氟化学-含氟精细化工产品共73页文档

合集下载

Fluorine F2

Fluorine F2

材料安全数据表(MSDS)第1部分产品概述产品名称: 氟化学名称: 氟分子式: F2商品名称/代名词: 氟制造商: 北京绿菱气体科技有限公司北京市昌平区崔村香堂工业区产品信息: (800) 752-1597MSDS 号: 1039 版本号: 8第2部分主要组成与性状审核日期: 2000年10月出版日期: 2000年10月氟化氢纯度: >97%CAS号: 7782-41-4暴露极限:第3部分危害概述OSHA: PEL=0.1PPM ACGIH: TWA/TLV=1PPM NIOSH: IDLH=25PPM紧急情况综述氟化氢是有毒, 腐蚀性, 及其活泼的氧化性气体,常见的储存方式为罐装压缩气体(400psig),氟是一种具有强烈刺激性气味的浅黄色气体,在极低的浓度时可以被探查到,皮肤接触或吸入该产品可引起严重的烧伤,进入释放区域或未知浓度的区域要戴SCBA和全封闭防护服,燃烧产物有毒。

紧急电话0532-388 9090急性的潜在健康影响暴露方式:眼睛接触: 刺激和/或烧伤眼睛,高浓度时可能导致弱视甚至失明,5-10ppm可引起刺激。

.摄入: 不适用.吸入: 氟对呼吸道和黏膜有腐蚀性和刺激性. 深度肺烧伤(化学性肺炎), 肺出血, 肺水肿, 可能导致全身性反应甚至死亡. 症状的出现可能延迟.皮肤接触: 烧伤区域会导致深层组织的破坏和可能致死的全身性反应. 烧伤后的痛感可能会延迟出现。

重复暴露的潜在健康影响:暴露方式: 吸入, 皮肤和眼睛接触症状: 慢性氟化物暴露可能引起人体骨胳, 关节变化(氟中毒).目标器官: 眼睛, 皮肤, 呼吸道, 肺, 肝, 肾, 心脏,牙齿和骨胳.过度暴露引起健康条件恶化: 加重哮喘, 肺气肿或其它呼吸道疾病.第4部分急救措施致癌性: 氟化氢未被NTP, IARC或OSHA的Z部分列入致癌或潜在致癌物质.在任何情况下暴露在氟化氢中都要求立即就医, 症状出现可能滞后。

眼睛接触: 立即翻开眼皮用水冲洗直到可以的到葡萄糖酸钙溶液. 尽快寻求医疗救援. 受过训练的人员应用消毒的1%的葡萄糖酸钙连续点滴冲洗眼睛。

氟化工--第五章 精细无机氟化工

氟化工--第五章 精细无机氟化工

Á氟化工正在向精细、高端、优质并具有高附加值方向发展着,本文只就无机含氟精细化学品的高端产品市场现状作简单介绍并略作分析,因此类产品太多,只举其中一部分作为例子。

生产技术则非重点。

内容如下1. 氟气及下游产品2. 氟气性质、用途及制备3. 氟化石墨4. 含氟电子化学品及特种气体一、 氟气及下游产品Ø利用氟可制成多种具有氟强氧化性的氟化剂,如高活性的ClF3和BrF3以及比较温和的IF5等。

若直接使用氟气作为氟化剂,则可在氟气中适量加入氮气或氦气作稀释缓解剂。

现场氟气产生的方式为半导体业界提供了一个对于传统的全氟化物为主的腔室清除法有市场潜力的替代方法。

此法已趋成熟,然而仍具有许多新挑战。

如安全性、稳定性、纯度和成本考量。

采用一体化氟气供应策略对于追求安全、稳定供氟气和低成本的于客户,是一种有别于传统标准腔体清除化学的有效替代方法。

2同位素分离及核技术Ø由于六氟化铀可以气化,适于用气体扩散法分离和浓缩铀的同位素,因此很多国家把制氟业和制氟技术视为需要保密的行业和限制使用的技术。

此外用氟对烃类进行彻底氟化制成的全氟油或全氟脂,也是核燃料工业生产中关键的特种材料。

Ø3 六氟化硫Ø六氟化硫虽是很强的氧化剂和氟化剂,但其表现出的惰性比氮气还高。

还是重要的气态绝缘介质,具有良好的耐热性、化学稳定性和电绝缘性,在许多电器和电子设备,特别是大型变电设备上得到日益广泛的应用。

Ø4 氟化石墨Ø氟化石墨优于石墨和二硫化钼。

在苛刻气氛和高速、高压、高温条件下也能充分显示出优异的润滑性能,因此氟化石墨被认为是划时代的固体润滑剂。

ÁÁ5氟化沥青沥青氟化后被赋予许多新的特性,部分性质优于相关有机氟化物,它具有比聚四氟乙烯还低的表面能,是优良的疏水、抗油材料,并保持了沥青的可软化性和在相关溶剂中的可溶性,提供了必要的可加工性,是一种极有开发和利用价值的产品。

含氟中间体及其精细化学品生产与开发

含氟中间体及其精细化学品生产与开发
! 第 "" 卷增刊 $##% 年 ) 月 江苏化工 ?-,@ABC 7D1+-0,. E@FCB=GH
! I4.3 &# 用与 场 市场 应用
含氟中间体及其精细 化学品生产与开发
梁! 诚
( 中石化南京化工厂, 江苏 南京 $(##"’ )
摘要: 综述了我国四大系列含氟有机中间体, 即苯系化合物、 甲苯系列化合物、 脂肪族氟化合物、 杂环化合物的发展 概况, 包括制备与应用。最后展望了它们的发展远景。 关键词: 含氟中间体; 精细化学品; 生产与开发 中图分类号: 56$("! ! 文献标识码: 7! ! 文章编号: (##$ & ((() ( $##% ) 8# & #(99 & #:
力的、 国外市场需求强劲、 具有一定发展变化前景的 含氟中间体。 !" !# $ , % & 二氯氟苯 $, ; & 二氯氟苯主要用于合成喹诺酮类抗菌药 物中的最佳品种环丙沙星, 环丙沙星全球年销售额 位居喹诺酮类药物榜首, $##; 年 在 (# 亿美元以上, 国内产量超过约为; ### = 左右, 其中 %#> 产量用于 出口。尽管目前国内生产厂家较多, 但是由于合成 ; & 二氯 路线多样化, 因此合成技术有发展潜力。$ , 氟苯工业化路线比较多, 按原料路线分有邻二氯苯 ! & 乙 酰 苯 胺 法、 氯 化 苯 法、 氟 苯 法、 对二氯苯 法、 法、 对硝基氯苯法。其中值得关注的路线有, 一是邻 二氯苯法中间产品是 " & 氯 & ; & 氟苯胺, 可以合成 氟氯苯胺, 适于现有氟氯苯胺厂家转产或联产 $ , ; & 二氯氟苯; 二是对二氯苯法, 新开发工艺, 产品质 量比较好, 安全性较好; 三是对硝基氯苯法, 适合大 规模生产, 原料易得, 安全性好, 生产成本低。 !" $# $ , % & 二氟硝基苯和 $ , % & 二氟苯胺 $, ; & 二氟硝基苯是 $ , ; & 二氟苯胺的原料, 由 间二氟苯硝化得到, 进一步还原得到 $ , ; & 二氟苯 胺。后者是合成氟苯水杨酸的关键中间体, 氟苯水 杨酸是由默克公司开发的一种疗效很好的消炎镇痛 被称之为超级 药物, 其抗炎活性是阿斯匹林的 ; 倍, 阿司匹林, 且药效长、 毒性低, 年销售额突破 ( 亿美 ; & 二氟苯胺还可以用于制备氟喹诺酮 元, 此外 $ ,

含氟精细化工热点分析

含氟精细化工热点分析

2 含氟精细化学品20世纪80年代中期尤其是90年代以来,我国含氟精细化学品研究异常活跃,发展方兴未艾。

目前开发出百余种含氟有机中间体及精细化学品,由于国内业界不少企业认为含氟精细化工产品都是市场前景好的产品,盲目采用落后技术建设一些常规的精细化学品,导致许多含氟中间体和精细化学品出现严重过剩的局面,尤其相当多芳香族含氟中间体过剩更为明显。

