2019-2020学年贵港市中考数学模拟试卷(有标准答案)(Word版)
广西省贵港市2019-2020学年中考数学模拟试题含解析
广西省贵港市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠52.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1123.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<< B .42m -<< C .24m -≤≤ D .42m -≤≤4.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,若AC =CD =DB ,则cos ∠CAD =( )A .13B .22C .12D .3 5.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边6.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩7.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.678.计算22783-⨯的结果是()A.3B.433C.533D.239.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a210.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩112)A.4B.2x C.29D.1212.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.255B.55C.2 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=kx的图像交于E、F两点,若△DEF的面积为98,则k的值_______ .14.已知a1=32,a2=55,a3=710,a4=917,a5=1126,…,则a n=_____.(n为正整数).15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm 之间的人数约有_____人.16.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.17.若代数式4x-在实数范围内有意义,则实数x的取值范围为_____.18.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?20.(6分)抛物线y=﹣3x2+bx+c(b,c均是常数)经过点O(0,0),A(4,43),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).21.(6分)解方程311(1)(2)xx x x-=--+.22.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.23.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.24.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN 的面积?若存在,求出t的值;若不存在,请说明理由.25.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:。
广西省贵港市2019-2020学年中考数学模拟试题(1)含解析
广西省贵港市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,线段AB 是直线y=4x+2的一部分,点A 是直线与y 轴的交点,点B 的纵坐标为6,曲线BC 是双曲线y=k x 的一部分,点C 的横坐标为6,由点C 开始不断重复“A ﹣B ﹣C”的过程,形成一组波浪线.点P (2017,m )与Q (2020,n )均在该波浪线上,分别过P 、Q 两点向x 轴作垂线段,垂足为点D 和E ,则四边形PDEQ 的面积是( )A .10B .212C .454D .152.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF3.下列实数为无理数的是 ( )A .-5B .72C .0D .π4.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )A .17B .27C .37D .475.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定6.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )A .16B .17C .18D .197.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( )A .13B .24C .2D .38.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或109.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .35411.下列运算正确的是( )A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2C .x+y=xyD .x 6÷x 2=x 312.在a 2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.14.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.15.已知一个斜坡的坡度1:3i =,那么该斜坡的坡角的度数是______.16.如图,Rt △ABC 中,∠ACB=90°,D 为AB 的中点,F 为CD 上一点,且CF=13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,BE=12,则AB 的长为_____.17.如图,在四边形ABCD 中,//AD BC ,90B ∠=︒,8AD cm =,6AB cm =,BC 10cm =,点Q 从点A 出发以1/cm s 的速度向点D 运动,点P 从点B 出发以2/cm s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP DQ ≠,当t =__s 时,DPQ ∆是等腰三角形.18.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m 的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
广西省贵港市2019-2020学年中考第五次模拟数学试题含解析
广西省贵港市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各组单项式中,不是同类项的一组是( ) A .2x y 和22xyB .3xy 和2xy-C .25x y 和22yx -D .23-和32.函数y=2x -的自变量x 的取值范围是( ) A .x≠2B .x <2C .x≥2D .x >23.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103mD .123m4.下列方程中,没有实数根的是( ) A .2x 2x 30--= B .2x 2x 30-+= C .2x 2x 10-+=D .2x 2x 10--=516 ) A .±4B .4C .2D .±26.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( ) A .(2,4)B .(2,﹣4)C .(﹣2,4)D .(﹣2,﹣4)7.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( )A .0,1B .﹣1,0,1C .0,1,2D .﹣2,0,1,28.计算25()77-+-的正确结果是( ) A .37B .-37C .1D .﹣19.下列运算结果正确的是( ) A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a10.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限11.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.35B.725C.45D.242512.函数y=13x-中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.14.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)15.解不等式组1121xx x-+-⎧⎨≥-⎩f①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.16.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.17.从正n边形一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ . 18.计算(5ab3)2的结果等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)20.(6分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.21.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.22.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.23.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.24.(10分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.25.(10分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.26.(12分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7 8 9价格y1(元/件)560 580 600 620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x (10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.27.(12分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.2.D【解析】【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=2x-有意义,∴x-2>0,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键. 3.