最新人教版七年级数学上册知识点归纳总结及典型试题汇总
新人教版七年级数学上册第三章《一元一次方程》知识点和题型总结
新人教版七年级数学上册第三章《一元一次方程》应知应会知识点和题型总结一、方程定义【一元一次方程的认识】1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x 2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A.1 B.2 C.3 D.42.下列各式中是一元一次方程的是( )。
A.1232x y -=-B.2341x x x -=-C.1123y y -=+D.1226x x -=+ 3.下列方程①313262-=+x x ②4532x x =+③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2 C.3 D.4【利用定义求参数】4.如果(m-1)x |m| +5=0是一元一次方程,那么m = .【列方程】5.根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 二、方程的解【方程解的应用】1.若x=1是方程k (x-2)=2的解,则k= .2.已知3是关于x 的方程mx+1=0的根,那么m=3.一个一元一次方程的解为2,请写出这个一元一次方程 .4.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311- D .0 5.已知方程3x 2x -9x+m=0的一个根是1,则m 的值是 。
6.方程2152x kx x -+=-的解为-1时,k 的值为( )。
A.10 B.-4 C.-6 D.-87.y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。
8.已知x=-1是关于x 的方程328490x x kx -++=的一个解,求23159k k --5的值。
人教版七年级上册数学知识点梳理汇编含说课稿及答案(实用必备!)
人教版七年级上册数学知识点梳理汇编含说课稿及答案(实用必备!)一. 教材分析人教版七年级上册数学知识点梳理汇编含说课稿及答案,本书主要面向七年级学生,帮助他们系统地学习和掌握数学知识。
本册内容主要包括有理数、方程、不等式、平面几何等基础知识。
这些知识不仅是初中数学的基础,也是高中数学的基础,对于学生未来的数学学习具有重要意义。
二. 学情分析七年级的学生已经初步掌握了小学数学的基本知识,对于一些简单的数学运算和概念有一定的了解。
但是,他们对于一些抽象的数学概念和理论的理解还比较薄弱,需要通过实例和实际操作来帮助他们理解和掌握。
此外,学生的学习习惯和方法也需要进一步的引导和培养。
三. 说教学目标1.知识与技能:使学生掌握有理数、方程、不等式、平面几何等基本知识,能够熟练运用这些知识解决实际问题。
2.过程与方法:通过实例和实际操作,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和热情,培养他们积极学习数学的态度。
四. 说教学重难点1.教学重点:有理数、方程、不等式、平面几何等基本知识的掌握和运用。
2.教学难点:对于一些抽象的数学概念和理论的理解,以及数学思维能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、小组合作学习法等,引导学生主动探究和解决问题。
2.教学手段:利用多媒体课件、教学卡片、实物模型等辅助教学,增强学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过引入实际问题,激发学生的学习兴趣,引导学生思考和探究。
2.新课导入:介绍本节课的主要内容和知识点,引导学生了解和掌握。
3.实例讲解:通过具体的实例,解释和说明数学概念和理论,让学生理解和掌握。
4.学生练习:让学生进行相关的练习题,巩固和加深对知识的理解和运用。
5.小组讨论:让学生进行小组讨论,共同解决问题,培养学生的合作能力和解决问题的能力。
6.总结与拓展:对本节课的知识进行总结和拓展,引导学生思考和探究。
人教版初中七年级数学上册各章知识点总结及章节经典练习附答案
七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数确实是有理数。
判定:有理数可分为正有理数和负有理数(错,还有0)②零既不是正数,也不是负数。
判定:0是最小的正整数(错),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对)③有限小数和无穷循环小数因都能化成份数,故都是有理数。
判定:0是最小的有理数(错)④无穷不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判定:整数和小数统称有理数(错,整数和分数统称有理数)。
二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在慢慢变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)那么对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 概念:假设a+b=0,那么a 与b 互为相反数 特例:因为0+0=0,因此0的相反数是02.性质:①假设a 与b 互为相反数,那么a+b= 0②-a 不必然表示负数,但必然表示a 的相反数(仅仅相差一个负号)③假设a 与b 互为相反数且都不为零,a b= -1 ④除0之外,互为相反数的两个数老是成双成对的散布在原点双侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =- 四、绝对值1.概念:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法那么:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
