切削参数的关键部件,直接影响加工效果和加工质量。

主轴系统由主轴电机、主轴轴承、主轴传动装置等组成。

主轴电机是主轴系统的动力源,通常采用交流伺服电机或直流伺服电机。

它通过传动装置将动力传输给主轴轴承,进而带动刀具转动。

主轴轴承是主轴系统的核心部件,它承受着高速旋转和切削载荷。

因此,主轴轴承需要具备高刚度、高精度、高转速等特点,以确保刀具的稳定运转和加工质量。

主轴传动装置的设计也非常重要,它可以采用直接驱动或传统的皮带传动方式。

直接驱动主轴系统具有传动效率高、动态响应速度快等优点,适用于高速精密加工。

而皮带传动方式则具有结构简单、维护方便等优势,适用于一般加工需求。

除了运转稳定性之外,主轴系统还需要具备快速的切削速度和灵活的切削能力。

通过电脑数控系统对主轴电机的转速进行调控,实现不同工件的精确加工。

同时,主轴系统还应具备冷却装置,以保持刀具和工件的适宜温度,提高切削质量和加工效率。

数控加工中心—主传动系统设计

数控加工中心—主传动系统设计

数控加工中心—主传动系统设计数控加工中心是一种高效精密的机械加工设备,主要用于加工具有一定形状和尺寸要求的工件。

主传动系统作为数控加工中心的核心部件之一,在数控加工中心的运行中起着至关重要的作用。

本文将从主传动系统设计的角度,详细介绍数控加工中心主传动系统的设计方法和要点。

在确定主传动系统的结构形式后,设计者还需要考虑传动方式。

数控加工中心主传动系统的传动方式主要有齿轮传动、同步带传动和链条传动等。

齿轮传动是最常见的传动方式,其传动效率高、传动精度高,但噪音大;同步带传动具有传动平稳、噪音低、维护方便等优点;链条传动则适用于大功率、大转矩传动。

在进行传动方式选择后,设计者还需要根据加工中心的实际工作要求和性能需求,确定主传动系统的传动比,即主轴转速与驱动电机转速之间的比值。

传动比的大小直接影响到主轴的转速范围和加工中心的加工能力。

一般情况下,数控加工中心的主轴转速范围为几百转/分钟到几万转/分钟不等。

另外,主传动系统的传动精度也是设计中需要关注的重点。

传动精度是指传动系统中输出轴的转速与输入轴的转速之间的误差大小。

由于主传动系统的传动精度直接影响到加工中心的加工精度,所以设计者需要根据加工要求和机械精度标准,选择适当的传动精度要求,并通过选用合适的传动装置和特殊的配合方式,来提高主传动系统的传动精度。

此外,设计者还需要注意主传动系统的可靠性和稳定性。

在设计过程中,应遵循可靠性设计原则,选用具有高可靠性的主传动装置和零部件,并合理安排主传动系统的结构形式和传动方式,以提高主传动系统的工作稳定性和使用寿命。

综上所述,数控加工中心主传动系统的设计是一项复杂而重要的工作,设计者需要根据具体的情况选择最合适的结构形式和传动方式,并合理确定主传动系统的传动比、传动精度等参数,以提高数控加工中心的加工能力和加工精度。