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=153,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.4.B【解析】【分析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.B【解析】【分析】根据算术平方根的意义求解即可.【详解】16=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6.A【解析】【分析】首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q 点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵{PMO ONQMPO NOQPO OQ∠=∠∠=∠=,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.7.B【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.D【解析】【分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数. 9.C 【解析】选项A , 3a 2-a 2 = 2 a 2;选项B , a 2·a 3= a 5;选项C , (-a 2)3 = -a 6;选项D ,a 2÷a 2 = 1.正确的只有选项C ,故选C. 10.B 【解析】 【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限 【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴, ∴函数经过一、三、四象限,不经过第二象限 故选B 【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响 11.A 【解析】 【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE ∥BC 知AC=2AE=10,∠EDC=∠BCD ,再根据正弦函数的概念求解可得. 【详解】∵△ABC 中,AC =BC ,过点C 作CD ⊥AB , ∴AD =DB =6,∠BDC =∠ADC =90°, ∵AE =5,DE ∥BC ,∴AC =2AE =10,∠EDC =∠BCD , ∴sin ∠EDC =sin ∠BCD =63105BD BC ==, 故选:A . 【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点. 12.D【解析】由题意得,x﹣1≠0,解得x≠1.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.14.94π.【解析】【分析】如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=CD=3,OE⊥BC,∴四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=32﹣2903360π⋅⋅994π=-,∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式. 15.详见解析. 【解析】 【分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可. 【详解】(Ⅰ)解不等式①,得:x <1; (Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1, 故答案为:x <1、x≥﹣1、﹣1≤x <1. 【点睛】本题考查了解一元一次不等式组的概念. 16.2(110%)(1)1x -+=. 【解析】 【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x ,每天相对于前一天就上涨到1+x ,由此列出方程解答即可. 【详解】设这两天此股票股价的平均增长率为x ,由题意得 (1﹣10%)(1+x )2=1.故答案为:(1﹣10%)(1+x )2=1. 【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.17.144° 【解析】 【分析】根据多边形内角和公式计算即可. 【详解】解:由题知,这是一个10边形,根据多边形内角和公式:()1021801440-⨯︒=︒ 每个内角等于144010144︒÷=︒. 故答案为:144°. 【点睛】此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键. 18.25a 2b 1. 【解析】 【分析】代数式内每项因式均平方即可. 【详解】 解:原式=25a 2b 1. 【点睛】本题考查了代数式的乘方.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A 【解析】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中, 由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt △ABD 中,∠B=45°∴AB =AD =120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A20.(1)直线l与⊙O相切;(2)证明见解析;(3).【解析】试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF 的长.试题解析:(1)直线l与⊙O相切.理由如下:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE ,∠DEB=∠BEA , ∴△BED ∽△AEB . ∴,即,解得;AE=,∴AF=AE ﹣EF=﹣1=. 考点:圆的综合题. 21. (1)见解析13【解析】 【分析】(1)四边形ABCD 是平行四边形,由平行四边形的性质,可得AB=DE , AB//DE ,则四边形ABDE 是平行四边形;(2)因为AD=DE=1,则AD=AB=1,四边形ABCD 是菱形,由菱形的性质及解直角三角形可得AO=AB ⋅sin ∠ABO=2,BO=AB ⋅cos ∠3, 3,则AE=BD ,利用勾股定理可得OE . 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形; (2)∵AD =DE =1, ∴AD =AB =1. ∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,12BO BD =,12ABO ABC ∠=∠.又∵∠ABC =60°, ∴∠ABO =30°.在Rt △ABO 中,sin 2AO AB ABO =⋅∠=,cos 23BO AB ABO =⋅∠= ∴3BD =∵四边形ABDE 是平行四边形, ∴AE ∥BD ,43AE BD == 又∵AC ⊥BD ,∴AC⊥AE.在Rt△AOE中,22213OE AE AO=+=.【点睛】此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.22.(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.23.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.24.(1),;(2)8;(3)或.【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A 两点,∴,解得:.故直线AB 的解析式为.∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB 的解析式可得:,可得交点D 的坐标为(1,﹣1),则△BOD 的面积=4×1÷2=2,△BOC 的面积=4×3÷2=1,故△OCD 的面积为2+1=8; (3)由图象得,一次函数的值大于反比例函数的值时x 的取值范围:x <﹣2或0<x <1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点. 25.原计划每天安装100个座位. 【解析】 【分析】根据题意先设原计划每天安装x 个座位,列出方程再求解. 【详解】解:设原计划每天安装x 个座位,采用新技术后每天安装()125%x +个座位,由题意得:()247647624764764125%x x---=+. 解得:100x =.经检验:100x =是原方程的解. 答:原计划每天安装100个座位. 【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.26.(1)y 1=20x+540,y 2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元. 【解析】 【分析】(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润. 【详解】(1)利用表格得出函数关系是一次函数关系: 设y 1=kx+b ,∴560 2580, k bk b+=⎧⎨+=⎩解得:20540, kb=⎧⎨=⎩∴y1=20x+540,利用图象得出函数关系是一次函数关系:设y2=ax+c,∴10730 12750,a ca c+=⎧⎨+=⎩解得:10630, ac=⎧⎨=⎩∴y2=10x+1.(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整数)∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整数),∵10≤x≤12时,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.【点睛】此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.27.(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.。
广西贵港市2019-2020学年数学中考模拟试卷(含答案)
