上海市长宁区2018年中考数学一模和答案解析
上海市长宁区中考数学一模试卷及答案(word解析版)
上海市长宁区中考数学一模试卷一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1.(4分)(•长宁区一模)已知△ABC中,∠C=90°,则cosA等于()A.B.C.D.考点:锐角三角函数的定义.分析:根据余弦等于邻边比斜边列式即可得解.解答:解:如图,cosA=.故选D.点评:本题考查了锐角三角函数的定义,是基础题,作出图形更形象直观.2.(4分)(•长宁区一模)如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.考点:*平面向量.专题:压轴题.分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得,然后由三角形法则,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵,∴,∵,∴=+=.故选B.点此题考查了平面向量的知识与平行四边形的性质.此题难度不大,注意掌握三角形评:法则的应用,注意数形结合思想的应用.3.(4分)(•长宁区一模)如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形考点:垂径定理;菱形的判定.专题:探究型.分析:先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.解答:解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.点评:本题考查的是垂径定理及菱形的判定定理,全等三角形的判定与性质等知识,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.4.(4分)(•长宁区一模)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a >0时开口向上,当a<0时开口向下.解答:解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.5.(4分)(•茂名)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.考点:相似三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△ABC.解答:解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC 故选C.点评:本题的关键是利用三等分点求得各相似三角形的相似比.从而求出面积比计算阴影部分的面积.6.(4分)(•长宁区一模)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的析:确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).解答:解:当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选D.点评:主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)(•长宁区一模)已知实数x、y满足,则=2.考点:比例的性质.分析:先用y表示出x,然后代入比例式进行计算即可得解.解答:姐:∵ =,∴x=y,∴==2.故答案为:2.点评:本题考查了比例的性质,根据两內项之积等于两外项之积用y表示出x是解题的关键.8.(4分)(•长宁区一模)已知,两个相似的△ABC与△DEF的最短边的长度之比是3:1,若△ABC的周长是27,则△DEF的周长为9.考点:相似三角形的性质.分析:由两个相似的△ABC与△DEF的最短边的长度之比是3:1,得出相似比为3:1,即可得其周长为3:1,又由△ABC的周长为27,即可求得△DEF的周长.解答:解:∵两个相似的△ABC与△DEF的最短边的长度之比是3:1,∴周长比为3:1,∵△ABC的周长为27,∴=3,∴△DEF的周长为9.故答案为:9.点评:此题考查了相似三角形的性质.注意掌握相似三角形周长的比等于相似比.9.(4分)(•长宁区一模)已知△ABC中,G是△ABC的重心,则=.考点:三角形的重心.分析:设△ABC边AB上的高为h,根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得△ABG边AB上的高线为h,再根据三角形的面积公式计算即可得解.解答:解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴==.故答案为:.点评:本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.10.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后,得到新的抛物线解析式为y=﹣x2+2x﹣1.考点:二次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:根据“上加下减”的原则可知,把抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后所得到的抛物线解析式y=﹣x2+2x+2﹣3=﹣x2+2x﹣1.故答案为:y=﹣x2+2x﹣1.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.11.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+c在y轴左侧图象上升(填“左”或“右”).考点:二次函数的性质.