另外有许多产品国内报道很多,但是由于下游市场尚未启动,因此导致产品开发出来而没有应用市场的尴尬窘境。

笔者结合市场情况,在数量众多含氟精细化工中间体及化学品选择出国内已经进行研究开发或少量生产,并具有良好市场前景,值得关注和需要发展的产品进行简单介绍。

2.1芳香族舍氟中间体芳香族含氟中间体是含氟精细化工中间体开发最早也是目前国内发展最齐备的系列产品,其中6O%以上品种已经出现过剩,但是也有一些品种仍有发展前景,其中主要是三氟甲基苯系列产品,因为三氟甲基化已经成为目前新型农药和医药开发的重要手段之一。

此外一些含氟醛、腈、酮等也具有良好的市场空间。

2.1.1间氯三氟甲基苯该产品合成主要有两条路线,一是以间氯甲苯为原料,在催化剂三氯化磷作用下,经侧链光氯化、氟化得到;二是采用三氟甲苯核氯化制备。

该产品目前主要用于合成染料大红vD,同时也作为溶剂和新型农药中间体。

间氯三氟甲基苯下游产品发展较快,尤其部分中间体,国内有部分企业进行生产,因此该产品部分销往国外,部分在国内消费。

主要生产厂家有浙江东阳化工二厂、浙江东阳康峰有机氟化工厂、浙江金华迪耳化学合成有限公司和阜新特种化学品股份有限公司等近10家企业。

2.1.2间溴三氟甲苯合成路线有两条,一是间氨基三氟甲苯为原料,经氢溴酸和亚硝酸钠重氮化、溴化亚铜置换得到;二是三氟甲基苯在铁粉存在下,用过量溴素直接溴化,然后用亚硫酸钠中和剩余的溴的方法制各。

该品在医药方面用于合成抗老年痴呆药物苯基喹宁环酮、防治糖尿病药物2一氨基吲哚一3一乙酸、抗精神病药物N一二苯甲基哌啶一4一乙酸酪、止痛药物4一芳基环戊(C)吡咯、脂肪氧合酶抑制剂等:在农药方面用于合成2,3一二氧杂萘酮类杀虫剂、除草剂及植物生长调节剂5一氨基哒嗪一3一酮等。

含氟精细化工产品

含氟精细化工产品

工艺落后 生产规模小 产品结构单一 受国际市场影响大 低水平上恶性竞争 污染严重
4, 有机氟化工特点:
1)氟源单一 CaF2 2)附加值高:
CF3COCH2CO2Et CH3COCH2CO2Et OHC 11 万 F OHC 2.5万 左 右 Cl
F3C
80 万 1.5万
1 万以上
H3C 5千 元
两性离子型
• • • • • • • • RfCH2CH(OOCCH3)CH2N+(CH3)2CH2COOC9F19CONH(CH2)3O(CH2)2N+(CH3)2CH2COORfCH2CH2SCH2CH2N+(CH3)2CH2COOCF3(CF2)nCH2CH2SO2NHCH2CH2N+(CH3)2CH2CH2COOn = 5, 7, 9 p-C8F17C6H4NH(CH2)3N+(CH3)2CH2COOC8F17CH2CH2CONH(CH2)3N+(CH3)2(CH2)3SO3RfCH2CH2SCH2CH(OSO3-)CHN+(CH3)3
CO2
NH2
鸟氨酸脱羧酶 鸟氨酸
H2N
腐胺
O
-O H2N CHF2
NH2
依氟鸟氨酸
O 酶 +HN -O H2N OH O3 PO N 酶 Nu CHF2 NH2
-O2C
CHF2 NH2
+H2N
依氟鸟氨酸
N H
形成共价键
NH2
N H
F F CO2H NH2 HO HO OH OH 酶 Nu酶 Nu NH2
一,氟化工产品介绍 Introduction to Fluorochemicals
1,氟的特性: Characteristics of Fluorine

氟化工--第七章 含氟农药及中间体

氟化工--第七章 含氟农药及中间体

前景看好。
n
四氟苯菊酯的合成难度较大,主要因
为其中的中间体四氟苄醇的合成较难。
n
四氟苯菊酯在中国的专利已于2008年
2月到期。
1.2 含氟苯甲酰脲类杀虫剂
n
苯甲酰脲类杀虫剂通过抑制昆虫几丁
质合成酶的活性,阻碍几丁质的合成和新
表皮的形成,使昆虫的蜕皮和化蛹受阻,
活动取食减少而死亡,属于几丁质类抑制
剂。具有活性高、杀虫谱广、选择性强、
人体健康。
n 农药残留(以mg/kg(ppm )表示) 是残存在生物体和环境中的微量农药原体、 有毒代谢物、降解物和杂质的总称。
n 现代农业农药用量大、品种杂、范围
广。发达国家超过99%的谷物、接近99% 的土豆、甜菜、豆类、近94%的蔬菜、近 92%的果树使用过农药。
n
农药是精细化工的重要领域之一,
主要用于防治禾谷类作物,棉花、果树、
葡萄、观赏植物和蔬菜上的各种鳞翅目幼
虫、粉虱、蚜虫、植食性叶螨。
(3)四氟苯菊酯
n
由德国拜耳公司研发生产的,是一种
高效、安全、低毒的卫生用拟除虫菊酯类
杀虫剂,能有效地防治卫生害虫和储藏害
虫,对双翅目昆虫如蚊蝇类有快速击倒的
作用,可用作多种蚊香和防蛀产品的原料,
也可以作为野外和旅游用的杀虫剂。市场
低端水平,技术与国外差距较大,多为附
加值较低的通用产品。“十二五”期间要加快
提高含氟精细化学品在氟化工产品中的比
例,预计年均增长15%。
农药产业“十二五”规划要点 n 我国现有5000多家农药企业,大
多靠薄利多销度日,市场份额超过5% 的企业极少。
n
“十二五”规划提出,要通过兼并、

氟化工--第九章 氟树脂

氟化工--第九章 氟树脂

500℃
CH2F CClH2
HCl + CHF CH2
(4) 氟化氢与乙炔加成生成1,1-二氟乙烷,二氟乙烷再在铝酸盐作用下裂解 生成氟乙烯。
CH CH + 2 HF
CHF2 CH3
CHF2 CH3
HF + CHF CH2
6
(5) 氟化氢与乙烯加成。把HF与含35%(体积分数)O2的乙烯按其量的比2︰1 通人催化剂碳层,于240℃下生成氟乙烯。在碳层中含有铂和氯化亚铜作催化剂。
CF2
COOH
COOH
n+m+1
可见,用过硫酸盐作引发剂,生成端羧基聚四氟乙烯。聚四氟乙烯的相对分子质
量可通过控制引发剂的用量,或加入调聚物及链转移剂等加以控制。
12
工业上,一般采用悬浮聚合和乳液聚合来制备聚四氟乙烯。这两种方法都是以 单釜间歇聚合的方式进行的。
(1)悬浮聚合 悬浮聚合是在脱氧的去离子水介质中,在一定的温度和压力下强烈地搅拌进行。
10
三、氟树脂的合成
氟树脂主要包括聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚氟乙
烯(PVF)、聚偏氟乙烯(PVDF)、聚全氟乙丙烯(FEP)、乙烯-四氟乙烯共
聚物(ETFE)、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA)、乙烯-三氟氯乙
烯共聚物(ECTFE)等,其中以四氟乙烯均聚物及共聚物最为常见。
(6) 氯乙烯氟化,氯被氟取代。将HF和氯乙烯按其量的比3︰1的混合物加热 到370~380 ℃,催化剂用96%的γ-A12O3和4% Cr2O3(质量分数)。由于氯乙烯价 廉,因此该法是制氟乙烯的实用方法。
CHCl CH2 + HF
CHF CH2 + HCl