广西贵港市2019-2020学年数学中考模拟试卷(含答案)一、单选题1.若一个数的倒数是﹣2 ,则这个数是()A.B.﹣C.D.﹣【答案】B【考点】有理数的倒数2.下列运算正确的是()A.a3﹣a2=aB.a2•a3=a6C.a6÷a2=a3D.(a2)3=a6【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方3.下列四个从左到右的变形中,是因式分解是的()A.(x+1)(x﹣1)=x2﹣1B.(a+b)(m﹣n)=(m﹣n)(a+b)C.a2﹣8ab+16b2=(a﹣4b)2D.m2﹣2m﹣3=m(m﹣2)﹣3【答案】C【考点】因式分解的定义4.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连接CD交AB于点E,点P从点A出发沿AO 向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大【答案】C【考点】反比例函数的性质,全等三角形的判定与性质,几何图形的面积计算-割补法5.由5个完全相同的小长方形搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A.B.C.D.【答案】A【考点】简单组合体的三视图,由三视图判断几何体6.对于抛物线y= (x+4)2﹣5,下列说法正确的是()A.开口向下B.对称轴是直线x=4C.顶点坐标(4,﹣5 )D.向右平移4个单位,再向上平移5个单位得到y= x2【答案】 D【考点】二次函数图象的几何变换,二次函数y=a(x-h)^2+k的性质7.下列命题中正确的个数是()①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为;②如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切;③过三点可以确定一个圆;④两圆的公共弦垂直平分连心线.A.0个B.4个C.2个D.3个【答案】A【考点】确定圆的条件,三角形的外接圆与外心,圆与圆的位置关系,相交两圆的性质8.如图,A、B、C是⊙O上的三点,若∠A+∠C=75°,则∠AOC的度数为()A.150°B.140°C.130°D.120°【答案】A【考点】等腰三角形的性质,圆周角定理9.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y= (x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y= 的k值为()A.5B.4C.3D.2【答案】 D【考点】反比例函数系数k的几何意义,全等三角形的判定与性质,矩形的判定与性质10.如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A.120°B.135°C.140°D.150°【答案】 D【考点】全等三角形的判定与性质,等边三角形的判定与性质,勾股定理的逆定理11.如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A. 75°B. 45°C. 30°D. 15°【答案】B【考点】点与圆的位置关系12.在矩形ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,点P是对角线OC上的任意一点(不包括端点),以P为圆心的圆与AD相切,则⊙P与AB的位置关系是()A.相离B.相切C.相交D.不确定【答案】A【考点】矩形的性质13.函数y= 的自变量x的取值范围是________.【答案】x≥﹣且x≠3【考点】分式有意义的条件,二次根式有意义的条件二、填空题14.计算:﹣2﹣(﹣7)的结果为________.【答案】5【考点】有理数的减法15.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为________.【答案】2.54×106【考点】科学记数法—表示绝对值较大的数16.已知圆锥的侧面积是40π,底面圆直径为2,则圆锥的母线长是________.【答案】40【考点】圆锥的计算17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④【答案】 D【考点】二次函数图象与系数的关系,二次函数图像与坐标轴的交点问题,二次函数与不等式(组)的综合应用,通过函数图像获取信息并解决问题,二次函数y=ax^2+bx+c的性质18.如图,点A1(1,0)在x轴上,过点A1作A1B1∥y轴交直线y= x于点B1,以A1B1为边在A1B1的右侧作等边△A1B1C1,再过点C1作A2B2∥y轴,分别交直线x轴和直线y= x于A2,B2两点,再以A2B2为边在A2B2的右侧作等边△A2B2C2…,按此规律进行下去,则等边△A n B n C n的面积为________(用含正整数n的代数式表示).【答案】【考点】探索图形规律三、解答题19.(1)计算:(﹣)﹣1﹣|1- |+2sin60°+(π﹣4)0【答案】解:(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2× +1=-2﹣+1+ +1=0.(1)解不等式组.并写出它的整数解.【答案】(1)解:解:由①得由②得∴此不等式组的解集为整数解为2, 3【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,一元一次不等式组的特殊解,特殊角的三角函数值,实数的绝对值20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(3,4)、B(1,1)、C(4,2).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1,其中A、C分别和A1、C1对应.(2)平移△ABC,使得A点落在x轴上,B点落在y轴上,画出平移后的△A2B2C2,其中A、B、C分别和A2B2C2对应.(3)填空:在(2)的条件下,设△ABC,△A2B2C2的外接圆的圆心分别为M、M2,则MM2=________.【答案】(1)解:△A1BC1如图所示(2)解:△A2B2C2如图所示(3)【考点】平移的性质,作图﹣平移,作图﹣旋转21.如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(1)求反比例函数的解析式;(2)求点D坐标,并直接写出y1>y2时x的取值范围;(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【答案】(1)解:∵B(3,﹣1)在反比例函数的图象上,∴-1= ,∴m=-3,∴反比例函数的解析式为(2)解:,∴= ,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y= ,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x>(3)解:∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题22.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;(2)请补全条形统计图;(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【答案】(1)60;90°(2)解:“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)解:画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为.【考点】扇形统计图,条形统计图,列表法与树状图法,概率公式23.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?【答案】(1)解:设购买A种树苗每棵需要x元,B种树苗每棵需要y元,由已知得:,解得:.答:购买A种树苗每棵需要100元,B种树苗每棵需要50元.(2)解:解:设购买A种树苗m棵,则购买B种树苗100﹣m棵,根据已知,得,解得:52≤m≤53.故有2种购买方案:①、购买A种树苗52棵,B种树苗48棵;②、购买A种树苗53棵,B种树苗47棵;(3)解:设种植工钱为W,由已知得:W=30m+20(100-m)=10m+2000,∴当m=52时,W最小,最小值为2520元.故购买A种树苗52棵、B种树苗548棵时所付的种植工钱最少,最少工钱是2520元.【考点】一元一次不等式组的应用,一次函数的实际应用,二元一次方程组的实际应用-鸡兔同笼问题24.如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.【答案】(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线(2)解:由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC2=BE•BA.∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x.∵BC=6,∴62=2x•3x,解得:x= ,即AE= ,∴AB= ,∴AC= = ,∴⊙O的半径= .【考点】直角三角形斜边上的中线,圆周角定理,切线的判定,相似三角形的判定与性质25.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE 与△AOC相似时,求点D的坐标.【答案】(1)解:由题意,得解得.∴这条抛物线的表达式为(2)解:作BH⊥AC于点H,∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),∴AC=,AB=,OC=3,BC=.∵,即,∴.Rt△BCH中,,BC=,∠BHC=90º,∴.又∵∠ACB是锐角,∴(3)解:延长CD交x轴于点G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG = CG.∴.∴AG=5.∴G点坐标是(4,0).∵点C坐标是(0,3),∴.∴解得,(舍).∴点D坐标是【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,锐角三角函数的定义,特殊角的三角函数值,二次函数与一次函数的综合应用26.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.【答案】(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB(3)解:取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质。
广西省贵港市2019-2020学年第四次中考模拟考试数学试卷含解析