分析:由于a=﹣1<0,且抛物线的对称轴为y轴,根据二次函数的性质得到抛物线y=﹣x2+c的开口向下,在对称轴左侧y随x的增大而增大.解答:解:∵a=﹣1<0,∴抛物线y=﹣x2+c的开口向下,且抛物线的对称轴为y轴,∴抛物线y=﹣x2+c在对称轴轴左侧图象上升,y随x的增大而增大.故答案为左.点评:本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上,在对称轴左侧,y随x的增大而减小,在对称轴有侧,y 随x的增大而增大;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.(4分)(•长宁区一模)正八边形绕其中心至少要旋转45度能与原图形重合.考点:旋转对称图形.专题:常规题型.分析:根据正八边形的性质,求出每一条边所对的中心角,就是所要旋转的度数.解答:解:360°÷8=45°.故答案为:45.点评:本题考查了旋转变换图形,求出每一条边所对的中心角即可,比较简单.13.(4分)(•长宁区一模)已知圆⊙O的直径为10,弦AB的长度为8,M是弦AB上一动点,设线段OM=d,则d的取值范围是3≤d≤5.考点:垂径定理;勾股定理.专题:探究型.分析:首先过点O作OC⊥AB于C,连接OA,根据垂径定理的即可求得AC的长,又由⊙O的直径为10,求得⊙O的半径OA的长,然后在Rt△OAC中,利用勾股定理即可求得OC的长,继而求得线段OM长度的取值范围.解答:解:过点O作OC⊥AB于C,连接OA,∴AC=AB=×8=4,∵⊙O的直径为10,∴OA=5,在Rt△OAC中,OC===3,∴当M与A或B重合时,OM最长为5,当M与C重合时,OM最短为3,∴线段OP长度的取值范围是:3≤d≤5.故答案为:3≤d≤5.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.14.(4分)(•长宁区一模)如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是5:12.考点:解直角三角形的应用-坡度坡角问题.分析:首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.解答:解:滑行的水平距离是:=120(米),故坡道的坡比是:50:120=5:12.故答案是:5:12.点评:本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.15.(4分)(•长宁区一模)两圆相切,圆心距为2cm,一圆半径为6cm,则另一圆的半径为4或8cm.考点:圆与圆的位置关系.分析:分两圆外切和两圆内切情况讨论,很明显根据圆心距为2cm与一圆的半径为6cm不可能外切;而内切时,要分6cm为较长半径和较短半径两种情况考虑.解答:解:设另一圆的半径为r,∵两圆相切,∴两圆可能外切,也有可能内切,∴当两圆外切时,2=6+r,则r=﹣4(舍去);当两圆内切时,2=6﹣r或2=r﹣6,则r=4cm或8cm,∴两圆内切,另一圆的半径为4cm或8cm.点评:本题用到的知识点为:两圆外切,圆心距=两圆半径之和.两圆内切,圆心距=两圆半径之差.16.(4分)(•长宁区一模)已知△ABC中,AB=6,AC=9,D、E分别是直线AC和AB 上的点,若且AD=3,则BE=4或8.考点:相似三角形的判定与性质.分析:先将AB=6,AC=9,AD=3代入,求出AE=2.由于D、E分别是直线AC和AB上的点,则∠DAE=∠BAC,所以若,根据两边对应成比例且夹角相等的两三角形相似得到△ADE∽△ABC,所以分两种情况进行讨论:①D、E分别在线段AC和AB上;②D、E分别在线段AC和AB的反向延长线上.解答:解:将AB=6,AC=9,AD=3代入,得=,解得AE=2.①D、E分别在线段AC和AB上时,∵AE=2,AB=6,∴BE=AB﹣AE=6﹣2=4;②D、E分别在线段AC和AB的反向延长线上时,∵AE=2,AB=6,∴BE=AB+AE=6+2=8.综上可知BE的长为4或8.故答案为4或8.点评:本题考查了相似三角形的判定与性质,直线的性质,进行分类讨论是解题的关键.17.(4分)(•长宁区一模)如图,已知Rt△ABC,∠ACB=90°,∠B=30°,D是AB边上一点,△ACD沿CD翻折,A点恰好落在BC边上的E点处,则cot∠EDB=.考点:翻折变换(折叠问题);特殊角的三角函数值.分析:先根据三角形内角和定理得出∠A=60°,再由轴对称的性质证明出△CED≌△CAD,则∠CED=60°,根据三角形外角的性质求出∠EDB=30°,然后根据特殊角的三角函数值求解.解答:解:在Rt△ABC中,∵∠ACB=90°,∠B=30°,∴∠A=180°﹣∠ACB﹣∠B=60°.∵△ACD沿CD翻折,A点恰好落在BC边上的E点处,∴△CED≌△CAD,∴∠CED=∠A=60°,∴∠EDB=∠CED﹣∠B=30°,∴cot∠EDB=cot30°=.故答案为.点评:本题考查了翻折变换(折叠问题),三角形外角的性质,特殊角的三角函数值,根据轴对称的性质证明出△CED≌△CAD是解题的关键.18.(4分)(•长宁区一模)已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f (﹣3)=12.x ﹣2 ﹣1 0 1 2 3 4 5y 5 0 ﹣3 ﹣4 ﹣3 0 5 12考点:二次函数的性质.专题:压轴题.分析:根据二次函数的对称性结合图表数据可知,x=﹣3时的函数值与x=5时的函数值相同.解答:解:由图可知,f(﹣3)=f(5)=12.故答案为:12.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,理解图表并准确获取信息是解题的关键.三、解答题:(本大题共7题,第19--22题,每题10分;第23、24题,每题12分;25题14分;满分78分)19.(10分)(•长宁区一模)计算:.考点:特殊角的三角函数值.