同时,设计者还要注重主传动系统的可靠性和稳定性,以确保数控加工中心的正常运行。

国产数控机床精度保持性分析及研究现状

国产数控机床精度保持性分析及研究现状

国产数控机床精度保持性分析及研究现状马军旭1,2赵万华1,2 张根保31.西安交通大学,西安,7100492.机械制造系统工程国家重点实验室,西安,7100543.重庆大学,重庆,400030摘要:通过对国产数控机床精度的大量调研发现,非正常磨损造成机床精度衰退的数目占机床总数的比例较大㊂为了更清晰地找出精度下降的原因,从主轴精度㊁基础件几何精度和各轴的运动精度入手,分别在机床的设计㊁制造和使用三个阶段分析了造成国产数控机床精度保持性差的原因㊂针对不同类型机床精度,提出了提高机床精度保持性的方法㊂关键词:精度保持性;非正常磨损;装配应力;机电匹配中图分类号:T G 659;T H 162 D O I :10.3969/j.i s s n .1004‐132X.2015.22.020R e s e a r c hS t a t u s a n dA n a l y s e s o nA c c u r a c y R e t e n t i v i t y o fD o m e s t i cC N C M a c h i n eT o o l s M a J u n x u 1,2 Z h a o W a n h u a 1,2 Z h a n g Ge n b a o 31.X i ’a n J i a o t o n g U n i v e r s i t y,X i ’a n ,7100492.S t a t eK e y L a b o r a t o r y f o rM a n u f a c t u r i n g S y s t e m E n g i n e e i n g,X i ’a n ,7100543.C h o n g q i n g U n i v e r s i t y ,C h o n g q i n g,400030A b s t r a c t :W i t ha l a r g en u m b e ro f a c c u r a c y s u r v e y ond o m e s t i cC N C m a c h i n e t o o l s ,i tw a s f o u n d t h a t t h en u m b e r o f a c c u r a c y r e c e s s i o nc a u s e db y a b n o r m a lw e a r g a v e ab i g g e r p r o po r t i o n .I no r d e r t o f i n d t h e r e a s o n s o f a c c u r a c y d e s c e n d sm o r e c l e a r l y ,t h e r e a s o n s t h a t l e d t o t h e p o o r a c c u r a c y r e t e n t i v i t yi n t h e s t a g e o f d e s i g n ,m a n u f a c t u r e a n d a p p l i c a t i o n sw e r e a n a l y z e d f r o mt h r e e a s p e c t s o f s p i n d l e a c c u -r a c y ,g e o m e t r i c a c c u r a c y a n dd y n a m i ca c c u r a c y .F i n a l l y ,a i m i n g a t t h ed i f f e r e n t t y p e so fC N C m a -c h i n e t o o l s ,t h em e t h od s t o i m p r o ve a c c u r a c y r e t e n t i v i t y w e r e p r o po s e d .K e y wo r d s :a c c u r a c y r e t e n t i v i t y ;a b n o r m a lw e a r ;a s s e m b l y s t r e s s ;m a t c h i n g o f e l e c t r i c a l p a r a m e t e r a n dm e c h a n i c a l pa r a m e t e r 收稿日期:20150522基金项目:国家科技重大专项(2010Z X 04014‐015,2012Z X 04005011);国家自然科学基金资助重点项目(51235009)0 引言国产数控机床与国外数控机床的精度保持性有很大的差距,在国家科技重大专项的支持下,针对某型号卧式加工中心㊁立式加工中心和磨齿机精度保持性问题,笔者走访了10余家机床用户,翻阅了机床厂的部分维修记录,得到了机床的精度衰退情况㊂其中,卧式加工中心为:机床使用半年之后出现地脚螺栓调整12例,一年之后出现工作台消隙调整2例,其他3例㊂立式加工中心为:3个月后出现Z 轴轴承磨损6例,Z 轴刚度降低3例,半年之后出现X 轴与Y 轴联动椭圆13例,X ㊁Y ㊁Z 轴定位精度降低9例,其他2例㊂磨齿机为:3个月后出现顶尖与C 轴同轴度下降8例,半年之后出现Z 轴与C 轴平行度问题16例,Z 轴精度下降12例,X 轴精度下降8例,主轴轴承精度下降或损坏时间在1个月至1年之间不定共14例,其他5例㊂磨损是造成机床精度下降的原因㊂正常磨损情况下,机床精度保持时间与零部件(导轨㊁轴承等)寿命是相当的㊂根据对国产机床设计㊁制造过程和使用情况的调研,得到国产机床精度衰退的主要原因是运动部件间非正常磨损的结论㊂数控机床精度保持性衰退原因和提高措施因结构形式的不同而不同㊂主轴部件因高速旋转,既不同于直线进给轴的运动形式,又与旋转进给轴速度差别较大,因此,本文将主轴精度独立于几何精度之外,作为一项独立的精度指标㊂除主轴精度外,轴线的几何精度是机床精度的基础,而机床运动时的瞬态和稳态精度影响着机床的加工精度㊂为了便于找出精度衰退的原因,把机床精度分成三个部分:主轴精度㊁几何精度和运动精度[1]㊂根据调研的10余家国产数控机床用户的机床精度衰退情况得到:主轴精度衰退14例,占调研机床总数的11.5%;几何精度(不包括主轴精度,下同)衰退76例,占调研机床总数的62.3%;运动精度衰退24例,占调研机床总数的19.7%;其他精度问题8例,占调研机床总数的6.6%㊂本文针对国产数控机床精度保持性存在的问题,从主轴精度㊁几何精度㊁运动精度及整机精度㊃8013㊃中国机械工程第26卷第22期2015年11月下半月Copyright ©博看网. All Rights Reserved.