广西省贵港市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个几何体的三视图如图所示,这个几何体是()A.三菱柱B.三棱锥C.长方体D.圆柱体2.化简的结果是()A.﹣B.﹣C.﹣D.﹣3.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是()A.2 B.3 C.4 D.54.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1075.13-的相反数是()A.13B.13-C.3 D.-36.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5707.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.48.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109B.2.8×108C.2.8×109D.2.8×10109.111112233499100++++++++L的整数部分是()A.3 B.5 C.9 D.6 10.如图所示,ABC△的顶点是正方形网格的格点,则sin A的值为()A.12B.5C.25D.101011.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.12.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为()A.12×103B.1.2×104C.1.2×105D.0.12×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果23ab=,那么b aa b-+=_____.14.分解因式:x 2﹣1=____.15.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.16.若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为______.17.若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.18.二次根式2x -在实数范围内有意义,x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.20.(6分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AD 平分∠CAE 交⊙O 于点D ,且AE ⊥CD ,垂足为点E .(1)求证:直线CE 是⊙O 的切线.(2)若BC =3,CD =32,求弦AD 的长.21.(6分)如图,抛物线y=x 2﹣2mx (m >0)与x 轴的另一个交点为A ,过P (1,﹣m )作PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C(1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.22.(8分)如图,已知△ABC中,AB=AC=5,cosA=35.求底边BC的长.23.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.(10分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.(1)当∠A=30°时,MN的长是;(2)求证:MC•CN是定值;(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.25.(10分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y1>y1时x的取值范围.26.(12分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率.27.(12分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).。
广西省贵港市2019-2020学年中考数学一月模拟试卷含解析
广西省贵港市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.52.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.233.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)4.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.235.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x-= D .800800401.25x x-= 7.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°8.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°9.已知252a a -=,代数式()()2221a a -++的值为( ) A .-11B .-1C .1D .1110.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .411.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( ) A .②③B .②④C .①③D .①④A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A′,则cos ∠AOA′=__. 14.点P 的坐标是(a,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a,b )在平面直角坐标系中第二象限内的概率是 . 15.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米. 16.若点A(1,m)在反比例函数y =3x的图象上,则m 的值为________. 17.分解因式:= .18.计算:012sin 4553183⎛⎫︒--++- ⎪⎝⎭. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,D ,E 分别为AB ,AC 的中点,延长DE 到点F ,使EF=2DE . (1)求证:四边形BCFE 是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE 是菱形.20.(6分)化简分式2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从0、1、2、3这四个数中取一个合适的数作为x 的值代入求值.21.(6分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG =.求证:△ADF ∽△ACG ;若12AD AC =,求AF FG的值.22.(8分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,23.(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)24.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.(10分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.求证:四边形ADCE是矩形;①若AB=17,BC=16,则四边形ADCE的面积=.②若AB=10,则BC=时,四边形ADCE是正方形.27.(12分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形; ()2求ECD ∠的度数;()3若CAE 7.5∠=o ,AD 1=,将射线DA 绕点D 顺时针旋转60o 交EC 的延长线于点F ,请写出求AF长的思路.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【详解】解:2728x y x y +=⎧⎨+=⎩①②,①+②得:3(x+y)=15, 则x+y=5, 故选D 2.C分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.4.C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∴∠AOP=∠COP=30°, ∵CP ∥OA , ∴∠AOP=∠CPO , ∴∠COP=∠CPO , ∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB , ∴∠CPE=30°, ∴CE=12CP=1, ∴=,∴∵PD ⊥OA ,点M 是OP 的中点, ∴DM=12故选C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理. 5.D 【解析】 【详解】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEF BCE S S V V =(AF BC )2=19,∴S △BCE =36;故②正确;∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确; ∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D . 6.C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x 秒,∵小进比小俊少用了40秒, 方程是800800401.25x x-=, 故选C . 【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键. 7.C 【解析】 【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=, ∴180140CFB B ︒︒∠=-∠=, ∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=, 故选C .本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等. 8.D 【解析】 【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE 的度数. 【详解】解:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°, ∵AD ∥BC ,∴∠CBD=∠FDB=28°,∵矩形ABCD 沿对角线BD 折叠, ∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°. 故选D . 【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 9.D 【解析】 【分析】根据整式的运算法则,先利用已知求出a 的值,再将a 的值带入所要求解的代数式中即可得到此题答案. 【详解】解:由题意可知:252a a -=, 原式24422a a a =-+++226a a =-+56=+11=故选:D . 