分析:将tan45°=1,sin45°=,tan30°=分别代入即可得出答案.解答:解:原式=+﹣×==.点评:本题考查了特殊角的三角函数值的知识,属于基础题,记忆一些特殊角的三角函数值是关键.20.(10分)(•长宁区一模)如图,在正方形网格中,每一个小正方形的边长都是1,已知向量和的起点、终点都是小正方形的顶点.请完成下列问题:(1)设;.判断向量是否平行,说明理由;(2)在正方形网格中画出向量:4﹣,并写出4﹣的模.(不需写出做法,只要写出哪个向量是所求向量).考点:*平面向量.分析:(1)先将向量化简,然后根据向量平行的定义即可作出判断;(2)分别画出4及﹣,然后可得出4﹣,继而在格点三角形中可求出4﹣的模.解答:解:(1),,则,故可得向量平行.(2)所画图形如下:则.点评:本题考查了向量的知识,注意掌握向量平行的判断方法及向量摸的定义.21.(10分)(•长宁区一模)如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=3,BC=7,∠B=45°,P在BC边上,E在CD边上,∠B=∠APE.(1)求等腰梯形的高;(2)求证:△ABP∽△PCE.考点:等腰梯形的性质;全等三角形的判定与性质;相似三角形的判定.分析:(1)作AF⊥BC于F,作DG⊥BC于G,首先证明△ABF≌△DCG,得到BF=CG,再证明AFGD是平行四边形,根据平行四边形的性质求出等腰梯形的高即可;(2)利用等腰梯形的性质和相似三角形的判定方法证明:△ABP∽△PCE即可.解答:解:(1)作AF⊥BC于F,作DG⊥BC于G,∴∠AFB=∠DGC=90°且 AF∥DG,在△ABF和△DCG中,∴△ABF≌△DCG,∴BF=CG,∵AD∥BC且 AF∥DG,∴AFGD是平行四边形,∴AD=FG,∵AD=3,BC=7,∴BF=2在Rt△ABF中,∠B=45°,∴∠BAF=45°,∴AF=BF=2,∴等腰梯形的高为2;(2)∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠APC=∠APE+∠EPC=∠B+∠BAP,又∵∠B=∠APE∴∠BAP=∠EPC,在△ABP和△PCE中,∴△ABP∽△PCE.点评:本题题主要考查了等腰梯形的性质、全等三角形的判定和性质、平行四边形的判定和性质以及相似三角形的性质与判定,相似三角形的判定是初中阶段考查的重点同学们应重点掌握.22.(10分)(•长宁区一模)由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段.如图所示,已知这辆卡车的车轮外直径(包含轮胎厚度)为120cm,车轮入水部分的弧长约为其周长的,试计算该路段积水深度(假设路面水平).考点:垂径定理的应用;勾股定理.专题:探究型.分析:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,根据弧CD等于⊙O周长的,故可得出n 的值,再根据OE⊥CD 且OE=OC=OD=AB可得出OE的长,故OF是∠COD的平分线,所以∠FOD=∠COD=n,再根据∠FOD+∠ODF=90°,可得出∠ODF的度数,在Rt△OFD中由直角三角形的性质可得出OF的长,再根据FE=OE﹣OF即可得出结论.解答:解:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,∵弧CD等于⊙O周长的,即=πd,∴n=120°,∵OE⊥CD 且OE=OC=OD=AB=60cm,∴OF是∠COD的平分线,∴∠FOD=∠COD=n=60°,∵∠FOD+∠ODF=90°,∴∠ODF=30°∴在Rt△OFD中,OF=OD=30cm,∴FE=OE﹣OF=30cm,∴积水深度30cm.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.23.(12分)(•长宁区一模)如图,已知Rt△ABC中,∠ACB=90°,⊙O 是Rt△ABC的内切圆,其半径为1,E、D是切点,∠BOC=105°.求AE的长.考点:三角形的内切圆与内心.分析:首先根据切线长的性质以及切线的性质得出BD的长,进而得出BC的长以及AB的长,即可得出AE的长.解答:解:连接OD、OE.则OD=OE=1,∵O是△ABC的内切圆圆心∴OB、OC分别是∠ABC、∠ACB的角平分线,即且又∵∠ACB=90°,∴,∵OD、OE是过切点的半径,∴OD⊥BC 且OE⊥AB,∴∠OCD+∠COD=90°,∴∠COD=∠OCD=45°,∴OD=CD=1,∵∠COB=105°,∴∠DOB=∠COB﹣∠COD=60°,在Rt△OBD中,,∴,∠OBD+∠BOD=90°,∴∠OBD=30°,∵,∴∠ABC=60°,∴BC=BD+CD=1+在Rt△ABC中,AB=2+2,在Rt△OBE中,∵OE=1,∠OBE=30°,∴BE==,∴AE=2+.点评:此题主要考查了切线的性质以及锐角三角函数的应用,正确得出∠ABC的度数以及BC的长是解题关键.24.(12分)(•长宁区一模)在直角坐标平面中,已知点A(10,0)和点D(8,0).点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形.(1)求C点坐标;(2)求过O、C、B三点的抛物线解析式,并用配方法求出该抛物线的顶点坐标和对称轴;(3)判断:(2)中抛物线的顶点与⊙M的位置关系,说明理由.考点:二次函数综合题.分析:(1)作MN⊥BC于点N,连接MC,利用垂径定理求得线段MN后即可确定点C 的坐标;(2)用同样的方法确定点D的坐标后利用待定系数法确定二次函数的解析式,然后配方后即可确定抛物线的顶点坐标及对称轴;(3)根据抛物线的顶点坐标和点M的坐标确定两点之间的距离,然后根据半径与两点之间的线段的大小关系即可确定顶点与圆的位置关系.解答:解:(1)如图,作MN⊥BC于点N,连接MC,∵A(10,0)和点D(8,0).