23001氟

23001氟

氟第一部分化学标识中文名: 氟英文名: fluorine第二部分成分/组成信息主要成分: 纯品CAS 号: 7782-41-4相对分子质量: 38.00分子式: F2化学类别: 卤素与卤间化合物第三部分危险性概述危险性类别: 第2.3类有毒气体危险性综述: 本品助燃,高毒,具强刺激性。

侵入途径: 吸入。

健康危害: 本品高浓度时有强烈的腐蚀作用。

急性中毒:高浓度接触眼和上呼吸道出现强烈的刺激症状,重者引起肺水肿、肺出血、喉及支气管痉挛。

氟对皮肤、粘膜有强烈的刺激作用,高浓度可引起严重灼伤。

慢性影响:可引起慢性鼻炎、咽炎、喉炎、气管炎、植物神经功能紊乱和骨骼改变。

尿氟可增高。

第四部分急救措施皮肤接触: 立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。

就医。

眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。

就医。

吸入: 迅速脱离现场至空气新鲜处。

保持呼吸道通畅。

如呼吸困难,给输氧。

如呼吸停止,立即进行人工呼吸。

就医。

食入:第五部分消防措施燃烧性: 助燃闪点(℃): 无意义引燃温度(℃): 无意义爆炸下限[%(V/V)]: 无意义爆炸上限[%(V/V)]: 无意义最小点火能(mJ): 无意义最大爆炸压力(MPa): 无意义危险特性: 强氧化剂。