【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值【解析】【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.11.C【解析】【分析】①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a<0,图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a , 2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.B【解析】【分析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x 2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x 6x 90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x =-, 2x x 0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx 20--=, △=m 2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13. 【解析】【分析】依据点A (1,2)在x 轴上的正投影为点A′,即可得到A'O=1,AA'=2,cos ∠AOA′的值.【详解】如图所示,点A (1,2)在x 轴上的正投影为点A′,∴A'O=1,AA'=2,∴AO=5,∴cos∠AOA′=1555A OAO'==,故答案为:55.【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.14.【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=420=15.故答案为1 5 .15.1【解析】【分析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.16.3【解析】试题解析:把A(1,m)代入y=3x得:m=3.所以m的值为3.17.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。
广西省贵港市2019-2020学年中考第三次模拟数学试题含解析
广西省贵港市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-10-4的结果是()A.-7 B.7 C.-14 D.132.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.63.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80°B.70°C.60°D.50°4.2cos 30°的值等于()A.1 B.2C.3D.25.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种6.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A .众数是90B .中位数是90C .平均数是90D .极差是158.下列实数中是无理数的是( ) A .227B .πC .9D .13-9.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线( ) A .x=1B .x=49C .x=﹣1D .x=﹣4910.下列各数:π,sin30°,﹣3 ,9其中无理数的个数是( ) A .1个B .2个C .3个D .4个11.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)12.下列运算正确的是( ) A .a 2•a 3=a 6B .(12)﹣1=﹣2 C .16 =±4D .|﹣6|=6二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.4的平方根是 .14.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 . 15.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ . 16.分解因式:= .17.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.18.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P.(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标. 20.(6分)解分式方程:21133x x x-+=--. 21.(6分)如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B .(1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当136112DC =时,请直接写出t 的值.22.(8分)先化简,再计算: 22444332x x x x x x x ++--÷++-其中322x =-+. 23.(8分)先化简,再求值:(m+2﹣52m -)•243m m --,其中m=﹣12.24.(10分)如图,在Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边AC于点D,延长BD 至点E,且BD=2DE,连接AE.(1)求线段CD 的长;(2)求△ADE 的面积.25.(10分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.26.(12分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.27.(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:-10-4=-1.故选C.2.C【解析】【分析】利用平行四边形的性质得出△ADF∽△EBF,得出BEAD=BFDF,再根据勾股定理求出BO的长,进而得出答案.【详解】解:∵在□ABCD中,对角线AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴BE AD =BFDF, ∵AC=42, ∴AO=22, ∵AB=1,AC ⊥AB , ∴BO=22AB AO +=()22122+=3,∴BD=6,∵E 是BC 的中点, ∴BE AD =BF DF =12, ∴BF=2, FD=4. 故选C. 【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质. 3.B 【解析】 【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案. 【详解】 解:∵a ∥b ,∠1=50°, ∴∠4=50°, ∵∠3=120°, ∴∠2+∠4=120°, ∴∠2=120°-50°=70°. 故选B . 【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键. 4.C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键. 5.B【解析】【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.6.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.7.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90; ∵平均数是(80×1+85×2+90×5+95×2)÷10=89; 极差是:95﹣80=1. ∴错误的是C .故选C . 8.B 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 A 、227是分数,属于有理数; B 、π是无理数;C,是整数,属于有理数; D 、-13是分数,属于有理数; 故选B . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 9.D 【解析】 【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴. 【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab aa ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49. 故选D . 【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系. 10.B 【解析】 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可. 【详解】 sin30°=12,9=3,故无理数有π,-3, 故选:B . 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 11.C 【解析】 试题分析:=,∴点M (m ,﹣m 2﹣1),∴点M′(﹣m ,m 2+1),∴m 2+2m 2﹣1=m 2+1.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8).故选C . 考点:二次函数的性质. 12.D 【解析】 【分析】运用正确的运算法则即可得出答案. 【详解】A 、应该为a 5,错误;B 、为2,错误;C 、为4,错误;D 、正确,所以答案选择D 项. 【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.±1. 【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1. 考点:平方根. 14.1 【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°. ∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1. 15.63 【解析】 【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解. 【详解】正多边形的边数是:360°÷60°=6. 正六边形的边长为2cm ,由于正六边形可分成六个全等的等边三角形, 且等边三角形的边长与正六边形的边长相等, 所以正六边形的面积2216sin 602=63cm 2=⨯⨯︒⨯. 故答案是:63. 【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算. 16.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。
广西省贵港市2019-2020学年中考数学三月模拟试卷含解析