监控四个方面分析了国产数控机床在设计㊁制造和使用阶段造成精度保持性差的原因及解决方法,回顾了目前国产机床精度保持性的研究现状,并给出了提高国产数控机床精度保持性的建议㊂1 主轴精度保持性分析及研究现状主轴在设计阶段的主要任务是完成结构方案㊁分配零部件公差及确定零件间的配合;在制造阶段的主要任务是合理地施加预紧力,保证主轴刚度,限制主轴温升㊂国产主轴在精度设计时往往根据设计手册选择经济精度及其配合,在制造时根据经验选择预紧力,缺少科学计算的指导㊂使用时,主轴的温升会造成轴承间隙㊁预紧力的变化,如果在设计㊁制造时考虑不充分,就会造成轴承的非正常磨损㊂密封㊁润滑不良也将直接导致轴承非正常磨损,如图1所示㊂图1 主轴精度保持性影响因素因此,造成主轴轴承非正常磨损的因素主要为:设计阶段的轴承间隙(配合)过大或过小㊁密封及润滑结构不合理,以及制造阶段预紧力过大或过小㊂1.1 轴承间隙的合理设计设计阶段,通常为了保证主轴径向跳动精度,选择较小的轴承和主轴箱间隙㊂在结构和冷却㊁润滑参数确定的情况下,间隙越大,主轴径向跳动越大;反之,间隙越小,主轴径向跳动越小,但主轴发热变形越大,容易加剧磨损或者造成轴承卡死㊂为了提高主轴的精度保持性,合理地选择轴承与主轴箱间隙,减小轴承的非正常磨损显得尤其重要㊂B u r t o n等[2]研究了主轴在使用时温度造成角接触轴承尺寸的变化情况,并给出了计算方程,但是计算精度不够高㊂J e d r z e j e w s k i等[3]为了从热变形㊁刚度等方面来评价间隙设计结果,利用有限元法和有限差分法建立了高速加工中心主轴箱混合模型,分析了因旋转速度变化形成的离心力造成的间隙变化㊂H o l k u p等[4]同时考虑了轴承滚珠㊁滚道的接触变形线性叠加轴承外圈与轴承座的热变形来计算轴承间隙㊂K i m等[5]建立了轴承间隙随外部载荷㊁转速和操作时间变化的变形曲线,为间隙设计提供了依据㊂但是其提供的是单个轴承在各种工况下的变形量,一般情况下,主轴轴承是成组使用的㊂因此,为了提高主轴的精度保持性,减小轴承非正常磨损,在设计轴承间隙时,需要同时考虑转速变化引起的离心力造成的轴承变形㊁预紧力造成的轴承发热变形㊁主轴的冷却效果以及轴承的配置方式等的影响㊂1.2 预紧力的合理选择主轴的功能是给刀具提供足够的动力和刚度来保证正常切削工件㊂在制造阶段,为了保证主轴有足够的刚度,往往对轴承施加预紧力㊂预紧力越大,主轴刚度越大,主轴发热变形也越大,轴承越容易磨损,主轴精度保持性越差㊂合理保证服役状态下主轴预紧力,能够减小主轴轴承发热造成的非正常磨损,提高主轴精度保持性㊂K i m等[6]通过预紧力测试装置和跳动测试装置测试了不同切削条件下预紧力对跳动精度的影响,优化了主轴预紧力㊂J i a n g等[7]为了获得高转速低温升㊁低转速高刚度主轴的预紧力,建立了离心力和陀螺效应影响的轴承非线性模型,利用传递矩阵法(t r a n s f e r m a t r i x m e t h o d,T MM)分析了调压预紧时的温升和刚度,得到结论:高速时,根据主轴温度变化选择预紧力,低速时,根据主轴轴承的疲劳寿命选择预紧力㊂C h e n等[8]在分析预紧力对温升的影响时,得到结论:低速时(转速n<10000r/m i n),温升与预紧力的关系不大;高速时(转速n>10000r/m i n),由于离心力造成滚珠和内圈的接触不良,所以摩擦力增大,温升增大㊂蒋兴奇等[9]为了防止高速轴承出现内沟道或钢球表面的擦伤,同时又使轴承的运转摩擦力矩最小,给出了主轴角接触轴承最小预紧载荷的计算方法㊂给出的轴承预紧力影响因素是在主轴径向载荷很小(10N)的条件下计算得到的,不能适用于机床的切削状态㊂因此,考虑使用状态下的转速㊁切削载荷㊁温升对预紧力的影响,才能保证装配时的预紧力在使用状态下是合理的,减小预紧力设置不当造成的精度衰退,提高主轴精度的保持性㊂1.3 润滑和密封不当主轴轴承的密封和润滑不当也是造成国产数控机床主轴㊁特别是磨削类主轴轴承非正常磨损的重要原因㊂申阳等[10]统计了国产主轴轴承损㊃9013㊃国产数控机床精度保持性分析及研究现状 马军旭 赵万华 张根保Copyright©博看网. All Rights Reserved.坏的形式,指出润滑不良是主轴异常磨损的一个重要因素㊂磨削类机床由于砂轮在工作时磨粒的脱落造成冷却液中杂质过多,如果轴承密封不良更容易造成主轴轴承的磨损㊂余常武[11]针对某型号磨床主轴轴承密封不严造成主轴磨损的情况(最严重的情况是试切时轴承磨损损坏),改进了主轴密封结构,使其精度保持时间延长至17个月以上㊂由国产主轴精度保持性的分析和回顾可知,提高国产数控机床主轴精度保持性的措施应在主轴的设计和制造阶段实施㊂应考虑主轴使用工况,合理设计主轴间隙㊁选择预紧力,进而提高机床主轴精度保持性㊂2 几何精度保持性分析及研究现状根据G B18400.1‐2010中几何精度的检测项目,除去与主轴精度相关的项目,几何精度主要是与运动轴线相关的精度㊂运动轴线几何精度保持性取决于基础件精度保持性㊂基础件在设计阶段的主要任务是完成结构方案,校核刚度和强度,确定导轨安装基准面等的公差;在制造阶段的主要任务是合理地消除基础件内应力以及保证装配后的几何精度㊂国产数控机床在设计时根据设计手册选择零件的经济精度,当装配精度达不到要求时,利用试凑或者采用不恰当的拧紧等措施使基础件局部变形过大来保证几何精度,造成较大的装配应力㊂内应力消除往往根据经验,缺乏规范的工艺措施㊂如果设计时不能充分考虑装配时和使用时力㊁热等造成的基础件精度变化,就会导致精度设计不合理,进而可能造成装配时产生较大的装配应力,使用时装配应力释放导致导轨滑块安装基准变化,加剧导轨滑块磨损㊂如果制造阶段内应力释放不完全,服役时,内应力释放也将导致导轨滑块的安装基准发生变化,造成导轨滑块的非正常磨损,精度保持性下降,如图2所示㊂因此,造成导轨滑块非正常磨损的主要因素为:内应力释放变形和装配应力蠕变变形等㊂2.1 内应力消除工艺机床基础件大部分为铸件,少量为焊接件,在铸造或焊接过程中会产生一定的内应力㊂为了使内应力得到充分释放,往往采用自然失效的方式处理基础件㊂自然失效周期较长,不能满足生产时,采用热时效的方式㊂热时效耗能大,基础件大小受限于时效炉的尺寸㊂目前较为流行的是振动时效㊂L i等[12‐13]利用有限元仿真得到床身的各阶振型,作为振动时效工艺参数选择的依据,但是图2 几何精度保持性影响因素没有定量给出铸造残余应力振动时效后应力变化的大小㊂低频振动时效时零件变形量大,甚至出现破坏,H e等[14]为了防止出现这种现象,提出了超过1k H z的高频振动工艺方案,在两块焊接的钢板上进行了试验验证,得到高频振动更能均化焊接件的残余应力的结论㊂焊接件一般质量较小,但是对于大型铸件,高频振动受激振能量限制,不太合适㊂胡敏等[15]针对某型号卧式加工中心床身结构,利用模态分析选择了振动时效的激振频率㊁支撑点㊁激振点和拾振点,根据工件质量选择了激振时间,根据最大动应力和激振力的关系选择了激振力大小,并且与原有振动工艺消除应力的效果进行了对比㊂目前,对振动时效的定量研究较少,大部分工厂是按照经验对大型基础件进行振动时效处理㊂因此,为了减小内应力释放变形造成的轴线基准变形以及基准变形造成的导轨滑块非正常磨损,需要规范基础件制造时的内应力工艺,定量控制内应力的大小㊂2.2 减小装配应力的措施设计时如果没有考虑移动部件重力在全行程内造成的基础件精度变化,造成装配后的轴线几何精度达不到设计要求,现场采用不恰当的拧紧等措施使基础件局部变形过大来保证导轨的直线度㊁平行度等精度,就会产生较大的装配应力㊂机床使用时,地脚螺栓中受力较大的螺栓蠕变较快,导轨安装基准变化;同时,导轨的基准变化将加剧导轨滑块的磨损,轴线几何精度丧失㊂在设计阶段,张文凯[16]根据卧式加工中心移动部件在行程内质心位置变化造成的导轨安装基准面变形,利用A N S Y S的A P D L语言优化了地脚螺栓布局,使导轨安装面直线度由11.6μm减㊃0113㊃中国机械工程第26卷第22期2015年11月下半月Copyright©博看网. All Rights Reserved.