人教版初中数学七年级上册 全册第一至第四章知识点总结 (PDF版)
第一章有理数一、知识框架二.知识概念1.有理数(1)有理数的定义:凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。
整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;【拓展】无限不循环小数是无理数,有限小数或无限循环小数是有理数。
常见的无理数形式:①字母π型,含有π的式子。
②根式型,根式中的被开方数开不尽,如3。
③构造型,如0.1010010001....,数字中有变化规律,但不循环。
④其他一般无限不循环小数。
(2)有理数的分类:①按定义分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按性质分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴(1)定义:数轴是规定了原点、正方向、单位长度的一条直线。
(三要素:原点、正方向、单位长度)(2)用途性质:我们可以利用数轴上的点来表示所有的有理数。
在数轴上,越靠右的点表示的数越大。
3.相反数(1)代数定义:只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
几何定义:在数轴上,位于原点的两侧,且到原点的距离相等的两个点表示两个数互为相反数。
(2)性质:相反数的和为0。
即:a、b 互为相反数⇔a+b=0。
4.绝对值(1)几何定义:绝对值的表示是数轴上表示某数的点离原点的距离,数a 的绝对值用符号|a|来表示。
代数定义:正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
(2)绝对值重要性质:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;小提示:绝对值的问题经常分类讨论;(3)几个含绝对值或含平方的式子之和等于0,则每一个式子等于0。
5.倒数(1)定义:乘积为1的两个数互为倒数;若a≠0,那么a 的倒数是a1;注意:0没有倒数。
人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题
几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
人教版七年级上册数学必背知识点归纳总结
人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。
(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
[最新]人教版七年级上册数学1.1正数与负数知识点与练习题部分含答案5份汇总
第一章正数和负数1、正数和负数(附答案)建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃3.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是()A.30mm B.30.03mm C.30.3mm D.30.04mm4.如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包5.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.6.下面对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0二、填空题(每小题3分,共9分)7.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作:.8. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为__.9.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.三、解答题(共23分)10.(7分)有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?11.(8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6天,仓库里的货品是(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?12.(8分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?正数和负数参考答案一选择题1.A2.A3.B4.B5.C6.B二、填空题(每小题3分,共9分)7.﹣3.8.-39.49.3kg.三、解答题(共23分)10.解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.11.解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6天要付860元装卸费.12.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.人教版七年级数学上册第一章第1节正数与负数(附答案)一、选择题1.气温上升,记作,那么下降记为A. B. C. D.2.飞机上升了米,实际上是A. 上升80米B. 下降米C. 先上升80米,再下降80米D. 