广西省贵港市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.342.如图所示的几何体的主视图正确的是()A.B.C.D.3.已知反比例函数1yx=下列结论正确的是()A.图像经过点(-1,1)B.图像在第一、三象限C.y 随着x 的增大而减小D.当x > 1时,y < 14.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.5.如图所示的几何体的俯视图是( )A.B.C.D.6.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤37.如图是一个空心圆柱体,其俯视图是( )A.B.C.D.8.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度9.﹣18的倒数是()A.18 B.﹣18 C.-118D.11810.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命11.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米12.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.14.因式分解:-3x2+3x=________.15.若一组数据1,2,3,x的平均数是2,则x的值为______.16.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=kx的图像交于E、F两点,若△DEF的面积为98,则k的值_______ .17.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.18.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D 关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为23;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=25;⑤当点D从点A 运动到点B时,线段EF扫过的面积是163.其中正确结论的序号是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论.(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?20.(6分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D 组的人数是 人,补全频数分布直方图,扇形图中m = ;(2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?21.(6分)(1)计算:20161033(1)9(cos 60)(20162015)8(0.125)---++-+⨯-o ;(2)化简2112()111x x x x+÷+--,然后选一个合适的数代入求值. 22.(8分)如图,在⊙O 中,AB 是直径,点C 是圆上一点,点D 是弧BC 中点,过点D 作⊙O 切线DF ,连接AC 并延长交DF 于点E .(1)求证:AE ⊥EF ;(2)若圆的半径为5,BD =6 求AE 的长度.23.(8分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC·CE=AD·BC. (1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF·AD .24.(10分)如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.25.(10分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)26.(12分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.27.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,3EM的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.2.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.3.B【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A .反比例函数y=1x ,图象经过点(﹣1,﹣1),故此选项错误; B .反比例函数y=1x,图象在第一、三象限,故此选项正确; C .反比例函数y=1x,每个象限内,y 随着x 的增大而减小,故此选项错误; D .反比例函数y=1x,当x >1时,0<y <1,故此选项错误. 故选B .点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.4.C【解析】【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.5.D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D .故选D .考点:简单几何体的三视图.6.D【解析】分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围. 详解:解不等式2(x-1)>4,得:x >3,解不等式a-x <0,得:x >a ,∵不等式组的解集为x >3,∴a≤3,故选D .点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D .【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.8.C【解析】【分析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确; 小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误; 小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确. 故选C .考点:函数的图象、行程问题.9.C【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-181()18⨯-=1,∴﹣18的倒数是1 18 -,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.10.D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.11.D【解析】试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.∴此题可记为1.2×105平方米.考点:科学记数法12.A【解析】【分析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1)互相垂直;3;(2)结论仍然成立,证明见解析;(3)135°.【解析】【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;(3)过点D作DH⊥BC于H,则DB=4-(6-23)=23-2,进而得出BH=3-1,DH=3-3,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴AC=23,∵点E,F分别是线段BC,AC的中点,∴AEBE=3;(2))如图2,∵点E,F分别是线段BC,AC的中点,∴EC=12BC,FC=12AC,∴12 EC FCBC AC==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴1330AF ACBE BC tan===︒,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(33-2,∴3,3,又∵CH=2-3-1)3,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.14.-3x(x-1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15.1【解析】【分析】根据这组数据的平均数是1和平均数的计算公式列式计算即可.【详解】∵数据1,1,3,x的平均数是1,∴12324x+++=,解得:2x=.故答案为:1.【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.16.1【解析】【分析】利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.【详解】解:设AF=a(a<2),则F(a,2),E(2,a),∴FD=DE=2−a,∴S△DEF=12DF•DE=12()22a-=98,解得a=12或a=72(不合题意,舍去),∴F(12,2),把点F(12,2)代入kyx=解得:k=1,故答案为1.【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.17.4 3【解析】【分析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可. 【详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=16x交于第一象限点C,若BC=2AB,设点C的坐标为(c,16 c)∴OA=0.5c,OB=1163c⨯=163c,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.18.①③⑤.【解析】试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=43.∵CD⊥AB,∠CBA=30°,∴CD=12BC=23.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为23.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为43.∴结论“线段EF的最小值为23”错误;③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC 对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;④当点F恰好落在»BC上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=12 EF,∴FH=12FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=12AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=25”错误;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×12AC•BC=AC•BC=4×43=163,∴EF扫过的面积为163,∴结论“EF扫过的面积为163”正确.故答案为①③⑤.考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)14;(3)12. 【解析】【分析】 (1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案; (3)根据(1)即可求出琪琪进入复赛的概率.