是最活泼的非金属元素,几乎可与所有的物质发生剧烈反应而燃烧。

与氢气混合时会引起爆炸。

特别是与水或杂质接触时,可发生激烈反应而燃烧,使容器破裂。

氟对许多金属有腐蚀性,并能形成一层保护性金属氟化物。

灭火方法: 本品不燃。

消防人员必须穿特殊防护服,在掩蔽处操作。

切断气源。

须有无人操纵的定点水塔或雾状水保持火场中容器冷却,切不可将水直接喷到漏气的地方,否则会助长火势。

第六部分泄漏应急处理迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。

建议应急处理人员戴自给正压式呼吸器,穿防毒服。

从上风处进入现场。

尽可能切断泄漏源。

合理通风,加速扩散。

喷雾状水稀释、溶解。

含氟(一氟,二氟,三氟)化合物合成总结和应用

含氟(一氟,二氟,三氟)化合物合成总结和应用

含氟(一氟,二氟,三氟)化合物合成总结和应用自从1956年第一次出现含三氟甲基的精神类用药氟非那嗪(Fluphenazine)和1957年首次引入第一个含氟抗癌药物5-氟尿嘧啶(5-Fluorouracil)以来[1], 半个多世纪过去了. 近十年来, 隨着氟化学研究的进展和对氟原子及含氟取代基的深入了解, 药物科学家正在进一步开掘含氟药物这座新药研发中的金山银矿(Scheme 1)[2]. 最新统计表明, 目前全球含氟药物年销售额在400亿美元左右, 全球销售前200名的药物中, 含氟药物就占了29个, 销售额总计320亿美元. 由此看来含氟药物的应用及研发前景相当可观, 约有25%~30%的新药研发是建立在氟化学原料产品基础之上的. 依文献报道, 约15%~20%的新药都含有氟原子或三氟甲基等基团(图1)[3]. 据我们统计, 截止2013年底, 一共有163个含氟药物接受被美国食品和药物管理局(FDA)的批准上市[4], 这充分说明氟原子是除氯原子之外, 第二个最令药物化学工作者喜欢的卤素原子. 在药物研究中, 充分利用构效关系(SAR)的方法学探索和越来越多含氟中间体的可得性, 都为含氟药物的研究提供了巨大的推动. 毋容置疑, 最近几年的有机氟化学的研究热潮必将为新一波的新药探寻提供更多的方法和手段, 而在氟化学领域有世界一流的中国研究团队的参与[5], 也必将会浓墨重彩地书写药物研发的崭新一页. 本文将近年来这一领域的研究做一简述概括, 希望能为现代药物的合成研发提供帮助[6].不同于其它的卤素, 氟原子由于其独特的电子结构, 它具有最强的电负性和与氢原子一般大小的原子半径, 因而也能更加方便合理地取代氢原子而进行药物分子结构的微调和修饰, 阻断易代谢位点从而改变药物代谢的途径及代谢速度; 并通过分子间氢键的作用, 延长药物在体内的作用时间, 提高药物的生物利用度和选择性. 最值得一提的是, 三氟甲基由于具有很强的吸电子性、亲脂性和稳定性等特点, 具有很强的疏水性而表现出理想的脂溶性, 具有更好的生物通透性和靶向选择性, 因此在许多上巿药物和临床药物常常含有三氟甲基的芳环或杂环分子[7].2011年美国FDA共批准了35个小分子化学药物, 其中有7个是含氟新分子实体(Scheme 2); 2012年共批准了33个小分子化学药物, 其中有6个为含氟有机分子(Scheme 3); 2013 年一共有8个含氟药物获批(Scheme 4). 据不完全统计, 总共有数十个含氟药物进入了临床研究, 其中一些代表性含氟药物见Scheme 5, 如Merck临床三期的胆固醇转运蛋白(CEPT)抑制剂Anacetrapib和Lilly的Evacetrapib, 这两个临床药物都含有三氟甲基和氟的芳香烃结构单元, 预期是药物中的重磅炸弹(Blockbuster drugs). 另外Daiichi研发的高效鲨烯合成酶抑制剂DF-461据称效果比上市的HMG- CoA还原酶抑制剂Atorvastatin(Lipitor)还要好. 可见含氟药物的研究正处于一个相当令人鼓舞的发展局面[8], 而有机氟化学的突破为这一药物研发的加速提供了很好的帮助.从近三年获批的含氟药物结构来看, 一共有17 个是氟代芳香烃, 有6个是含有三氟甲基的芳香环. 其中有2个药物既有三氟甲基又有氟原子. 显然, 有机芳香烃的氟化反应对新药研发是极其重要的, 为此, 本文就近几年来芳(杂)环氟化及N (n=1, 2, 3)氟甲基化的研究进展和亮点并结合实例进行分析总结.芳烃和杂芳烃的氟化反应可分为亲电取代(正离子F+试剂)和亲核取代(负离子F-试剂)两类型. 氟化反应少不了使用氟化试剂, 而且一般都使用过量的. 许多氟化试剂, 包括能提供氟正离子和氟负离子的氟化物见Scheme 6,除了常用的KF, 一般氟化试剂都不便宜, 尤其是一些制备困难的有机氟试剂, 价格尤为昂贵.1.1 利用含氮(胺基、酰胺等)芳(杂)环为原料使用含氮杂环的联苯衍生物, Sanford小组[9]在2006年首先发展了有效的氟化反应(Eq. 1), 在10 mol% Pd(OAc)2 存在的条件下, 选择性地引入了氟原子. 这也是在钯(II)催化下, 温和氧化条件下利用亲电的氟化试剂(F+, 不同于使用亲核氟试剂F-)成功进行的经由直接C—H活化、氧化氟化(Oxidative fluorination)的创新反应.2009年, Scripps的Yu等[10]利用钯盐催化的、邻位导向基诱导的C—H活化策略, 用F+试剂在NMP为促进剂的情况下有效地制备了邻位含氟的芳香化合物(Eq. 2).不难看出, 上述几个反应都是在邻位导向基(direc- ting groups)存在下钯(II)催化的亲电氟化反应, 反应经历了环钯化(Cyclopalladation)和亲电氟化两过程. 巧妙的是, 分子内氮原子从不同的形式(如吡啶中的N; 取代的胺和酰胺)作为供电子体, 参与了分子内环钯化过程, 其特点是形成有利的五元钯(II)络合物中间态(Scheme 8).在没有导向基存在的条件下, 钯催化的亲电氟化反应的机理如图所示(Scheme 9). 首先是通过转移金属化而形成的碳钯键, 由于不涉及到环钯化(cyclopallada- tion), 也不需要导向基, 因此反应底物的多样性就更加广泛, 缺点是底物要进行预官能团化, 必须引入适当的基团进行转移金属化(transmetalation). 随后通过亲电氟化试剂氧化将Pd(II)络合物转化为Pd(IV)的络合物, 进而通过还原消除生成C—F键.1.2 利用芳基锡烷/有机硼化物为原料利用铜盐催化, Sanford小组[13]发展了温和条件下的芳基锡烷和三氟硼酸钾的氟化反应(Scheme 11).最近, Hartwig 小组报道[14]了铜盐催化下, 利用F+试剂对有机硼酸酯的氟化反应(Scheme 12). 反应条件相对温和, 虽然铜试剂和银试剂的用量较大. 与此同时, 通过对19F NMR的考查, 确证了Cu(III)氟络合物的存在. 鉴于有机硼酸酯易得, 这一新方法为制备氟代芳烃又提供了一个新手段.1.3 利用芳基锡烷为原料使用不同的银盐(AgOTf, Ag2O)催化剂, Ritter 等[19,20]在2009年和2010年先后首先发展了温和条件下的芳香锡烷的氟化反应(Scheme 14), 并取得了良好的实验结果.1.4 利用芳香碘化物为原料和卤素交换反应(Halex processes)Hartwig小组[21]发现在铜盐和AgF的作用下, 取代碘苯能够有效地进行卤素交换而制备相应的氟苯(Scheme 15). 据机理研究表明, 该反应有Cu(0)和CuF2的形成. 反应没有完成催化循环.1.5 利用取代的苯酚和苯酚衍生物为原料从取代的苯酚和含羟基的取代的杂芳烃为起始原料, Ritter 小组[25]利用新颖的脱氧氟化试剂, 成功进行了操作简易可行的酚类化合物的氟化(Eq. 5). 该转化具有反应的产率高、基团兼容性好等优点.2009年Buchwald教授[27]首先报道了以三氟甲磺酸酯为原料的钯催化的亲核氟化反应, 成功的关键是釆用了空间位阻大的特殊膦配体, 并通过形成刚性T形的的单核三配位的钯(II)络合物而完成反应. 有趣的是, 在一些反应中发现有区域异构体产生, 产物以间位产物为主(Scheme 19). 虽然目前对形成区域异构体的机理并不十分清楚, 但通过氟负离子进攻在原位的(in situ)产生的苯炔活泼中间体的解释基本排除在外.1.6 利用芳香胺和酰替苯胺为原料芳香胺重氮盐的HF/吡啶(Sandmeyer reaction)处理和氟硼酸处理(Balz-Schiemann reaction)是制备氟代芳烃的老方法. 使用有机高价碘, Li 和Meng等[30]成功进行了免除金属的直接区域选择性氟化酰替苯胺衍生物, 将氟原子引至酰替苯胺基的对位(Scheme 21). 该方法具有操作安全、试剂易得、条件温和、产率较高等特点.1.7 利用芳基碘鎓盐和季铵盐为原料最近, Sanford 小组[31]也成功研究出相转移条件下, 铜盐催化的不对称二芳基碘鎓盐的亲核氟化反应(Eq. 8). 该反应具有条件温和、反应快速、产率高、选择性好、显示很好的基团兼容性以及没有位置异构体等优点.1.8 后氟化(Late-stage fluorination)反应制备药物和天然产物的氟代衍生物Ritter小组[19,20]利用他们率先发现的银盐催化的后氟化(Late-stage fluorination)反应策略, 成功制备了数十个重要的上市药物和天然产物的氟代衍生物, 其中包括氟代Taxol、氟代DOPA、氟代Rifamycin S和氟代Camptothecin等(Scheme 22).虽然迄今为止, 仍然没有上巿的药物中含有二氟甲基(CHF2)芳杂环亚结构单元的APl, 但是二氟甲基独特的结构特点仍然吸引了许多药物化学家的注意. 在等排物为基础的药物设计中, CHF2不失为优秀的亲脂性的氢键供应者, 为传统的氢键供应源提供了新的选择, 并且同时能有效地改善药物的膜渗透性, 促进药物的吸收. 例如在抗丙肝病毒(HCV NS3)蛋白酶抑制剂的研发过程中[34], 成功地利用二氟甲基取代并模仿母体化合物中硫醇的功能. 在COX-2和5-LOX双重抑制剂的研发过程中[35], 二氟甲基可做为异羟肟酸中羟基的等排物.传统的二氟甲基(CF2H)的引入一般都是由芳香醛和DAST试剂的反应而完成的. 考虑到有机磺酸盐中C—S键(272 kJ/mol)比有机硼酸C—B (377 kJ/mol)键和有机分子中的C—C 348 kJ/mol)要弱许多, Scripps 的Baran小组[36]成功制备了含二氟甲基结构的亚磺酸锌盐(DFMS), 利用过氧化叔丁醇为引发剂, 有效地均裂C—S键, 成功地制备了CF2H游离基, 并成功开发了相关反应(Scheme 23).值得注意的是, Baran 小组对一些天然产物和上市的重磅炸弹药物, 如辉瑞制药的Chantix进行了后三氟甲基化(Late-stage trifluoromethylation)和后二氟甲基化(Late-stage difluoromethylation)过程, 在不同的反应条件下, 经过不同的反应机理, 在母体化合物上有效地引进了CF3和CF2H官能团(Scheme 24), 这不失为药物创新改造和开拓构效关系(SAR)研究的新方法和快速通道. 