下降80米3.2019年内,甲同学的体重增加了记为,乙同学的体重减少了,应记为A. B. 3 C. D.4.一个物体做左右方向的运动,规定向右运动6m记做,那么向左运动8m记做A. B. C. D.5.小红设计了一个游戏规则:先向南走5米,再向南走米,最后向北走5米,则结果是A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米6.下列不是具有相反意义的量是A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.给出下列各数:,0,,,,,2004,其中是负数的有A. 2个B. 3个C. 4个D. 5个8.下列各组数中,具有相反意义的量是A. 节约汽油10公斤和浪费酒精10公斤B. 向东走5公里和向南走5公里C. 收入300元和支出500元.D. 身高180cm和身高90cm9.下列各数一定是负数的是.A. B. C. D.10.一袋大米的质量标识为“千克”,则下列大米中质量合格的是A. 千克B. 千克C. 千克D. 千克11.向东行进米表示的意义是A. 向东行进30米B. 向东行进米C. 向西行进30米D. 向西行进米12.如果将“收入50元”记作“元”,那么“支出20元”记作A. 元B. 元C. 元D. 元13.在0,,,5这四个数中,正数是A. 0B.C.D. 514.若存入2500元记做“”,则支出3000元记做A. B. C. D.15.某图纸上注明:一种零件的直径是,下列尺寸合格的是A. B. C. D.二、计算题16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减辆生产量最多的一天比生产量最少的一天多生产多少辆?本周的总生产量和原计划相比___________填“增加”或“减少”了_____辆.17.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312(1)这10筐西红柿一共重多少千克?(2)若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?三、解答题18.某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是一周的生产情况超过每天计划量记为正、不足每天计划量记为负.星期一二三四五六日与计划量的差值该厂星期四生产自行车________辆;产量最多的一天比产量最少的一天多生产自行车________辆;求该厂本周实际平均每天生产多少辆自行车?19.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况增产为正,减产为负,单位:个星期一二三四五六日增根据记录可知前三天共生产____个;产量最多的一天比产量最少的一天多生产____个;该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?答案1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C12.【答案】A13.【答案】D14.【答案】B15.【答案】D16.【答案】解:辆;答:生产量最多的一天比生产量最少的一天多生产17辆;减少;4.17.【答案】【1】解:因为,所以这10筐西红柿一共重千克.【2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.18.【答案】解:辆,所以该厂星期四生产自行车213辆,故答案为:213;辆,所以产量最多的一天比产量最少的一天多生产自行车24辆,故答案为:24;19.【答案】解:;故答案为298;;故答案为23;这一周多生产的总辆数是:个;元;答:该厂工人这一周的工资是35390元.课题 1.1正数与负数(无答案)学生姓名班级日期一.选择题(共7小题)1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个B.2个C.3个D.4个2.下列各组数中,负数的个数是()﹣2,33.2,0.75,﹣37.5%,,0,﹣0.6,﹣7.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数4.下面四个选项中,不具有相反意义的量的是()A.借贷5万元与还贷6万元B.高出海平面8888米与低于海平面188米C.亏损2万元与盈利8万元D.增产10吨粮食与减产﹣10吨粮食5.“—a”表示()A.负数B.正数C.正数或负数D.以上都不对6.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m7.下列说法中正确的有()①海拔﹣73米表示比海平面低73米;②温度0℃表示没有温度;③0是最小的自然数;④若向东走5米记作+5米,则0米表示原地不动.A.1个B.2个C.3个D.4个二.填空题(共7小题)8.如果向东走18米记为+18,那么向西走18米记为.9.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.10.如果80m表示向东走80米,那么—60m表示_____________________11.如果水位升高3m时记作+3m,那么水位下降3m应记作____________人教版七年级上册数学课堂小测 1.1正数和负数(附解析)1.如果温度上升10C °记作10C +°,那么温度下降5C °记作( )A.10C +°B.10C -°C.5C +°D.5C -°2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在数12,0,π---,中,负数有( )A.1个B.2个C.3个D.4个3.向北走12-米的意义是( )A.向北走12米B.向南走12米C.向西走12米D.向东走12米4.在下列说法中,正确的是( )A. 