【详解】(1)画树状图如下:(2)∵共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,∴只有甲、乙两位评委给出相同结论的概率P=2184=; (3)∵共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,∴乐乐进入复赛的概率P=4182=. 【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P=m n . 20.(1)16、84°;(2)C ;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】【分析】(1)根据百分比=所长人数÷总人数,圆心角=360︒⨯百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数610%60÷==人,D 组人数6061419516----==人;B 组的圆心角为143608460︒⨯=︒; (2)根据A 组6人,B 组14人,C 组19人,D 组16人,E 组5人可知本次调查数据中的中位数落在C 组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有404500300060⨯=人. 【点睛】 本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.21.(1)0;(2)122x -+,答案不唯一,只要x≠±1,0即可,当x=10时,122-. 【解析】【分析】(1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可.【详解】解:(1)原式=13113()112--++-=1﹣3+2+1﹣1=0;(2)原式=11(1)(1)(1)2x x x x x-+--⋅+- =122x -+ 由题意可知,x≠1∴当x=10时,原式=12102-⨯+ =122-. 【点睛】本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键.22.(1)详见解析;(2)AE =6.1.【解析】【分析】(1)连接OD ,利用切线的性质和三角形的内角和证明OD ∥EA ,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD ,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,22221068AD AB BD-=-=,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴AD AE AB AD=,即8108AE=,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.23.(1)见解析;(2)见解析.【解析】【分析】(1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴AC ADBC CE=,∴△ACD∽△CBE ,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴AB AFAD DC=,又∵AB=DC,∴2AB AF AD=⋅【详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA, ∵AC·CE=AD·BC,∴AC AD BC CE=,∴△ACD∽△CBE , ∴∠DCA=∠EBC, (2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC, ∴∠BAD=∠ADC,∴△ABF∽△DAC,∴AB AF AD DC=,∵AB=DC,∴2AB AF AD=⋅.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.24.(1)证明见解析;(22.【解析】【分析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2DAC=∠DCE,∠D=∠D可知△DEC ∽△DCA ,故此可得到DC 2=DE•AD ,故此可求得,于是可求得.【详解】解:(1)∵AD 是圆O 的切线,∴∠DAB=90°.∵AB 是圆O 的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B .∵OC=OB ,∴∠B=∠OCB .又∵∠DCE=∠OCB ,∴∠DAC=∠DCE .(2)∵AB=2,∴AO=1.∵sin ∠D=13,∴OD=3,DC=2.在Rt △DAO 中,由勾股定理得=∵∠DAC=∠DCE ,∠D=∠D ,∴△DEC ∽△DCA ,∴DC DEAD DC=2ED =.解得:,∴AE=AD ﹣.25.(1)72o (2)6.03米【解析】【详解】分析:延长ED ,AM 交于点P ,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC ,再利用PC+AC-EF 即可得解.详解:(1)如图,延长ED ,AM 交于点P ,∵DE ∥AB, MA AB ⊥∴EP MA ⊥, 即∠MPD=90°∵∠CDE=162°∴ 1629072MCD ∠=-=o o o(2)如图,在Rt △PCD 中, CD=3米,72MCD ∠=o∴PC = cos 3cos7230.310.93CD MCD ⋅∠=⋅≈⨯=o 米∵AC=5.5米, EF=0.4米,∴0.93 5.50.4 6.03PC AC EF +-=+-=米答:摄像头下端点F 到地面AB 的距离为6.03米.点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.26.(1)证明见解析;(2)25 8.【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.27.(1)证明见解析;(2)证明见解析;(3253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE .∵GF=GE ,∴∠GFE=∠GEF=∠AFH ,∵OA=OE ,∴∠OAE=∠OEA ,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE ⊥OE ,∴EG 是⊙O 的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH=tan ∠G=AH HC =34,∵AH=33HC=3Rt △HOC 中,∵OC=r ,OH=r ﹣33HC=43222(33)(43)r r -+=,∴253,∵GM ∥AC ,∴∠CAH=∠M ,∵∠OEM=∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =33432536=,∴253 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.。
广西省贵港市2019-2020学年第二次中考模拟考试数学试卷含解析
广西省贵港市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若2<2a-<3,则a 的值可以是( ) A .﹣7B .163C .132D .122.单项式2a 3b 的次数是( ) A .2B .3C .4D .53.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-84.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .85.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯6.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表: 步数(万步) 1.0 1.2 1.1 1.4 1.3 天数335712在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.3,1.1B .1.3,1.3C .1.4,1.4D .1.3,1.47.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是( )A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5 320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元8.二元一次方程组43624x yx y+=⎧⎨+=⎩的解为()A.32xy=-⎧⎨=⎩B.21xy=-⎧⎨=⎩C.32xy=⎧⎨=-⎩D.21xy=⎧⎨=-⎩9.如图,一次函数y=x﹣1的图象与反比例函数2yx=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1)B.(0,2)C.50,2⎛⎫⎪⎝⎭D.(0,3)10.关于x的不等式组24351xx-<⎧⎨-<⎩的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,211.不解方程,判别方程2x2﹣2x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根12.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()和黑子.A .37B .42C .73D .121二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式4x -在实数范围内有意义,则实数x 的取值范围为_____. 14.已知∠α=32°,则∠α的余角是_____°.15.点A 到⊙O 的最小距离为1,最大距离为3,则⊙O 的半径长为_____. 16.反比例函数y =2k x- 的图像经过点(2,4),则k 的值等于__________. 17.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____. 18.已知|x|=3,y 2=16,xy <0,则x ﹣y=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)化简:()()2a b a 2b a -+-.20.(6分)如图1,四边形ABCD ,边AD 、BC 的垂直平分线相交于点O .连接OA 、OB 、OC 、OD .OE 是边CD 的中线,且∠AOB+∠COD =180°(1)如图2,当△ABO 是等边三角形时,求证:OE =12AB ; (2)如图3,当△ABO 是直角三角形时,且∠AOB =90°,求证:OE =12AB ; (3)如图4,当△ABO 是任意三角形时,设∠OAD =α,∠OBC =β, ①试探究α、β之间存在的数量关系? ②结论“OE =12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.21.