从某种意义来说, 后N (n=2, 3)氟甲基化也是将芳(杂)环电子云密度大或着是电子云密度小的C—H键(即反应的活性位点)通过亲电取代和亲核取代这两种截然不同的反应被C—CF3(或C—CHF2)健取代, 应该是阻止药物氧化代谢的极好手段, 也是提高药物生物利用度的方便策略.将著名的Ruppert-Prakash试剂(TMSCF3)经过硼氢化钠还原, Hartwig 小组[40]以70%的收率制备了新的二氟甲基化试剂TMSCF2H, 并成功应用于铜盐催化的二氟甲基化碘苯(Eq. 12), 反应的收率高, 操作简单易行, 对各种官能团具有良好的兼容性.类似于三氟甲基(CF3)、单氟甲基(CH2F)可以被认为是甲基的有用的生物电子等排体. 其原因是氟的强吸电子效应使得氟原子能避免甲基的代谢性氧化. 而且单氟甲基也被认为是羟甲基(CH2OH)和甲氧基甲基(CH2OCH3)的生物电子等排体. 据调查, 真正意义上的单氟甲基化方法几乎不存在, 尤其是通过产生单氟甲基游离基. 应该承认单氟甲基化是难度很大、富有挑战的研究热点, 但这方面的工作最近取得了很大的进展, 其中包括Scripps的Baran教授的新试(CH2FSO2)2Zn及方法[37](Scheme 26).使用活性的芳香酮如9-芴酮作为可见光下苄基氢的捕食物, Chen 小组[38]首次报告了选择性产生苄基游离基并通过加成氟游离基而完成苄基氟化的催化循环(Eq. 14). 值得一提的是通过巧用、活用不同的芳香酮作为光催化剂, 有效方便地制备了多达数十个结构各异、官能团兼容的带有氟甲基支键的芳香烃. 应该指出的是这也是迄今为止苄基氟化反应的最新进展.传承优秀的中国氟化学研究团队数十年来科研成果突出, 硕果累累, 亮点不断, 一直深受国际学术界的赞叹, 最近中国科学院上海有机化学所的卿凤翎教授[5]已经将近年来(2009~2011年)三氟甲基化的研究进展做了较为深入的总结和归纳. 北京大学王剑波教授[42]最近也对经由三氟甲基自由基进行的三氟甲基化的一些基本理论问题做了很好的探讨, 而西班牙的氟化学专家Grushin也对金属参与的芳烃三氟甲基化在Chem. Rev上发表了系统全面的综述[43]. 考虑到对三氟甲基化反应研究方兴未艾[44], 这方面的高水平研究论文层出不穷, 我们仅将近年以来三氟甲基化研究的亮点从简易方便即实用性, 高效催化即绿色性和安全放大即工艺合理性等角度做一点评, 挂一漏万有偏颇之处, 在所难免.近年来, 不少新型的三氟甲基化试剂, 如正离子型的、负离子型(Scheme 27)的和游离基型的CF3来源, 它们为进行亲电、亲核和游离基三氟甲基化提供了选择的可能, 并成为反应条件优化必须考虑的主要因素.过渡金属催化的三氟甲基化反应在有机氟化学家和金属有机化学家的联手努力下, 已经取得了突破性的进展(Eq. 15). 但不可否认, 和成熟的钯催化的交叉偶联反应(Suzuki, Heck, Negishi)相比较, 改善的空间仍然是巨大的, 其主要缺陷是一般情况下钯催化剂的用量较高(10%), 三氟甲基化试剂一般较为昂贵, 而且有些试剂为气体或低沸点小分子, 物理化学性质不理想也是大气臭氧层的破坏者, 再者, 过渡金属的含量在药物分子API中的控制也是必须考虑的因素之一. 从这个方面来讲, Scripps 的Baran小组[45]在Langlosi小组[46]前期工作基础上将便宜易得的三氟亚磺酸钠作为三氟甲基源, 过氧叔丁醇作为氧化剂而进行的杂环的直接三氟甲基化. 由于反应不需要金属催化剂, 能在室温下进行, 反应条件温和, 溶剂为水/乙腈(也不需额外处理), 对各种取代基及官能团不需保护和耐受性好, 是一种实用价值很强且易放大和工业化的好方法, 堪称一大突破. 当然对自由基参与的化学反应, 反应热的控制和安全性评价是必不可少的.有趣的是, 该三氟甲基化反应是通过自由基中间体完成的, 因此反应的区域选择性并不是高度专一的, 从某种程度来说, 它对现存药物的三氟甲基化而带来的新的药物分子的多样性确是一件好事, 因为芳烃或杂环分子有多于一个的活性反应点, 而便利地引入三氟甲基改造现有药物分子不失为一种旧药改造的捷径. Scheme 28 列出了一系列经过后三氟甲基化(Late-stage trifluoromethylation)的天然产物和重磅炸弹, 我们相信许多药物研发的科学家也会逐渐学习接纳这一新手段.Gooβen 研究小组[50]随后报道了铜盐催化下, 使用Ruppert试剂(TMSCF3)以芳香胺为原料的桑徳迈尔反应制备三氟甲基化芳烃(Scheme 31). 有所不同的是, 他们使用的催化剂是一价铜盐, 其中以硫氰化铜(CuSCN)催化活性最高. 反应温度为室温, 有很好的官能团兼容性, 产率在40%~98%之间.王剑波等[51]首先报道了通过三氟甲基银(AgCF3)和芳香胺参与的桑德迈尔反应来完成胺基至三氟甲基的官能团转化(Scheme 32). 值得一提的是, 反应需要在-78 ℃下完成, 否则收率较低. 三氟甲基银是通过AgF和TMSCF3来制备的, 有趣的是: 使用CuCF3 为试剂, 在相似条件下, 产物的收率不佳(37%). 避免使用超低温反应条件(-78 ℃)也许是将来反应优化、走向适用性的发展方向之一.Baran研究小组[45]在利用便宜易得的三氟亚磺酸钠进行芳烃三氟甲基化工作的基础上, 最近又成功地从三氟亚磺酰氯和锌粉在水为溶剂中制备了物化性能更加优越的新试剂三氟亚磺酸锌, 并成功应用于芳香烃的三氟甲基化反应(Scheme 34). 利用该试剂, Baran研究小组对一些天然产物, 药物中间体也进行了后三氟甲基化(Late stage trifluoromethylation), 并取得了理想的实验结果.肖吉昌小组[55]也首次报道了铜促的采用三氟甲基锍盐的三氟甲基化碘代芳杂(稠)环的新方法(Eq. 22). 该反应具有官能团兼容性好、反应条件温和、产率高等优点, 对不同杂环系统的三氟甲基化均取得了很好的结果. 据称反应机理涉及到铜还原锍盐产生活泼中间体CuCF3的单电子转移过程.值得一提的是, 2010 年Yu等[59]利用一系列杂环如吡啶、嘧啶、咪唑和噻唑为邻位导向基, 在Pd(OAc)2的催化和TFA为促进剂的联合作用下, 成功地利用C—H活化方法进行了芳环的三氟甲基化, 取得了良好的实验结果(Eq. 26).20世纪80年代至90年代初, 陈庆云院士领导的研究团队[60]先后发现了数个三氟甲基化的试剂[5], 其中1991年报道的1,1-二氟-1-氯代乙酸甲酯(MCDFA)在KF和CuI存在下在DMF溶剂中能有效地进行相应酯的热分解(100~120 ℃), 通过消除CO2和CH3X, 完成相应的三氟甲基化反应, 反应具有条件相对温和、产率高、试剂便宜易得等优点, 该方法被称为陈试剂(陈方法, Eq. 27), 并广泛被国内外学术界和药业应用于含三氟甲基的化合物的合成.2013年Senanayake等[61]使用陈试剂, 在研发抗感染药物中, 通过条件优化并使用控制滴加的方法、溶剂筛选, 确定了最佳反应条件,有效控制了放大反应中泡沫CO2以及三个副产物的形成, 成功制备了关键中间体(Eq. 28). 值得一提的是, 鉴于1,1-二氟-1-氯代乙酸甲酯(MCDFA)在工业生产中大规模生产, 其成本要比使用Ruppert试剂降低85%.在工艺研发GSK3β 抑制剂AZD8027的过程中, AstraZenca的Witt等[64]面临着同样如何有效和方便地引入氟原子和三氟甲基的问题. 很显然, 通过用Selectfluor引入氟原子后缩合形成氟代嘧啶杂环是极不可取的(Scheme 38). 一是氟化试剂昂贵, 二是氟化产率低(50%~55%), 而且有中间体不稳定等缺点.改进的合成方法首先合成了含氟嘧啶和含三氟甲基的咪唑片断, 然后通过杂环的Ziegler偶联关键反应等有效制备了AZD8926, 改进过的合成方法更趋合理(Scheme 39), 产率更高. 同时把钯催化的胺化反应提前, 避免了消除痕量钯金属所带来的困扰和API的损失.经过这些年的不懈努力, 有机氟化学在诸多方面得到了迅猛的发展, 世界一流的研究小组你追我赶, 创新立异, 成果频出. 应该承认, 有机金属化学的进展、催化反应的应用是今天氟化学进展的主推动力. 最近在有机化学的期刊上很难看到不含有氟化学的论文. 许多有关氟化学的专著也陆续出版[65], 综述文章和研究论文也不断更新[66].在这里, 我们将近年来芳香烃氟化反应和芳香烃杂环化合物N (n =1, 2, 3)氟甲基化反应的研究进展用图示的形式进行概括总结(Schemes 40, 41), 并概述了近年来含氟药物的研究成果. 值得特别强调的是第(III)种反应类型即新颖的氧化氟化反应(Oxidative fluorination)和氧化三氟甲基化反应(oxidative trifluoromethylation)是近几年来的研究热点课题之一. 我们相信最近的氟化学进展必将为药物研发工作者进行广泛的药物合成研究开辟了崭新的道路. 毫无疑问, 它必将拓展含氟药物建筑全新分子的想象空间, 提供更多重要的方法和途径.从发展趋势和方向来看, (1)理想的氟化反应应该是无金属(Metal-free)参与的或者是高效的过渡金属催化的过程, 应该大力开掘新颖高效的催化系统; (2)从经济、绿色环保等方面和为工业化放大生产考虑, Pd 等催化剂的用量应该尽量控制在0.5~1 mol%之间(目前一般为5~10 mol%左右); (3)氟原子和N氟甲基的引入先后(现在一般的氟化物原分离纯化较难, 区域选择性不好而附带各种含氟杂质; (4)利用便宜易得的氟试剂, 目前许多含氟试剂较贵; (5)操作简单的工艺, 反应应该有不怕氧不怕水等优点, 安全且重复性好; (6)反应应该具有高产率, 尤其是含氟中间体和产物料都是市场上购入含氟小分子), 理想的状态应该是后加入F, 目前缺陷是: 收率一般并不太高, 产物纯品纯度不够, 如何进行分离纯化对工艺开发也是一个很大的挑战, 因为一般而言, 含氟化合物在多数有机溶剂中的溶解度比母体化合物更佳, 这使得利用重结晶、打浆等手段富积含氟化合物更趋不可能.应该指出的是, 目前在候选药物结构单元中什么位置引入氟原子和三氟甲基团, 仍带有相当的随意性, 仍然不能利用分子设计和计算化学的方法得到确切的判断. 也就是说含氟化合物的生理活性与分子结构的构效关系只能在一定程度上进行预测, 没有形成系统的理论体系. 显然这也是对药物科研工作者在含氟药物的合成与创新、开发高效低毒的新型药物提出的挑战.综上所述, 经过这几年有机氟化学家、有机金属化学家和药物化学工作者的共同努力, 在许多世界一流实验室参与和不甘人后的研发热潮中, 有机氟化学的研究面貌发生了根本性的变化, 极大地推动了含氟药物、多肽蛋白质化学和化学生物学的发展, 对材料科学和理论化学的发展也产生了很大的推动(Scheme 42). 毫不夸张地说, 这些年是有机氟化学发展的黄金时代, 它所创造的崭新氟化学反应手段和策略,为药物化学家开拓含氟药物这座宝藏提供了机遇和创造空间, 也激发和丰富了有机化学家和药物科研人员的创造性和想象力,含氟药物仍是今后很长一段时间药物研发的一个热点课题, 这也是摆在中国有机化学家和药物科研人员面前的一大机遇和挑战.声明:。