带“-”号的数是负数B.0℃表示没有温度C.0前加“+”号为正数,0前加“-”号为负数D. -108是一个负数5.6,2005,,0,-3,+1, ,-6.8中,正整数和负分数共有…( ) A .3个 B .4个C .5个D .6个 6.如果向南走5米,记作+5米,那么向北走8米应记作___________.7.如果温度上升3℃记作+3℃,那么下降5℃记作____________.8.海拔高度是+1356m ,表示________,海拔高度是-254m ,表示______.9.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.10.把下列各数分别填在相应的大括号里:+9,-1,+3,,0, ,-15,,1.7.正数集合:{ …}, 负数集合:{ …}.11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.12.如果把+210元表示收入210元,那么-60元表示______________.13.粮食产量增产11%,记作+11%,则减产6%应记作______________.14.如果把公元2008年记作+2008年,那么-20年表示______________.15.如果向西走12米记作+12米,则向东走-120米表示的意义是___.16.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.17..举出一个数字“0”表示正负之间分界点的实际例子,如__________.18.在下列各对量中:①向东走3千米与向北走3千米;②购进200千克苹果与卖出180-千克苹果;③收入20元与支出30元;④上升3米与前进7米.具有相反意义的量的是 .19.下面的数中,哪些是正数?哪些是负数?18-,16,0,0.15,131,4,120%,0.8,4-+--答案以及解析1.答案:D解析:如果温度上升10C °记作10C +°,那么下降5C °记作5C -°;故选D .2.答案:C解析:在数1,2,0,π---中,负数有1,2,π---,共3个.故选C.3.答案:B解析:向北走12-米的意义是向南走12米,故选B.4.答案:D解析:不是带“-”号的数是负数,要看化简后的结果,故A 错误;0℃表示温度为0℃,不表示没有温度,故B 错误;0既不是正数, 也不是负数,故C 错误;-108是一个负数,正确,故选D.5.C6.-8米7.-5℃8.超出海平面1356m ,低于海平面254m 。
七年级数学上上册知识点总结及练习题(含答案)
人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)
人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)一. 教材分析人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)主要包括以下内容:1.第一章:有理数1.1.1 整数的定义及性质1.1.2 整数的分类:正整数、负整数、零1.1.3 整数的运算:加、减、乘、除、乘方、开方1.2.1 分数的定义及性质1.2.2 分数的分类:正分数、负分数、零分数1.2.3 分数的运算:加、减、乘、除、乘方、开方1.3 混合运算1.3.1 混合运算的顺序1.3.2 混合运算的法则2.第二章:几何图形2.1 平面图形2.1.1 点的定义及性质2.1.2 直线的定义及性质2.1.3 射线的定义及性质2.1.4 圆的定义及性质2.1.5 三角形的定义及性质2.1.6 四边形的定义及性质2.1.7 多边形的定义及性质2.2 立体图形2.2.1 棱柱的定义及性质2.2.2 棱锥的定义及性质2.2.3 球体的定义及性质3.第三章:方程与不等式3.1.1 方程的定义及性质3.1.2 方程的解法:代入法、消元法、换元法、公式法3.2 不等式3.2.1 不等式的定义及性质3.2.2 不等式的解法:同大取大、同小取小、大小小大中间找、大大小小找不到二. 学情分析学生在学习数学的过程中,已经掌握了加、减、乘、除等基本的运算技能,对简单的数学概念有一定的理解。
但是,对于更复杂的数学知识点,如分数、混合运算、几何图形等,学生可能还存在一定的困惑。
因此,在教学过程中,需要注重对这些知识点的讲解和巩固。
三. 教学目标1.知识与技能:使学生掌握整数、分数、混合运算、几何图形、方程与不等式等基本数学知识,能够熟练运用这些知识解决实际问题。
2.过程与方法:培养学生的逻辑思维能力、创新能力和合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.教学重点:整数、分数、混合运算、几何图形、方程与不等式的基本概念和运算方法。
人教版七年级数学上册第三章知识点总结及阶梯练习
人教版七年级数学上册第三章知识点总结及阶梯练习第三章一元一次方程一、知识点回顾方程:含有未知数的方程只含有一个未知数的公式是整数,未知数的个数是1。
这种方程称为一元一次方程2。
解一元一次方程的步骤(1)去掉括号;(2)转移物品;(3)合并同类项;(4)系数化为1.注(1)删除括号是基于删除括号的规则和分布规律。
拆卸支架时,请特别注意支架外的符号,不要漏乘括号中的项(2)去掉括号后,如果方程两边的多项式有相似的项,可以先组合相似的项,然后移动这些项以简化问题的解决程.3.等式的性质:等式的两边加(或减)相同的数(或公式),结果仍然相等。
等式的两边乘同同一个数,或除以同一个不为0的数,结果仍相等。
4、四类问题|1.和差时间;2.产品形态变化;3.遇到问题;4.行程问题:追及问题,相遇问题,相背而行。
二、基础知识巩固1、下列方程中,是一元一次方程的是()(a) x2?4x?3.(b) x?0(c)x?2岁?1.(d) x?1.1.X2。
已知方程式3A?2b?5.那么。