小到了8.6μm㊂减小了为保证机床精度造成的部分地脚螺栓应力,使地脚螺栓的布局设计更加合理㊂张景和等[17]在大型非球面超精密机床上设计了卸荷浮板结构,减小了导轨负荷(导轨及其上移动部件的质量)㊂当卸荷量达到12k N时,主导轨直线度为0.375μm/600mm㊂张伯鹏等[18]针对大型数控龙门铣床横梁重力变形问题,在辅助梁上设置了3个出力可控的液压千斤顶,利用遗传算法实现了自演机制,减小了重力变形造成的误差㊂上述两种方法利用改变横梁结构,增大横梁刚度,减小了重力变形对导轨直线度的影响,间接地提高了机床的精度保持性㊂但是受机床结构影响,有些机床不能通过改变结构来增大横梁刚度,只能通过制造阶段的工艺措施来合理地保证精度㊂在制造阶段,胡万良等[19]利用压电式传感器发明了智能垫铁(Z L200910024358.7),该智能垫铁能够监测机床垫铁的受力大小,用于机床在装配时保证地脚螺栓受力均匀,减小机床使用时地脚螺栓蠕变量的不一致㊂智能垫铁只是监测了地脚螺栓的受力状况,可以再改进使其能够自动调整来保证地脚螺栓受力均匀㊂郭铁能等[20‐21]针对数控重型龙门铣床超跨距横梁由于跨度大㊁滑板滑枕质量大造成的横梁向下弯曲(最大挠度可达1mm),采用对导轨面预起拱的方法来补偿横梁变形对加工精度的影响㊂利用合理的装配工艺保证机床的精度,间接地提高了机床的精度保持性㊂单个运动轴的装配应力会造成导轨滑块的非正常磨损,运动轴间的装配应力是由于固定结合面精度的设计和装配的不合理产生的,固定结合面的螺栓蠕变会造成运动轴间的垂直度㊁平行度等精度的衰退㊂螺栓蠕变常见于高温下法兰盘连接用螺栓的蠕变,而O e h l e r t等[22]㊁N e e r a j等[23]认为,常温下金属在一定载荷下也会发生蠕变,单琳豪[24]研究了船用螺旋桨在服役时的蠕变㊂目前还缺少机床结合面螺栓蠕变造成的几何精度衰退规律㊂根据几何精度保持性的分析和回顾,提高国产数控机床几何精度保持性的措施应在机床的设计和制造阶段实施㊂考虑装配应力㊁内应力等的影响,合理设计基础件精度,规范装配工艺,避免为了保证精度而牺牲精度保持性㊂3 运动精度保持性分析及研究现状数控机床的运动精度不同于准静态下的几何精度,是机床在保证几何精度的前提下,进给时运动轴在位移㊁速度㊁加速度三个方面的瞬态和稳态精度[1]㊂运动精度取决于进给系统的机电参数是否匹配㊂数控机床较普通机床最大的优势在于多图3 加工振纹轴联动,单轴的运动不稳定决定了多轴联动误差,联动加工时将在工件表面产生振纹等,影响工件的加工质量,如图3所示㊂机床使用一段时间后,机械参数中的接触刚度和阻尼等随运动副的磨损而变化;电机线圈绕组中漆包绝缘层出现老化导致线圈间的绝缘电阻值变化,输出电磁力矩中出现谐波成分㊂机电参数不再是初始的最优匹配,就会造成运动精度的下降,精度保持性变差㊂运动精度下降之后可以通过机电参数匹配在一定程度上进行恢复㊂表1所示为某台机床在使用一段时间后的运动精度对比㊂表1 某型号机床运动精度衰退及恢复对比表参数出厂最优值1年后衰退调整后恢复机械参数传动刚度(108N/m)2.932.652.65伺服参数速度环增益(H z)7.67.69.2位置环增益(H z)333.5误差值位移波动幅值(μm)1.631.991.67速度波动幅值(mm/m i n)7.959.308.25 机电参数匹配之前,需要辨识机械参数和电机参数,然后通过一定的控制算法进行匹配㊂R e n等[25]提出了子结构参数耦合辨识方法,C e l i c 等[26]基于子结构参数耦合辨识方法提出了改进的关节参数辨识方法,对固定结合部刚度进行了辨识㊂但是数控机床非正常磨损造成的是动结合部的动力学参数变化㊂胡峰等[27‐28]在丝杠径向施加简谐振动,利用初参数解析法辨识了丝杠支撑处㊁螺母处和导轨滑块处的刚度㊂邰晓辉[29]利用I n a m u r a和S a t a方法识别了系统中的轴承㊁螺母的轴向刚度和阻尼㊂但是其辨识的只是轴承和螺母的刚度,不是整个进给系统的刚度㊂陈光胜等[30]利用编码器和光栅尺的信号作为输入信号,对进给系统机械刚度进行了辨识㊂上述辨识都是在静态下进行的,而运动精度恢复需要的是动态下辨识的机械参数㊂曹锟[31]针对高速进给系统的高阶线性模型,将M序列和匀速运动信号相叠加,改进了辨识方法,对某型号机床的直线进给轴刚度进行了辨识,并利用激光干涉仪进行了验证㊂㊃1113㊃国产数控机床精度保持性分析及研究现状 马军旭 赵万华 张根保Copyright©博看网. All Rights Reserved.J o k s i m o v i c等[32]对感应电机定子绕组匝间短路故障引起的线电流频谱变化进行了建模和仿真分析,发现相比于正常电机,匝间短路故障电机线电流频谱中出现电流基频的三次谐波,正常电机中存在谐波成分的幅值增大㊂T a l l a m等[33]利用坐标变换理论得到了感应电机定子绕组匝间短路故障的瞬态模型㊂该模型能够根据误差灵敏度函数准确预测故障线电流的正序和负序部分量值㊂N i c o l a s等[34]基于电流残差定义的故障因子对永磁同步电动机匝间短路故障进行了建模和分析,考虑使用条件和参数不确定性使得预测模型能够对匝间短路电阻小于1kΩ的故障进行准确预测㊂蒋锐权等[35]利用神经元的自学习功能,提出了适用于数控机床位置伺服控制的神经元控制器,该算法结构简单,不需要知道受控对象的结构和参数,而影响精度保持性的恰恰是结构机械参数的变化,因此这种算法不能满足要求㊂I r i s a 等[36]通过辨识伺服进给系统的数学模型,将控制参数整定转化为非线性约束方程的求解过程,此方法能够得到较满意的效果,但整定过程比较复杂㊂K u o等[37]利用遗传算法对五轴数控机床的运动控制参数进行了整定,其整定后的参数在一定程度上改善了机床加工的轮廓精度㊂陈鹏展[38]提出了先获得机械表征对象特征的参考模型,再对参考模型进行控制参数寻优的方法,既保证了控制参数整定的快速性,又能得到满意的整定结果㊂李学伟[39]针对多轴联动中,轨迹预补偿方法中误差分配为考虑各轴跟随特性而导致补偿效果不理想的问题,提出了零相差轨迹与补偿控制方法,利用加工圆弧和抛物线方案进行了验证㊂根据运动精度保持性的分析和回顾,提高数控机床运动精度保持性的措施应在机床的制造和使用阶段实施㊂机械参数的辨识㊁电机参数的辨识和合理的机电匹配算法是提高国产数控机床精度保持性的关键㊂4 整机精度监控系统调研时发现,国产数控机床在使用时,由于使用不当(如切削力过载)和维护保养不足(如润滑油不够清洁)等造成机床轴承及静压导轨等零部件的过早磨损,机床精度下降的情况也较多㊂因此,针对国产数控机床的这一特殊情况,研发整机监控系统,对机床进行工作状态监控及维护保养也能延续机床的精度保持性㊂机床在使用期间,如果机床切削力过大,将加剧主轴轴承的受力,造成轴承的非正常磨损,机床精度很快下降㊂因此,监控切削力大小,设置切削过载报警有助于延长机床的精度保持性时间㊂朱晓春[40]提出通过检测主轴和进给电动机的功率和角速度,计算出切削扭矩,来实现切削过载的在线监控㊂对切削力进行监控,不仅有利于减小刀具的磨损,而且还可以减小主轴轴承因过载造成的磨损㊂润滑液不清洁会加剧运动部件间的磨损,造成导轨滑块或者轴承精度下降㊂特别是磨削类机床,磨粒脱落在冷却液中,如果轴承密封不当,极易造成轴承的磨损[11]㊂通过对润滑液清洁度监控,及时更换不合格的润滑液,定期保养机床,也有利于提高机床的精度保持性㊂张根保等[41]建立了基于液压系统清洁度熵的关键故障源提取模型,提取出了关键故障源,对其清洁度进行了控制,这样有利于减小液压元件(如静压导轨等)的非正常磨损,提高机床的精度保持性㊂李平等[42]建立了丝杆磨损量与驱动电机做功的数学模型,利用监控驱动电机做功的总量来决定丝杆是否需要维护㊂丝杠的磨损影响半闭环控制机床的定位精度和重复定位精度㊂陈宇[43]分析了机床关键功能部件故障数据,在有用性最大的基础上提出了最佳预防维修间隔时间模型,并求得该机床关键功能部件最佳预防维护间隔时间㊂对于不同类型的机床,需要监控的参数类型和参数的阈值范围是不同的,这需要根据机床的特点进一步研究才能确定㊂根据整机精度监控的分析和回顾,在机床的使用阶段,对机床工作状态及工作环境进行监控,适时地对机床进行维护保养,也能提高机床的精度保持性㊂对机床整机精度监控的项目有:润滑油的清洁度㊁液压系统压力㊁电机的功率㊁主轴振动㊁环境温度㊁湿度㊁空气清洁度㊂通过这些参数的监控,可实施维修时间在线预报和强制维护保养㊂5 提高国产数控机床精度保持性的建议通过国产数控机床精度保持性的分析及相关研究文献的回顾,根据调研的国产数控机床设计㊁制造过程和使用环境,针对机床的三类精度,为避免非正常磨损,提高国产数控机床精度保持性,在设计㊁制造和使用阶段提出以下建议㊂(1)几何精度保持性方面㊂提高措施应集中在设计和制造阶段的精度合理保证㊂造成导轨滑块非正常磨损的主要因素有:考虑移动部件质心㊃2113㊃中国机械工程第26卷第22期2015年11月下半月Copyright©博看网. All Rights Reserved.。