中科院上海有机所研究生课程:氟化学-含氟精细化工产品_图文

中科院上海有机所研究生课程:氟化学-含氟精细化工产品_图文
本方法主要用于含氟芳香族化合物的制备中,如: Be Used in the Preparation of F-aromatics
7.
2)
杂环上氟化
3 电解氟化(Electrochemical Fluorination) 3M公司
三氟醋酸 CF3CO2H 溶剂,化工原料
二氟乙酸 CHF2CO2H
• b,氢键和电子作用 • c,立体电子效应和构象 • d,代谢稳定性和反应中心的调整 • e,生物等位体模拟 • f,基于机理的“自杀性”抑制
代谢稳定性和反应中心的调整
阻止胆固醇吸收药物 :
SCH 48416 SCH 58235
疗效提高50倍
埃博霉素(Epothilone)
生物等位体模拟
抗HIV药物 抑制反转录酶的功能
中国专利,CN Pat.: ZL98110687.9
调聚醇: H(CF2CF2)nCH2OH n=1,四氟丙醇,CD-ROM 清洗剂
齐聚法(ICI)
4 氟气氟化法 Fluorinated by Fluorine Gas 全氟奈烷,Perfluorodecalin 氟化石墨, Graphite Fluoride
5 利用含氟中间体进行化学转化 Prep. by fluorinated synthon
三氟乙酰乙酸乙酯 (ETFAA) Rohm-Haas
吸入式麻醉剂 Inhalation Anaesthetics 麻醉剂: C.H类: 可燃性,手术室爆炸,着火。 F醚类: 不可燃 体内代谢少,副作用少, 生效快,苏醒快。
含氟精细化工产品
脂肪族 (Aliphatics ):
芳香族 (Aromatics): 氟(甲)苯类;三氟甲苯类;卤代氟苯类;硝基氟笨类 ;氟苯胺类;氟苯酚类;氟苯甲醛类;氟苯甲酮类;氟 苯甲酸类;氟苯甲酰氯类;氟苯甲氰类;氟苯甲醚类; 氟苯甲酰胺类;双三氟甲基苯类;三氟甲基苯基醚类; 二氟甲基苯基醚类;三氟甲基苯基硫醚类及含氟杂环类 如:三氟甲基吡啶及其衍生物类;含氟吡啶及其衍生物 类等十几个大类,上千个品种。欧,美,日等大部分已 产业化。