∴点M(5,0),∵点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形,∴⊙M的半径为5,BC=OD=8,∴在Rt△MNC中,MC=5,NC=BC=4,∴MN=3,∴点C的坐标为(1,3);(2)∵点C的坐标为(1,3),∴点B的坐标为(9,3),设过O、C、B三点的抛物线解析式为y=ax2+bx,∴解得:∴解析式为:y=﹣x2+x,∴y=﹣x2+x=﹣(x﹣5)2+,∴对称轴为x=5,顶点坐标为(5,);(3)∵顶点坐标为(5,),点M的坐标为(5,0),∴顶点到点M的距离为,∵>5∴抛物线的顶点在⊙M外.点评:本题考查了二次函数的综合知识,还考查了点与圆的位置关系,本题难度不大,但综合性比较强.25.(14分)(•长宁区一模)如图,已知Rt△ABC,⊥,AB=8cm,BC=6cm,点P从A 点出发,以1cm/秒的速度沿AB向B点匀速运动,点Q从A点出发,以x cm/秒的速度沿AC向C点匀速运动,且P、Q两点同时从A点出发,设运动时间为t 秒(),连接PQ.解答下列问题:(1)当P点运动到AB的中点时,若恰好PQ∥BC,求此时x的值;(2)求当x为何值时,△ABC∽△APQ;(3)当△ABC∽△APQ时,将△APQ沿PQ翻折,A点落在A′,设△A′PQ与△ABC重叠部分的面积为S,写出S关于t的函数解析式及定义域.考点:相似形综合题.分析:(1)PQ∥BC,P是AB的中点,则Q一定是AC的中点,求得AQ的长,则速度x 即可求得;(2)△ABC∽△APQ,则一定有PQ∥BC,即与(1)相同,即可求得x的值;(3)分0<t≤4和4<t<8两种情况进行讨论,当0<t≤4时重合部分就是△A′PQ;当4<t<8时,重合部分是直角梯形,根据梯形的面积公式即可求解.解答:解:(1)设AP=t AQ=xt (0≤t≤8)∵AB=8 AP=AB=4 即t=4∵Rt△ABC,∠B=90°,AB=8 cm,BC=6 cm∴AC=10 cm∵PQ∥BC∴即解得:(2)①若∠APQ=∠ABC,则BC∥PQ,此时与(1)相同,x=;若∠APQ=∠C,则=,即=,解得;x=.综上可得当x=或时,△ABC∽△APQ.(3)∵BC∥PQ,∴=,∴PQ===t,则当0<t≤4时,重叠部分的面积为S=S△A′PQ=S△APQ=AP•PQ=t•t=t2;当4<t≤8时,如图1所示,则A′P=AP=t,PQ=t,∴BP=AB﹣AP=8﹣t,则A′P=t﹣(8﹣t)=2t﹣8,∵BD∥PQ,∴=∴BD==(t﹣4),∴S=S四边形BDQP=(BD+PQ)•BP= [(t﹣4)+t]•(8﹣t)=(t﹣4)2.则函数解析式是:.点本题考查了相似三角形的判定与性质,正确分情况讨论,因求得x的值是关键.评:。
〖汇总3套试卷〗上海市长宁区2018年单科质检数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n【答案】D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.2.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.6【答案】B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.3.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43,则图中阴影部分的面积为()A .4633π-B .8933π-C .33223π-D .8633π- 【答案】D 【解析】连接BD ,BE ,BO ,EO ,先根据B 、E 是半圆弧的三等分点求出圆心角∠BOD 的度数,再利用弧长公式求出半圆的半径R ,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S △ABC ﹣S 扇形BOE ,然后分别求出面积相减即可得出答案. 【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAD =∠EBA =30°,∴BE ∥AD ,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =ADcos30°=3,∴BC =12AB =3 ∴AC 3=6,∴S △ABC =12×BC×AC =12×23=63 ∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =2604863633603ππ⨯= 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.4.30cos ︒的值是() A .22 B .33 C .12 D .32【答案】D【解析】根据特殊角三角函数值,可得答案.【详解】解:330cos ︒=, 故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)【答案】A【解析】试题分析:首先提取公因式a ,进而利用十字相乘法分解因式得出即可.解:ax 2﹣4ax ﹣12a=a (x 2﹣4x ﹣12)=a (x ﹣6)(x+2).故答案为a (x ﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.6.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-【答案】A【解析】由题意(),3A m m -,因为O 与反比例函数k y x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】函数3y x =-与k y x =的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O 与反比例函数k y x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,31m m ∴=-,12m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭ 133224k ∴=-⨯=- 故选:A .