立式钻床主轴系统数控改造的毕业设计论文

立式钻床主轴系统数控改造的毕业设计论文

摘要目前中国企业中机床设备老化,不能满足新技术、新工艺的生产要求。

本文重点介绍Z5140A型台式钻床的数控改装方案和单片机系统设计,将传统的机械与现有的数控技术相结合,使其具有自动进给功能,为企业进行设备的数控化改造提供了一种有效可行的途径。

现有的Z5140A型台式钻床经改造后提高了加工精度,扩大了机床的使用范围,并提高了生产率。

本论文说明了普通钻床的数控化改造的设计过程,较详尽地介绍了Z5140A机械传动部分的设计及数控系统部分的设计。

通过该改造计划,改造后的Z5140A型钻床具备数控机床的精度要求,自动化柔性生产的能力。

机床整体能力达到预期的要求。

Z5140A数控钻床主要用于加工各种孔及平面和曲面的铣削。

它集中了立式钻床和铣床的功能。

数控钻床需要很少人工操作,也没有机械操作元件如手柄、摇把等。

该钻床如同其他CNC钻床,全部工作循环是在微机数控系统控制下实现的。

车削对象改变后,只需改变相应的软件就可适应新的需要。

由于利用的床身、立柱等基础件都是重而坚固的铸造构件,而不是那种焊接构件,改造后的机床性能高、质量好,可以作为新设备继续使用多年。

但是受到原来机械结构的限制,不宜做突破性的改造。

关键词:数控机床;滚珠丝杠;数控系统AbstractAt present,Machine tools made in China is aging and can not meet the requirements of new technologies and new processes of production. This paper focuses on the NC Z5140A-type drill press conversion programs and MCU system design. Combining the traditional machines with the CNC technology, it can realize automatically feed function and provides a feasible and effective way for the enterprise of equipment's transformation with NC.Existing Z5140-type drill press improves the machining accuracy, expands the scope of machine use and increases the productivity after transformation. This paper describes the design process of the transformation of the general drilling with NC, introduces the design of the Z5140A mechanical transmission part and numerical control system part in detail.After the transformation plan, Z5140A-type drill transformed has the accuracy requirement of CNC machine tools and the automatic flexible production capacity. Machine tools achieve the desired overall capacity requirements. Z5140A CNC drilling machine is mainly used for processing a variety of holes and planar and surface milling. It contains the vertical drilling and milling function. CNC drilling and milling machinerequires very little manual operation and no operation of machinery components such as handles, crank and so on. As with other CNC drilling of the drilling machine, all of the cyclic work is completed under the control of the computer numerical control system. As turning object changes, just change the corresponding software to adapt to new needs. Because lathebed, column and other basic items are heavy and casting equipments but not the welded components, machine tools transformed has higher performance and better quality, which can be used as a new equipment for years. However, limited by the mechanical structure of the original, it can not be transformed revolutionarily.Key Word:Numerical Control Machine Tools ; Ball Screw; CNC System目录摘要 ........................................ - 1 -Abstract ...................................... - 2 -1绪论......................................... - 6 -1.1 立式钻床的概述............................................................................................ - 6 -1.2 数控立式钻床的发展.................................................................................... - 6 -1.3 立式钻床数控化改造的市场 ....................................................................... - 8 -1.3.1 机床数控化改造的市场...................................................................... - 8 -1.3.2 立式钻床简介...................................................................................... - 9 -1.4床数控化改造的内容及优缺点 .................................................................. - 10 -1.4.1数控化改造的内容............................................................................. - 10 -1.4.2 立式钻床数控化改造的优缺点........................................................ - 11 -2主传动系统的设计............................ - 12 -2.1 立式钻床数控化改造设计任务 ................................................................. - 12 -2.2 总体方案的确定.......................................................................................... - 13 -2.2.1 Z向步进电机与进给滚珠丝杠的联结 ............................................. - 13 -2.2.2 传动形式的选择................................................................................ - 15 -2.2.3 滚珠丝杠副的参数............................................................................ - 16 -2.2.4 滚珠丝杠副的组成及特点................................................................ - 17 -2.2.5 滚珠丝杠副的典型结构类型............................................................ - 17 -2.2.6 滚珠丝杠的支撑形式选择................................................................ - 19 -2.3 Z向进给滚珠丝杠副的计算与校核 ................................................... - 22 -2.3.1主轴钻削力计算................................................................................. - 22 -2.3.2滚珠丝杠副的选择计算..................................................................... - 23 -2.3.3选择步进电动机................................................................................. - 26 -2.4 电主轴选用、冷却与润滑 ......................................................................... - 30 -2.4.1 电主轴的概述.................................................................................... - 30 -2.4.2 电主轴的冷却与润滑........................................................................ - 33 -2.4.3 电主轴的选用.................................................................................... - 35 -3数控系统电路设计............................ - 37 -3.1绘制系统电气控制的结构框图 .................................................................. - 37 -3.1.1 机床硬件电路有以下几部分组成.................................................... - 38 -3.2 MCS-51单片机简介 ................................................................................... - 38 -3.2.1 8031单片机的基本特性.................................................................... - 38 -3.2.2 8031芯片引脚及其功能介绍......................................................... - 40 -3.3存储器扩展电路设计................................................................................... - 42 -3.3.1 程序存储器的扩展............................................................................ - 42 -3.3.2 数据存储器的扩展............................................................................ - 44 -3.3.3 译码电路设计.................................................................................... - 45 -3.4 I/O接口扩展电路设计 ............................................................................ - 45 -3.4.1 8155通用可编程接口芯片................................................................ - 45 -3.4.2 8255可编程接器芯片........................................................................ - 47 -3.4.3 8255的结构........................................................................................ - 48 -3.5 其它辅助电路设计...................................................................................... - 49 -3.5.1 8031的时钟电路................................................................................ - 49 -3.5.2 越界报警和急停处理电路................................................................ - 49 -3.5.3 复位电路............................................................................................ - 49 -3.5.4 掉电保护电路.................................................................................... - 50 -3.5.5 键盘显示接口电路............................................................................ - 50 -4结论........................................ - 51 -致谢 ............................. 错误!未定义书签。

XH716立式加工中心总体设计及主轴系统设计

XH716立式加工中心总体设计及主轴系统设计

XH716立式加工中心总体设计及主轴系统设计机械设计制造及其自动化摘要加工中心是典型的集高技术于一体的机械加工设备,它大大提高了劳动生产率,降低了劳动成本,改善了工人的工作环境,降低了工人的劳动强度。

本文经过对不同运动方案和各部件的设计方案的定性分析比较确定该立式加工中心的进给传动方案为:采用固定倒T型床身,电动机轴通过安装座安装在立柱导轨的滑座上,立柱导轨采用滚动直线导轨,可以实现Z方向的进给运动。

由X、Y向精密数控装置分别控制工作台和立柱完成X, Y两个方向的进给运动;X, Y, Z三个方向的进给运动均滚珠丝杠,并由交流伺服电机驱动。

导轨、滚珠丝杠采用多种润滑方式。

关键词:立式加工中心;伺服电机;精度;主轴箱;进给运动。

AbstractMachining center is a typical set of high-tech machining equipment in one, its greatly increased the labor productivity, reduce labor costs, improved working environment and reduce the labor of workers strength. This movement through the different programs and the design of various components of qualitative analysis and comparison of vertical machining centers to determine the progress of education to drive the program are: fixed inverted T-type bed, spindle seat installed by installing the sliding seat rail bed , use linear rolling guide rail bed can be achieved to the movement into the Z direction. By X, Y, precision CNC device to control the feed motion of the table and column X, Y two directions; X, Y, Z three directions of movement are ball screw feed, driven by AC servo motor. Guides, ball screws using a variety of lubrication.Key words: Vertical machining center; Servo motor; Accuracy;spindle box;Feed motion。

立式加工中心X、Y方向进给系统以及床身的设计毕业设计正文1 精品

立式加工中心X、Y方向进给系统以及床身的设计毕业设计正文1 精品

立式加工中心X、Y方向进给系统以及床身的设计1 引言1.1 快速成型技术的产生和发展1.1.1快速成型(RP)技术简介快速原型制造技术,又叫快速成型技术,英文:RAPID PROTOTYPING(简称RP技术),RAPID PROTOTYPING MANUFACTURING,简称RPM。