(a) 3a在下面的等式中不一定是真的?5.2b;(b) 3a?1.2b?6.(c) 3ac?2bc?5.(d) a?25b?。
333.在下面的公式中,正确的是()(a)方程3x?2?2x?1,移项,得3x?2x??1?2;(b)方程3?x?2?5?x?1?,去括号,得3?x?2?5x?1;23吨当未知系数变为1,x?1.32x?1x??1到3倍?6.(d)方程式0.20.5(c)方程4.儿子12岁,父亲39岁,()父亲的年龄是儿子的四倍(a)3年后;(b) 3年前;(c) 9年后;(d)不可能5、某数的3倍比它的一半大2,若设某数为y,则列方程为____.6.将内径为3M的长圆柱形试管装满水。
现在,将试管中的水逐渐滴入内径为8米、高度为1.8米的圆柱形玻璃中。
当玻璃中充满水时,试管中的水的高度降低了M原价7.图为“明星超市”中“飘动”洗发水的价格标签。
新人教版七年级数学上册第二章题型总结
新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。
9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。
则三角形的周长为 。
13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。
人教版七年级数学上册知识点归纳总结及典型试题汇总
人教版七年级数学上册知识点归纳总结及典型试题汇总本章主要介绍有理数的概念和运算。
有理数可以用数轴来认识和理解,同时也可以将这些概念串在一起。
在具体运算时,需要注意运算法则、运算律、运算顺序和近似计算。
1.有理数是可以写成 p/q 形式的数,其中 p 和 q 都是整数且 p 不等于 0.有理数包括正整数、正分数、整数、零、负整数和负分数。
需要注意的是,1、-1 和 0 是三个特殊的有理数,它们将数轴上的数分成四个区域,每个区域的数有其自己的特性。
2.数轴是一条直线,规定了三个要素。
3.相反数是指符号相反的两个数,它们的和为 0,商为 -1.需要注意的是,a-b+c 的相反数是-a+b-c,a-b 的相反数是b-a,a+b 的相反数是 -a-b。
4.绝对值是非负数,正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值的意义是数轴上表示某数的点离开原点的距离。
如果两个数互为相反数,则它们的绝对值相等。
5.在比较有理数的大小时,正数永远大于负数,两个负数比较时,绝对值大的反而小。
在数轴上,右边的数总比左边的数大。
例如,-1,-2,+1,+4 表示与标准质量的差,绝对值越小,越接近标准。
6.乘积为 1 的两个数互为倒数。
如果 ab=1,则 a 和 b 互为倒数;如果 ab=-1,则 a 和 b 互为负倒数。
需要注意的是,有些数没有倒数。
1.单项式是由数字或字母乘积组成的式子,如果只有一个数字或字母,也可以称为单项式。
多项式则是由几个单项式相加组成的式子。
2.在单项式中,数字因数称为单项式的系数(要包括符号),所有字母指数的和称为单项式的次数(只与字母有关)。
在多项式中,所含单项式的个数称为多项式的项数,而最高次项的次数则称为多项式的次数。
3.整式是指由单项式相加或相减组成的代数式,而多项式是整式的一种特殊情况。
4.同类项是指含有相同字母并且相同字母的指数的项,与系数和字母的排列顺序无关。
合并同类项的法则是将同类项的系数相加,而字母和字母的指数不变。
最新人教版七年级上册数学知识点归纳总结
最新人教版七年级上册数学知识点归纳总
结
本文将总结最新人教版七年级上册数学的知识点,帮助同学们更好地掌握这些内容。
包括以下知识点:
1. 数的认识与整数
- 数的分类:自然数、整数、有理数
- 整数的绝对值和相反数
- 整数的比较和排序
- 整数的加减法运算
- 有理数的表示与计算
2. 分数与小数
- 分数的定义和性质
- 分数的简化和扩展
- 分数的加减法运算
- 小数的认识与读写
- 小数与分数的互换
3. 代数基础
- 代数式的定义和性质
- 代数式的加减运算
- 代数式的乘法运算
- 代数式的乘法公式
4. 方程与不等式
- 一元一次方程的基本概念
- 一元一次方程的解法与应用- 一元一次不等式的基本概念- 一元一次不等式的解法与应用- 解方程的方法总结
5. 数据的收集与整理
- 数据的收集方式
- 数据的整理和展示
- 图表的阅读和分析
- 数据的比较和推理
6. 几何初步
- 平面图形的认识和特征
- 平面图形的分类和性质
- 常见几何图形的面积计算
- 直线、射线与线段的认识
- 平行线与垂直线的关系
以上是最新人教版七年级上册数学的知识点总结,希望能帮助同学们更好地复习和掌握这些内容。
对于每个知识点,同学们可以通过练习题和实际例子来加深理解和应用。
祝大家学业进步!。
人教版数学七年级上册知识点总结(最新最全)
人教版数学七年级上册知识点总结第一章有理数知识点总结正数:大于0的数叫做正数。
1.概念负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数 0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)代数:只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
四、相反数两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。