含氟产品物理化学性质

含氟产品物理化学性质

全氟己酸钠CAS No.2923-26-4 CF3CF2CF2CF2CF2COONa C6F11NaO2MW:336.04CAS No:2923-26-4EINECS:220-881-7全氟丁基磺酸钾CAS No.29420-49-3 CF3CF2CF2CF2SO3KC4F9KO3SMW:338.20CAS No:29420-49-3MP:300℃全氟己基磺酸钾CAS No.3871-99-6CF3CF2CF2CF2CF2CF2SO3K C6F13KO3SMW:438.2CAS No:3871-99-6 EINECS:223-393-2MP:285℃三氟甲基磺酸钠CAS No.2926-30-9CF3SO3NaCF3NaO3SMW:172.05CAS No:2926-30-9BP:255℃Irritant全氟己磺酸CAS No.355-46-4CF3CF2CF2CF2CF2CF2SO3H C6HF13O3SMW:400.11CAS No:355-46-4EINECS:206-587-1Purity:97.0%mind20:1.841三氟甲磺酸CAS No.1493-13-6 CF3SO3HCHF3O3SMW:150CAS No:1493-13-6EINECS:216-087-5Purity:99.0%minBP:162℃MP:-40℃d20:1.7全氟丁酰氟;七氟丁酰氟CAS No.335-42-0 CF3CF2CF2CF=O C4F8OMW: 216.03CAS No. 335-42-0EINECS: 206-390-0Purity: 99.0% minBP: 7-9°CCorrosive全氟己酸甲脂CAS No.424-18-0 CF3CF2CF2CF2CF2COOCH3 C7H3F11O2MW: 328.08CAS No.424-18-0Purity: 99.0 % minBP: 122°Cd20: 1.62全氟己酸CAS No.307-24-4 CF3CF2CF2CF2CF2COOHC6HF11O2MW:314.05CAS No. 307-24-4EINECS: 206-196-6Purity(Titration):97.0%BP:156-160°Cd20: 1.759-1.765n20: 1.301Corrossive乙基四氢糠醚CAS No.62435-71-6C7H14O2MW: 130.19CAS No. 62435-71-6Purity: 98.0% minBP: 156°Cd20: 0.94n20: 1.424Flammable全氟-2-甲基-3-氧杂己酰氟CAS No.2062-98-8CF3CF2CF2OCF(CF3)CF=OC6F12O2MW: 332.04CAS No.2062-98-8Purity: 99.0 % minBP: 54-56°Cd20: 1.61n20: 1.300Corrosive全氟-2,5-二甲基-3,6-二氧杂壬酰氟CAS No.2641-34-1CF3CF2CF2OCF(CF3)CF2OCF(CF3)CF=O C9F18O3MW: 498.07CAS No. 2641-34-1Purity: 99.0 % minBP: 113-115°Cd20:1.8Corrosive2,2-双(4-甲基苯基)六氟丙烷CAS No.1095-77-8C17H14F6MW: 332.28CAS No.1095-77-8Purity: 99.0 % minMP: 82-85°CBP: 117°C/2mmHg4,4'-(六氟异丙烯)二酞酸酐; 六氟二酐CAS No.1107-00-2C19H6F6O6MW: 444.24CAS No.1107-00-2EINECS: 214-170-0Purity: 99.0 % minMP: 244 -247°C4,4'-(2,2,2-三氟-1-三氟甲基)亚乙基双(1,2-苯二甲酸)CAS No.3016-76-0C19H10F6O8MW: 480.27CAS No.3016-76-0EINECS: 221-154-7Purity: 99.0 % minMP: 244°C2,2-双(3,4-二甲基苯基)六氟丙烷CAS No.65294-20-4C19H18F6MW: 360CAS No. 65294-20-4EINECS: 265-687-3Purity: 99.0 % minMP: 75-78°C双酚AFCAS No.1478-61-1 HOC6H4C(CF3)2C6H4OH C15H10F6O2MW: 336CAS No. 1478-61-1ENCS:4-1335EINECS:216-036-7Purity: 99.5 % minMP: 159-163°CBP: 350-400°C全氟-2,5-二甲基-3,6-二氧杂壬酸乙酯CF3CF2CF2OCF(CF3)CF2OCF(CF3)COOCH2CH3 C11H5F17O4MW: 524.1Purity (Titration): 99.0 % min五氟丙酸乙酯CAS No.426-65-3 CF3CF2COOCH2CH3 C5H5F5O2MW: 192.07CAS No. 426-65-3EINECS:207-043-6Purity: 99.0 % minBP: 75-76°Cd20: 1.299n20: 1.301Flammable, irritant三氟丙酮酸乙酯CAS No.13081-18-0 CF3COCOOCH2CH3 C5H5F3O3MW: 170CAS No. 13081-18-0Purity: 99.0% minBP: 102-103°C全氟乙基乙烯基醚CAS No.10493-43-3 CF3CF2OCF=CF2C4F8OMW: 216CAS No. 10493-43-3Purity: 98.5 % minBP: 7.4°Cd25: 1.44 (liquid)全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚CAS No.16090-14-5 CF2=CFOCF2CF(CF3)OCF2CF2SO2F C7F14O4SMW: 446CAS No. 16090-14-5Purity: 99.0 % minBP: 135°Cd38: 1.70全氟正丙基乙烯基醚CAS No.1623-05-8 CF3CF2CF2OCF=CF2 C5F10OMW: 266.03CAS No. 1623-05-8Purity: 99.0 % minBP: 35°Cd25: 1.53全氟甲基乙烯基醚CAS No.1187-93-5 CF3OCF=CF2C3F6OMW: 166.02CAS No. 1187-93-5Purity: 98.5 % minBP: -23°Cd20: 1.43 (liquid)氯甲基-1,1,1,3,3,3-六氟异丙基醚CAS No.26103-07-1 (CF3)2CHOCH2CLC4H3CLF6OMW: 216.56CAS No.26103-07-1Purity: 99.5 % minBP: 76-77°Cintermediate for Sevoflurane2,2,2-三氟乙基二氟甲醚CAS No.1885-48-9CF3CH2OCHF2C3H3F5OMW: 150.04CAS No. 1885-48-9Purity: 99.0 % minBP: 29°C*intermediate for Isoflurane & Desfluorane2-氯-1,1,2-三氟乙基甲醚CAS No.425-87-6 CH3OCF2CHFCL C3H4CLF3OMW: 148.51CAS No. 425-87-6Purity: 99.0 % minBP: 70.6°Cd20: 1.363n20: 1.343*intermediate for Enflurane六氟异丙基甲醚CAS No.13171-18-1六氟异丙醇CAS No.920-66-1 (CF3)2CHOH C3H2F6OMW: 168.04ENCS: 2-291EINECS: 213-059-4BP: 59 °CMP: -3.3°Cd20: 1.604n20: 1.277Corrosive六氟环氧丙烷CAS No.428-59-1 CF3CF(O)CF2C3F6OMW: 166EINECS: 207-050-4BP: -27 °CMP: -129 °Cd20: 1.300 (Liquid)六氟丙酮三水化合物CAS No.34202-69-2 (CF3)2C=O·3H2O C3F6O·3H2O MW: 220.05 ENCS: 2-581EINECS: 211-676-3BP: 105 °CMP: -11°Cd25: 1.6Toxic六氟异丁烯CAS No.382-10-5 (CF3)2C=CH2 C4H2F6MW: 164BP: 14.5 °CMP: -111°Cd20: 1.337 (Liquid)三氟乙酸CAS No.76-05-1CF3COOHC2HF3O2MW: 114.01ENCS: 2-1185EINECS: 200-929-3BP: 74 °CMP: -15.4°Cd20: 1.489n20: 1.284Corrosive, irritant, toxic LD50 150 mg/kg mouse (o)全氟-2,5-二甲基-3,6-二氧杂壬酸CAS No.13252-14-7 CF3CF2CF2OCF(CF3)CF2OCF(CF3)COOH C9HF17O4MW: 496.07CAS No.13252-14-7EINECS:236-237-3Purity (Titration):99.0% minBP: 135°C /28mmHgd20: 1.7362,2,2-三氟乙基二氟甲醚CAS No.1885-48-9 CF3CH2OCHF2C3H3F5OMW: 150.04CAS No. 1885-48-9Purity: 99.0 % minBP: 29°C*intermediate for Isoflurane & Desfluorane2-氯-1,1,2-三氟乙基甲醚CAS No.425-87-6CH3OCF2CHFCLC3H4CLF3OMW: 148.51CAS No. 425-87-6Purity: 99.0 % minBP: 70.6°Cd20: 1.363n20: 1.343。

含氟产品

含氟产品

含氟产品很大,有爆炸危险,由于氟原子半径小,又具有较大的电负性,它所形成的c-f键键能要比c-h键键能要大得多,明显增加了有机氟化合物的稳定性和生理活性,另外含氟有机化合物还具有较高的脂溶性和硫水性,促进其在生物体内吸收与传递速度,使生理作用发生变化。

所以很多含氟医药和农药在性能上相对具有用量少、毒性低、药效高、代谢能力强等特点,这使它在新医药、农药品种中所占比例越来越高。

另外含氟染料、含氟表面活性剂、含氟织物整理剂、含氟的氟碳涂料等分别成为精细化工领域的高附加值、新开发的、有发展前景的精英。

我国是世界上黄石储量大国,探明储量占世界总储量的三分之一,为我国发展有机氟工业提供非常有利的原料优势。

我国自20世纪70年代相继开始有机氟中间体及其精细化学品的研究与开发,由于这些产品奇特的性能与超常的效果,80·年代以来开始更是成为国内外精细化工界的研究热点,20世纪90年代以来我国含氟化合物更以强劲的速度发展,目前我国已经成为全球含氟有机中间体的主要生产国与供应国,含氟医药和农药已经成为化工界的热点话题和新的经济增长点。

2、中间体生产现状20世纪80年代中期尤其是90年代以来,我国含氟精细化工品研究异常活跃,发展方兴未艾。

目前开发出百余种含氟有机中间体及精细化学品,尤其是含氟中间体发展迅速,生产能力快速增加,2001年我国含氟中间体生产能力约为6-7万t/a,产品有一半以上出口国际市场。

生产厂家近百个,其中形成阜新特种化学品股份有限公司、江苏暨阳集团、江苏东方化工集团、台州市第二化工厂、浙江东阳化工二厂、横店得邦-永安化工有限公司,江苏射阳氟都化工有限公司、辽宁天合精细化工股份有限公司等十余家大型、能生产系列化品种的骨干企业。

我国目前开发的含氟有机中间体根据起始原料或化学结构大致分为四大系列,即苯系列化合物、甲苯系列化合物、脂肪族氟化物、杂环化合物。

其中苯系列化合物中又分为氟苯类、多氟苯类、氟苯醚类、氟氯(溴、碘)苯类、氟苯胺类、氟苯酚、硝基氟苯、氟苯腈、氟苯丙酮类;氟甲苯系列产品也可以分为三氟甲基苯系列、氟苯甲酸、氟苯甲醛、氟苯甲酰氯系列类;脂肪族氟化物主要用于新型材料的生产,有少部分产品用于合成农药和医药等精细化学品;含氟杂环化合物主要为含氟吡啶系列等。