快速成型(RP)技术是在90年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

它于20世纪80年代后期产生于美国,很快扩展到日本及欧洲,比喻20世纪90年代初期引进我国,是近20年来制造技术领域的一项重大突破,并由此产生一个新兴的技术领域。

它借助计算机、激光、精密传动、数控技术等现代手段,将CAD和CAM技术、数控技术、材料科学、机械工程、电子技术及激光技术的技术集成以实现从零件到三维实体原型制造一体化的系统技术。

它是一种基于离散堆积成型思想的新型成型技术,是又CAD 模型直接驱动的快速完成任意复杂形状三维实体零件制造的技术的总称。

快速成形(Rapid Prototyping, RP)技术基于离散/堆积原理,采用多种直写(Direct Writing)技术控制单元材料状态,将传统上相互独立的材料制备和材料成形过程合,建立了零件成形信息及材料功能信息数字化到物理实现数字化之间的直接映射,实现了从材料和零件的设计思想到物理时间的一体化[1]。

进入 21 世纪以来,间接快速制模技术成为 RP 最重要的应用领域;生物活性材料快速成形成为 RP 研究中一个新的热点,快速成形的生物材料进入细胞和大分子层次;RP 技术的研究重点逐步转移到快速制造(Rapid Manufacturing),主要是直接金属件的制造,快速成形技术的概念也由快速原型向快速制造转化[2]。

而基于喷射技术的熔融沉积成型(Fused Deposition Modeling,FDM)正是当前最活跃使用最广泛的 RP 技术之一。

XK5040数控立式铣床主运动系统、进给系统及控制系统设计

XK5040数控立式铣床主运动系统、进给系统及控制系统设计

优秀设计(20**届)本科生毕业设计(论文)XK5040数控立式铣床主运动系统、进给系统及控制系统设计20**年5月20**届毕业设计(论文)课题任务书院(系):专业:本科毕业设计(论文)开题报告(20**届)20**年1月10日说明:开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一,此报告应在导师指导下,由学生填写,将作为毕业设计(论文)成绩考查的重要依据,经导师审查后签署意见生效。

本科毕业设计(论文)中期报告摘要数控机床即数字程序控制机床,是一种自动化机床,数控技术是数控机床研究的核心,是制造业实现自动化、网络化、柔性化、集成化的基础。

随着制造技术的发展,现代数控机床借助现代设计技术、工序集约化和新的功能部件使机床的加工范围、动态性能、加工精度和可靠性有了极大的提高。

本文主要对XK5040数控立式铣床及控制系统进行设计,首先分析立式铣床的加工特点和加工要求确定其主参数,包括运动和动力参数;根据主参数和设计要求进行主运动系统、进给系统和控制系统硬件电路设计。

主要进行主运动系统和进给系统的机械结构设计及滚珠丝杠和步进电机的选型和校核;对于控制系统由于这里主要针对经济型数控铣床的设计,这里采用步进电机开环控制,计算机系统采用高性能价格比的MCS-51系列单片扩展系统,主要进行中央处理单元的选择、存储器扩展和接口电路设计。

由于本文采用8031单片机控制系统,因此,设计出的立式铣床性能价格比高,满足经济性要求。

可实用于加工精度较高的场合。

关键词数控技术,立式铣床,设计ABSTRACTThe numerical control engine bed is the digital process control engine bed, is one kind of automated engine bed, the numerical control technology is the core which the numerical control engine bed studies, is the manufacturing industry realization automation, the network, the flexibility, the integrated foundation. Along with the manufacture technology development, the modern numerical control engine bed with the aid of the modern design technology, the working procedure intensification and the new function part caused the engine bed the processing scope, the dynamic performance, the processing precision and the reliability had the enormous enhancement .This article mainly carries on the design to the XK5040 numerical control vertical milling machine and the control system, first analyzes the vertical milling machine the processing characteristic and the processing request determines its host parameter, including movement and dynamic parameter; Carry on the host kinematic scheme according to the host parameter and the design request, enters for the system and the control system hardware circuit design. Mainly carries on the host kinematic scheme and enters for the system mechanism design and the ball bearing guide screw and electric stepping motor shaping and the examination; Regarding control system because here mainly aims at the economy numerical control milling machine the design, here uses electric stepping motor open-loop control, the computer system uses the high performance price compared to the MCS-51 series monolithic expansion system, mainly carries on the central processing element the choice, the memory expansion and the connection circuit design .Because this article uses 8,031 monolithic integrated circuits control system, therefore, designs the vertical milling machine performance price is higher than, satisfies the efficient request. But practical to processing precision higher situation .Key words:Numerical control technology,Vertical milling machine,Design目录摘要................................................................................................................................ - 11 - 1 总体设计...................................................................................................................... - 15 - 1.1、铣床简介.................................................................................................................. - 15 - 1.2、 X K5040型数控铣床的总体布局、主要技术参数及总传动系统图 ................... - 15 - 1.2.1 XK5040型数控铣床的总体布局 ......................................................................... - 15 - 1.2.2 XK5040型数控铣床的主要技术参数 ................................................................. - 16 -1.2.3 总传动系统图...................................................................................................... - 18 -2 主运动系统设计.......................................................................................................... - 18 - 2.1 传动系统设计............................................................................................................ - 19 - 2.1.1参数的拟定............................................................................................................. - 19 - 2.1.2 传动结构或结构网的选择.................................................................................... - 19 - 2.1.3 转速图拟定............................................................................................................ - 20 - 2.1.4齿轮齿数的确定及传动系统图的绘制 ................................................................. - 23 - 2.2传动件的估算与验算........................................................................................ - 26 - 2.2.1传动轴的估算和验算............................................................................................. - 26 - 2.2.2齿轮模数的估算................................................................................................ - 28 - 2.3展开图设计............................................................................................................ - 32 - 2.3.1结构实际的内容及技术要求............................................................................ - 32 - 2.3.2齿轮块的设计................................................................................................ - 33 - 2.3.3传动轴设计.................................................................................................... - 35 - 2.3.4主轴组件设计................................................................................................ - 37 - 2.4制动器设计............................................................................................................ - 42 - 2.4.1按扭矩选择.................................................................................................... - 42 - 2.5截面图设计.......................................................................................................... - 43 - 2.5.1轴的空间布置.................................................................................................. - 44 - 2.5.2操纵机构........................................................................................................ - 44 - 2.5.3润滑................................................................................................................ - 44 - 2.5.4箱体设计的确有关问题.................................................................................... - 45 - 3进给系统设计.............................................................................................................. - 46 - 3.1总体方案设计........................................................................................................ - 46 - 3.1.1对进给伺服系统的基本要求............................................................................ - 46 - 3.1.2进给伺服系统的设计要求................................................................................ - 47 - 3.1.3总体方案............................................................................................................ - 47 - 3.2进给伺服系统机械部分设计................................................................................ - 48 - 3.2.1确定脉冲当量,计算切削力............................................................................ - 48 - 3.2.2滚珠丝杆螺母副的计算和造型 ........................................................................ - 50 - 3.2.3齿轮传动比计算................................................................................................ - 56 - 3.2.4步进电机的计算和选型................................................................................ - 57 - 3.2.5进给伺服系统机械部分结构设计 ................................................................ - 65 - 4控制系统设计.............................................................................................................. - 68 - 4.1绘制控制系统结构框图............................................................................................. - 69 - 4.2.选择中央处理单元(CPU)的类型 .......................................................................... - 69 - 4.3存储器扩展电路设计................................................................................................. - 70 - 4.3.1程序存储器的扩展............................................................................................ - 70 - 4.3.2数据存储器的扩展........................................................................................ - 71 - 4.4I/O接口电路及辅助电路设计............................................................................. - 71 - 4.4.1I/O接口电路设计....................................................................................... - 71 - 4.4.2步进电机接口及驱动电路............................................................................ - 72 -4.2.3其他辅助电路................................................................................................ - 73 - 参考文献............................................................................................................................ - 75 - 致谢.. (74)附录(英文翻译及实习报告)......................................................... 错误!未定义书签。