a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)一个负数的绝对值是它的相反数的绝对值是0a >0,|a|=a 反之,|a|=a,则a≥0a = 0, |a|=0 |a|=﹣a,则a≦0a<0, |a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末总复习(学)第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意: 没有倒数; 若ab=1⇔ a 、b 互为 ; 若ab=-1⇔ a 、b 互为 . 等于本身的数汇总:相反数等于本身的数:倒数等于本身的数:绝对值等于本身的数:平方等于本身的数:立方等于本身的数:7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
(5)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第一章、 基础训练选择题1、下列运算中正确的是( ).A. |-2|=-2B. -32=-27C. |(3-π)|=-π-3D. 32=-92、下列各判断句中错误的是( )A.数轴上原点的位置可以任意选定B.数轴上与原点的距离等于173个单位的点有两个 C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、a 、b 是有理数,若a >b 且||||a b <,下列说法正确的是( )A.a 一定是正数B.a 一定是负数C.b 一定是正数D.b 一定是负数4、两数相加,如果比每个加数都小,那么这两个数是( )A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数5、两个非零有理数的和为零,则它们的商是()A.0B.-1C.+1D.不能确定6、一个数和它的倒数相等,则这个数是( )A.1B.-1C. ±1D. ±1和07、如果|a|=-a ,下列成立的是( )A.a>0B.a<0C.a>0或a=0D.a<0或a=08、(-2)11+(-2)10的值是()A.-2B.(-2)21C.0D.-2109、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A.3瓶B. 4瓶C. 5瓶D. 6瓶10、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、411、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数12、下列说法正确的是()A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;13、如果零上3℃记作+3℃,那么零下3℃记作()A、—3B、-6C、-3℃D、-6℃14、若a与2互为相反数,则∣a+2∣等于()A、0B、-2C、2D、4第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
X k b 1 . c o m4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
第二章整式的加减一、选择题(小题3分,共30分)1.下列各式中是多项式的是 ( )A .21- B .y x + C .3ab D .22b a - 2.下列说法中正确的是( ) A .x 的次数是0 B .y 1是单项式 C .21是单项式 D .a 5-的系数是53.如图1,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于 ( )A .58+a cm B .516-a cm C .54-a cm D .58-a cm 4.+-=-+-)()(c a d c b a ( )A . b d -B .d b --C .d b -D . d b +5.只含有z y x ,,的三次多项式中,不可能含有的项是 ( )A .32xB .xyz 5C .37y -D .yz x 2416.化简 )]72(53[2b a a b a ----的结果是 ( )A .b a 107+-B .b a 45+C .b a 4--D .b a 109-7.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )A .a )701)(251(0000++元B .a )251(700000+元C .a )701)(251(0000-+元D .a )70251(0000++元8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 22223421y y xy x +=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A .xy 7-B . xy 7+C . xy -D .xy +9.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应( )A . -4(x -3)2+(x -3)B . 4(x -3)2-x (x -3)C . 4(x -3)2-(x -3)D . -4(x -3)2-(x -3)二、填空题(每小题3分,共30分)11.单项式853ab -的系数是 ,次数是 . 12.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.13.当2x =-时,代数式651x x +-的值是 ; 14.计算:22224(2)(2)a b ab a b ab --+= ;16.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).17.根据生活经验,对代数式a b +作出解释: ;18.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.20.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。