(6分)如图,在⊙O 中,AB 是直径,点C 是圆上一点,点D 是弧BC 中点,过点D 作⊙O 切线DF ,连接AC 并延长交DF 于点E . (1)求证:AE ⊥EF ;(2)若圆的半径为5,BD =6 求AE 的长度.22.(8分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.23.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .24.(10分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.25.(10分)先化简,再求值:22()11x x x x x x +÷-++,其中2.26.(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)27.(12分)计算:2﹣1|﹣2sin45°3821()2- 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.2.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.3.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.5.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.B【解析】【分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据. 8.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x yx y+=⋯⋯⎧⎨+=⋯⋯⎩①②①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是32 xy=⎧⎨=-⎩.故选C.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.9.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C (0,m ), ∵BC=AC , ∴AC 2=BC 2,即4+(m-1)2=1+m 2, ∴m=2,故答案为(0,2). 【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题. 10.B 【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案. 【详解】解不等式﹣2x <4,得:x >﹣2, 解不等式3x ﹣5<1,得:x <2, 则不等式组的解集为﹣2<x <2, 所以不等式组的整数解为﹣1、0、1, 故选:B . 【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 11.B 【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B12.C 【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C . 点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1【解析】【分析】根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.14.58°【解析】【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.15.1或2【解析】【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.16.1【解析】解:∵点(2,4)在反比例函数2k y x-=的图象上,∴242k -=,即k=1.故答案为1.点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式. 17.8π 【解析】试题分析:∵弧的半径为24,所对圆心角为60°, ∴弧长为l==8π.故答案为8π. 【考点】弧长的计算. 18.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想. 详解:因为|x|=1,所以x=±1. 因为y 2=16,所以y=±2. 又因为xy <0,所以x 、y 异号, 当x=1时,y=-2,所以x-y=3; 当x=-1时,y=2,所以x-y=-3. 故答案为:±3. 点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.2b 【解析】 【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果. 【详解】解:原式2222a 2ab b 2ab a b =-++-=.20.(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析. 【解析】 【分析】(1)作OH ⊥AB 于H ,根据线段垂直平分线的性质得到OD=OA ,OB=OC ,证明△OCE ≌△OBH ,根据全等三角形的性质证明;(2)证明△OCD ≌△OBA ,得到AB=CD ,根据直角三角形的性质得到OE=12CD ,证明即可; (3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE 至F ,是EF=OE ,连接FD 、FC ,根据平行四边形的判定和性质、全等三角形的判定和性质证明.【详解】(1)作OH ⊥AB 于H ,∵AD 、BC 的垂直平分线相交于点O ,∴OD=OA ,OB=OC ,∵△ABO 是等边三角形,∴OD=OC ,∠AOB=60°,∵∠AOB+∠COD =180°∴∠COD=120°,∵OE 是边CD 的中线,∴OE ⊥CD ,∴∠OCE=30°,∵OA=OB ,OH ⊥AB ,∴∠BOH=30°,BH=12AB , 在△OCE 和△BOH 中,OCE BOH OEC BHO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OBH ,∴OE=BH ,∴OE=12AB ; (2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD 和△OBA 中,OD OA COD BOA OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△OCD ≌△OBA ,∵∠COD=90°,OE 是边CD 的中线,∴OE=12CD , ∴OE=12AB ; (3)①∵∠OAD=α,OA=OD ,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延长OE 至F ,使EF=OE ,连接FD 、FC ,则四边形FDOC 是平行四边形,∴∠OCF+∠COD=180°,FC OA =,∴∠AOB=∠FCO ,在△FCO 和△AOB 中,FC OA FCO AOB OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△FCO ≌△AOB ,∴FO=AB ,∴OE=12FO=12AB . 【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.(1)详见解析;(2)AE =6.1.(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,22221068AD AB BD-=-=,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴AD AE AB AD=,即8108AE=,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.【分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【详解】解:原式=12﹣1+3﹣4×2=1. 【点睛】 本题考查实数的运算及特殊角三角形函数值.23.证明见解析【解析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ; 在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.1+2 【解析】 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 【详解】 解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x ++=⋅+ 2.x x+= 当2x =时,原式=221 2.2+=+ 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案. 试题解析:(1)设袋子中白球有x 个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.27.﹣1【解析】【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=21)﹣2×2+2﹣4=2﹣12+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.如图是一个空心圆柱体,它的左视图是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.B.C. D.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②的最小值是,其中正确△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN结论的个数是()A.2 B.3 C.4 D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n5≤x<6210.14合计b1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是()A.B.C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S的最小值是,其中正确△OMN结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S的最小值是1﹣=,故⑤正确;△OMN综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n 5≤x<6210.14合计b1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP ⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R ﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD =S△BEC+S△BED=××(3a+a)=3a,∴S△BCD :S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。