立式加工中心主传动系统设计毕业设计

立式加工中心主传动系统设计毕业设计

立式加工中心主传动系统设计毕业设计目录摘要 (Ⅰ)Abstract (Ⅱ)第1章绪论 (1)1.1 引言 (1)1.2 研发背景及意义 (1)1.3 加工中心的发展状况 (2)1.4 课题拟解决的关键问题 (2)第2章立式加工中心主传动系统设计 (4)2.1 加工中心主轴箱的组成 (4)2.2 机械系统方案的确定 (4)2.2.1 主轴传动机构 (4)2.2.2 加工中心主轴组件总体设计方案的确定 (4)2.3 运动及动力参数计算 (5)2.3.1 铣削分力 (5)2.3.2 铣削圆周力的计算 (6)2.3.3 选用电机 (9)第3章传动系统的设计 (11)3.1 主传动系统的设计 (11)3.1.1 带传动的设计 (11)3.1.2 齿轮传动的设计 (12)3.2 Ⅰ轴的设计 (17)3.2.1 Ⅰ轴的初步设计 (17)3.2.2 I轴的校核 (18)3.3 主轴的设计 (21)3.3.1 主轴的设计 (21)3.3.2 主轴受力分析 (24)3.3.3 主轴的强度校核 (28)3.3.4 主轴的刚度校核 (29)第4章控制系统设计 (30)4.3软件设计 (32)4.3.1 步进电机的控制原理 (33)4.3.2 变频电机的相关控制 (34)4.3.3 译码法寻址 (34)4.3.4 键盘显示器接口 (34)4.3.5 程序存储器(EEPROM)芯片 (34)4.2.6 数据存储器(RAM)芯片 (34)结论 (35)致谢 (36)参考文献 (37)立式加工中心主传动系统设计摘要:数控技术和数控装备是制造工业现代化的基础,这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到国家的战略地位。

立式加工中心主传动系统是用来实现机床主运动的传动系统。

包括电动机、传动系统和主轴部件。

本文通过对立式加工中心主传动系统的各方面设计,以达到低制造成本、简化机构、实现优化。

采用变频电机和一级机械调速达到调速和传递功率的要求;用步进电机驱动主轴上下运动达到Z行程的要求;数控装置采用51单片机来实现对电机更加精确的控制和实现机械调速的自动控制。

加工中心及其进给系统设计

加工中心及其进给系统设计

加工中心及其进给系统设计作者:张朝麟来源:《中国新技术新产品》2018年第01期摘要:加工中心是一个高精密、高集成化的设备,它的技术水平标志着一个国家制造业的强弱,加工中心的制造能力和加工能力非常广泛和强大,并且工件加工过程中减少装卸和换刀步骤,这样体现了加工中心的复杂程度,加工中心的主传动系统和进给系统精度高,同时也复杂,它的转速和进给效率非常高,这样体现了为什么加工中心加工能力强的原因之一。

关键词:加工中心;主传动系统;进给系统中图分类号:TG502 文献标识码:A1.加工中心加工中心的特点就是工序集中、加工精度高、适应性非常强、生产效率高、性价比高、利用生产管理等,以上这些特点相对于普通机床而言,加工中心具有刀库,可以实现自动换刀,机床装夹后,可以实现多面位加工。

加工中心的总体结构组成如图1所示。

加工中心的数控系统主要是由CNC装置、PLC、伺服驱动装置这几个部分组成,CNC控制系统可以对加工中心的功能、主轴等分别控制,实现加工范围广的特点。

加工中心的结构可以分为主机部分和控制部分两种,主机部分也就是机床本体,包括床身、立柱、主轴箱等,控制部分就是对加工中心控制的各种程序,加工中心的控制系统非常强大,智能化程度也非常高。

加工中心的结构特点就是刚度高、抗震性好,而对于机床刚度的设计时候,机床抵抗变形能力的计算公式如下:式中:K——机床刚度,N/um;F——机床外部载荷,N;Y——载荷作用下,机床或零部件的变形,um。

作用在加工中心上的载荷有很多种,包括夹紧力、切削力、传动力等,对于这些载荷不同,可以分为静载荷和动载荷。

2.主传动系统加工中心的主传动系统设计要求是调速范围要广、转动精度要高、同时传动系统的刚度要强,特别是主轴,主轴部件耐磨性要好。

主传动系统中的主轴变速方式有无极变速和有级变速两种,加工中心的主传动系统为了保证加工时候可以合理选择切削用量和保证加工的加工质量,一般主传动系统采用无极变速,但是为了扩大调速范围,采用齿轮和电机无极调速的结合形式,主轴传动分为带有变速齿轮的主传动,如图2(a)所示,带传动的主传动,如图2(b)所示,调速电机直接驱动,如图2(c)所示。

XH716/1立式加工中心的设计

XH716/1立式加工中心的设计

身 和滑鞍 的结构 分析 处理 较 为典型 。 该机 床 的床 身采 用 闭式箱 形结 构 ,床 身横 截 面 如 图 2所 示 ,床 身壁 厚均匀 ,并在主 要承 载力 处适 当进 行 了加 强 。该 结构 在保 证足 够抗 弯和 抗扭 刚度 的前 提下 ,最大程 度 地减轻 了床 身 的重 量 ;地 脚采 用爪 座式 结构 ,降低 了床身 高度 ,使 得机床 跨 距增
下 ,根据圣维南原理 ,对部分局部特征如倒角、凸
台 、油孔等 进行 了简化 ,并将 模型 导入 Sl rs oi Wok d 的 C s sWok omo rs有 限元 插 件 ,对 受 力和变 形进 行
定 量分 析 。经过 网格 划分 、添 加约 束 、施加 载荷 步 骤 后进 行 结构和 模态 分析 ,以刚度一 重量 比作 为指 标对 模 型进 行修 改 , 以最 小 的成本 获得 机床 最大 的 整 体刚 性和 运行 稳 定性 。经 实际检 测 ,在受 力及 约 束 加载 正确 的前 提 下 ,S l rs oi Wok 软件 有 限元分 析 d
到 了加 强 , 显 著 提 高 了机 床 的承 载 及 抗 振 能力 ; 该 机 床 的床 身 、 滑 鞍 、 立 柱 、 工 作 台及 主 轴 箱 均 经 过 C s sWok 有 限元 软件 分析 并 经过优 化 设 omo rs 计 ,提 高 了设 计 的效率 和水 平 。机床 配 备全封 闭防
护 罩 壳 ,造型 美观 、 时 尚。
插 件 C s sWok omo rs对机 械零 件变 形 分析 的理论 结
果 与实 测值 偏差 在 3 %以 内。由于 支撑 件均采 用 高 0 性 能灰铸 铁 材料 ( T 0 ) H 3 0 ,具有较 高 的抗弯 、抗 扭 强度 。因此 即使在 极 限情 况下 ,所 受 的最大应 力 与 材 料 的强度 极 限也相 距甚 远 ,安全 性很 高 。其 中床