中科院上海有机所研究生课程:氟化学-含氟精细化工产品74页PPT

中科院上海有机所研究生课程:氟化学-含氟精细化工产品74页PPT

去甲基化
OMe
OMe
去甲基化
去甲基
OH
阻止胆固醇吸收药物:
SCH 48416 SCH 58235
疗效提高50倍
N O
F
去甲基化
埃博霉素(Epothilone)
N
S
氧化
O
O
OH
13
X
12
X = CH3 X = CF3
O OH
生物等位体模拟
Cl O
N
O
H
Efavirenz 依发韦仑
F
F O
N
O
H
抗HIV药物 抑制反转录酶的功能
OH
氟代亚甲基多巴胺衍生物 胺氧化酶抑制剂
2) 含氟医药
抗菌素bacteriophage 和 抗生素antibiotics
诺氟沙星Norfloxacin(氟哌酸)
O
F
CO2H
N
N
N
Et
环丙沙星ciprofloxacin;洛美沙星 Lomefloxacin;
左氧沙星Levofloxacin; 依诺沙星Enoxacin
H
OH
O COCH2OH
H
F O
含氟吸入式麻醉剂 Inhalation Anaesthetics 异氟醚 Isoflurane CF3CHClOCHF2 地氟醚 Desflurane CF3CHFOCHF2 七氟醚 Sevoflurane (CF3)2CHOCH2F
1.
1) 模拟效应
2) 脂溶性和渗透性
3
3) 电子效应
4
4) 阻塞效应
2, 氟化工产品的分类 Classification of fluorochemicals

氟化学

氟化学

有机氟材料的结构与性能及其在涂料中的应用随着科学及人类生活的进步和改善,涂料越来越多的被应用于高温、腐蚀性强、污染度高等劣环境中,因而人们对涂料性能的要求也越来越高。

氟系涂覆材料由于其优异的耐侯性、耐腐蚀性、耐热性、耐化学品性、防污性、斥水斥油性及低摩擦性等优良特性,而成为化工设各、海上平台、大型船舶防护等极端恶劣环境中使用的最高技术涂料。

特别是近年未,出现了可保持光泽10 年以上的交联型氟树脂涂料,使氟涂料正在建筑、重防腐、汽车涂装等领域取得惊人的发展,并由此引发了涂料市场的巨大变革,开始实现超长耐候性(可达30 年) 及大型被涂物的免维修等目标。

1 氟材料的结构特点氟涂料的优异性能,从分子结构而言,一般聚烯烃分子的碳链呈锯齿形,如将氢原子换成氟原子,由于氟原子电负性大,原子半径小,C —F 键短,键能高达500KJ / mol ,而且由于相邻氟原子的相互排斥,使氟原子不在同一平面内,主链中 C —C —C 键角由112°变为107°,沿碳链作螺旋分布,故碳链四周被一系列性质稳定的氟原子所包围。

由于是对称分布,整个分子呈非极性;又因氟原子极化率低,碳氟化合物的介电常数和损耗因子均很小,所以其聚合物是高度绝缘的,在化学上突出的表现是高热稳定性和化学惰性。

另外,通常太阳能中对有机物起破坏作用的是可见光2紫外光部分,即波长为700~200nm 之间的光子,而全氟有机化合物的共价键能达544KJ / mol ,接近220nm 光子所具有的能量。

由于太阳光中能量大于220nm 的光子所占比重极微,所以氟系涂料耐候性极好。

全氟碳链中,两个氟原子的范德华半径之和为0. 27nm ,基本上将C —C —C 键包围填充。

这种几乎无空隙的空间屏障使任何原子或基团都不能进入而破坏C —C 键。

因此,其耐化学性极好。

2 含氟树脂涂料的发展过程及主要品种氟树脂的历史始于1938 年,美国的Plunket 博士发现四氟乙烯室温下聚合生成白色粉末。

含氟精细化工产品的开发和应用

含氟精细化工产品的开发和应用

含氟精细化工产品的开发和应用摘要:一直以来,含氟精细化工产品的开发和应用都备受关注,主要因含氟化工产品如果应用不合理会直接影响到人们的身体健康以及生态环境。

含氟精细化工产品开发和应用固然重要,但也要加强对化工产品的管理和审核,对于一些对人体健康和生态环境可能带来威胁的产品,应禁止开发和应用。

在此基础上,本文重点对含氟精细化工产品的开发和应用展开全面的分析。

关键词:含氟精细化工产品;开发;应用1精细化学品精细化学品是指能增进或赋予一种(类)产品以特定功能或本身拥有特定功能的小批量制造和应用的、技术密度高、附加值高,纯度高的化学品,是基础化学品进一步深加工的产物。

1986年原化学工业部将精细化工产品分为11个类别:(1)农药;(2)染料;(3)涂料(包括油漆和油墨);(4)颜料;(5)试剂和高纯物质;(6)信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品);(7)食品和饲料添加剂;(8)粘合剂;(9)催化剂和各种助剂;(10)(化工系统生产的)化学药品(原料药)和日用化学品;(11)高分子聚合物中的功能高分子材料(包括功能膜,偏光材料等)。

随着国民经济的发展,精细化学品的开发和应用领域将不断开拓,新的门类将不断增加。

精细化学品具有以下特征:(1)产品种类繁多,应用领域广;(2)生产技术复杂;(3)产品附加值高;(4)复配产品种类多;(5)产品对下游客户粘度较高。

2精细化工发展的特点2.1技术创新发展随着社会经济水平的不断提高,技术创新处于一个迅速发展的状态中。

精细化工是一种技术密集型产业,是需要依赖强大的科研力量的。

精细化工行业是一种新型发展的技术行业。

基于精细化工行业是一种新型发展的技术行业,所以精细化工行业的商品、设备都在不断创新发展。

如果精细化行业在发展中使用的设备没有实现技术创新,是难以促进企业的繁荣发展的。

在精细化工行业是比较重视商品和设备的创新的。

精细化行业实现了技术创新发展,才能生产出高质量的产品,才能提高行业竞争力。

国防化工中的氟化学品

国防化工中的氟化学品

檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱檱殗殗殗殗专论与综述国防化工中的氟化学品曹伟氟化学品主要可分为无机氟化物、含氟高分子材料、含氟精细化学品、氟氯烃及代用品等几大类。

氟化学工业崛起于20世纪30年代,是化工行业中增长迅速的一个子行业;氟化工产品以其耐化学品、耐高低温、耐老化、低摩擦、绝缘等优异的性能,广泛应用于军工、化工、机械等领域。

近年来,随着技术进步和需求的增长,氟化学产品的应用领域开始从传统行业向建筑、电子、能源、环保、信息、生物医药等新领域渗透,氟树脂、氟橡胶、氟涂料、含氟精细化学品、无机氟化物等产品的需求增长迅速。

氟化学品与国防化工有历史的渊源。

在科学家1886年成功分离元素氟后,很长时间里,氟化学的研究基本局限于少数化学家的实验室里,直到第二次世界大战期间,美国实施了著名的曼哈顿工程,在铀同位素分离等多项子项目中,发现氟化学品的特殊作用,对之进行了深入的研究;其中最主要的是分离铀235,发现最有效的方法是将其转化成六氟化铀,然后就可以用气体膜分离法或离心法浓缩出制造原子弹所需的高浓度铀235;另外,在处理六氟化铀时需要特殊的耐腐蚀材料和密封材料,为此促进了聚四氟乙烯和氟橡胶的发明和应用。

二战后,参加过曼哈顿工程的美国杜邦公司和3M 公司成功地把其中的部分新型材料和技术转型为民用产品,氟化学产品因其特殊效用越来越为民众所认识和接受。

尽管氟化学品目前已经达到数十亿美元的市场销售,应用到从重工业到日常用品等各个方面,但是它与国防化工一直保持着天然的联系,许多新的氟化学品是应国防化工的需要所开发的。

本文试就国防化学中的氟化学品做一简要的综述。

1无机氟化学品1.1六氟化铀前已述及,氟化学品的大发展的引子是因铀同位素分离合成了六氟化铀。

到目前为止,六氟化铀仍然是铀同位素分离的必经之路,所有进行原子能军事或和平应用的国家必须建立六氟化铀合成与其同位素分离的装置。

六氟化铀是铀同位素分离中唯一合适的一种气体化合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档