XKA5750数控铣床主传动系统设计

XKA5750数控铣床主传动系统设计

XKA5750数控铣床主传动系统设计摘要本文介绍了XKA5750立式数控铣床的一些基本情况,简述了机床主传动系统方面的原理和类型,分析了各种传动方案的机理。

XKA5750立式数控铣床主传动系统包括主轴电动机、主轴传动系统和主轴组件三部分。

本文详细介绍了立式数控铣床主传动系统的设计过程,该立式数控铣床主轴变速箱是靠齿轮进行传动的,传动形式采用集中式传动,主轴变速系统采用多联滑移齿轮变速。

齿轮传动具有传动效率高,结构紧凑,工作可靠、寿命长,传动比准确等优点。

文中介绍了立式数控铣床主传动系统各种传动方案优缺点的比较、主传动方案的选择和确定、主传动变速系统的设计计算、主轴组件的设计、轴承的选用基润滑、关键零件的校核、以及主轴电动机的控制等设计过程。

关键词:数控铣床,主传动系统,主轴组件The main drive system design of XKA5750 CNC milling machineAuthor:Han LiguoTutor:Yan CunfuAbstractThis paper introduces some basic situations of the XKA5750 vertical CNC milling machine, briefly discusses the principles and types about spindle driving system of machine tool and analyzes the mechanism of various transmission scheme. The main driving system of XKA5750 CNC milling machine includes three parts that is spindle motor, spindle driving system and spindle components. This paper describes the main driving system design process of the XKA5750 CNC milling machine in detail. The spindle gearbox of this vertical CNC milling machine is driven by gear, and the driving mode adopts a centralized transmission, the spindle speed system uses multi sliding gear transmission. The advantages of gear drive are high transmission efficiency, compact structure, reliable, long life and accurate transmission ratio and so on. This paper compares the advantages and disadvantages of the various transmission scheme for vertical CNC milling machine system, introduces the selection and identification of main drive program, gearshift design and calculation of the main drive, the design of the spindle components, the selection and lubrication of the bearing, verification of critical parts, and the control of spindle motor, and so on.Key words:CNC milling machine, spindle driving system, spindle components目录1 绪论 (1)1.1我国数控机床的发展现状 (1)1.2课题提出的意义和目的 (2)2 XKA5750数控铣床主传动系统方案的确定 (3)2.1数控铣床主传动系统简介 (3)2.2对数控铣床主传动系统的要求 (3)2.3主传动的类型及方案选择 (4)3 主传动变速系统主要参数计算 ........................................................ 错误!未定义书签。

进给系统传动设计

进给系统传动设计

结构设计
二、主轴箱内传动轴的空间布置
主轴箱(变速箱)内传动轴按空间三角形分布。要求: 主轴箱(变速箱)内传动轴按空间三角形分布。要求: ① 首先满足机床总体布局对主轴箱的形状和尺寸限制; 首先满足机床总体布局对主轴箱的形状和尺寸限制 机床总体布局对主轴箱的形状和尺寸限制; ② 兼顾变速机构、润滑装置的设计合理性; 兼顾变速机构、润滑装置的设计合理性; ③ 考虑各轴受力情况,装配调整和操纵维修的方便; 考虑各轴受力情况,装配调整和操纵维修的方便; ④ 考虑散热性能,确保热变形小。 考虑散热性能,确保热变形小。 其中主轴箱的形状和尺寸 限制, 限制,是影响传动件空间布置 最重要的因素。 最重要的因素。
电动机 主换向机构 主变速机构
挂 轮 架
进给换 向机构 进给箱
外联系传动进给链 内联系螺纹链
进给传动系统设计
数控机床是无级电伺服变速进给链 机床的每一进给运动采用一个伺服电动机, 机床的每一进给运动采用一个伺服电动机,直接或通过定比传 动机构与滚珠丝杠相连接。在丝杠(或伺服电动机) 动机构与滚珠丝杠相连接。在丝杠(或伺服电动机)等旋转零件端 部安装脉冲发生器,或在工作台侧安装光栅。 部安装脉冲发生器,或在工作台侧安装光栅。用同步脉冲控制伺服 电动机,保证工作台精确的运动速度和定位精度。 电动机,保证工作台精确的运动速度和定位精度。
进给传动系统设计
三、机械分级进给传动系的设计要点
1.进给传动是恒转矩传动 1.进给传动是恒转矩传动 在各种不同进给量的情况下,产生的切削力大致相同, 在各种不同进给量的情况下,产生的切削力大致相同,进给力 也是大致相同。故驱动进给运动的传动件是恒转矩传动。 也是大致相同。故驱动进给运动的传动件是恒转矩传动。 2.进给传动系中各传动件的计算转速是其最高转速 2.进给传动系中各传动件的计算转速是其最高转速

立式加工中心主传动系统设计

立式加工中心主传动系统设计

数控机床主传动系统
二、主传动系统结构形式
主传动系统采用的结构形式主要决定于主轴转速 高低、传递转矩大小和对运动平稳性的要求。
1、直联传动 主轴与主电机由联轴节直接连接,其优点是
结构紧凑,但主轴转速的变化及转矩的输出和 电动机的输出特性一致,同时主轴部件结构相 对比较复杂,因而使用上受到一定限制。
数控机床主传动系统
□ 目前,主轴的 端部形状已标准化。
数控机床主传动系统
2、主轴的支承 □ 主轴支承的配置形式 机床主轴有前、后两支承及前、中、后三 支承两种形式,以前者多见。
主轴箱长度较长,采用两支承其支承夸距远 在于合理夸距,通过加大轴径来提高刚性和抗 振性无效时,应考虑增设第三支承。
由于制造工艺上的限制,通常难使三支承座 孔完全同轴,通常只有两个支承起主要作用, 另一个(中间或后)支承起辅助作用。辅助支 承通常选用深沟数控机床的机械拆装
模块三 数控机床主传动系统 内容概要
一、主传统系统概述 二、主传动系统结构形式 三、主轴部件结构
数控机床主传动系统
一、主传动系统概述
1、概念 主传动:用来实现机床的主运动,它将主电动
机的原动力变成可供主轴上刀具切削加工的切削 力矩和切削速度。例如:数控车床上主轴带动工 件的旋转运动;立式加工中心上主轴带动铣刀的 旋转运动等。
过大的预紧对轴承刚度提高已不显著,么而会 导致发热高,磨损严重和后果。
数控机床主传动系统
➢ 滚动轴承的间隙调整
主轴支承结构一定要考虑轴承间隙调整结构: ① 装配时能对轴承施加预紧力,控制过盈量; ② 轴承磨损后,为恢复精度和过盈量而再进行调整,确保
滚动轴承能长期、可靠而又稳定地工作。
调整结构原理:使轴承 内外圈轴向相对位移,消 除滚动体与滚道之间的间 隙,并有一定的过盈量, 然后在调整好的位置上固 定下来。最常用的调隙方 法是用螺母调整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档