【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称.7.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定 【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD ,∴AC+BC=BC+BD ,即AC=BD ,又∵BC=2AC ,∴BC=2BD ,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.8.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.9.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-【答案】B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8【解析】证明△AEC ≌△FBA ,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF 是正方形,∴AC=FA ,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB ,又∵∠AEC=∠FBA=90°,∴△AEC ≌△FBA ,∴CE=AB=4,∴S 阴影=1·2AB CE =8, 故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB 是解题的关键.12.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.【答案】【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.13.已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是_____.【答案】71【解析】分析:由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.15.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.16.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.17.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.【答案】(﹣3,2)【解析】作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.18.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____【答案】﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题(本题包括8个小题)19.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【答案】(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.20.列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.km h【答案】15/【解析】试题分析:设骑车学生的速度为xkm/h,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为xkm/h,由题意得10101-=,23x x=.解得x15=是原方程的解.经检验x15答: 骑车学生的速度为15km/h.21.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°,故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230+=70人.点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.解方程311(1)(2)xx x x-=--+.【答案】原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.23.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.【答案】(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩ 解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.24.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:15×360°=90°;60故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.25.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.26.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1,0.21,2π ,18,0.20202中,无理数的个数为( ) A .1B .2C .3D .4 【答案】C0.21,2π ,18,0.20202中,2π,共三个. 故选C .2.点A (m ﹣4,1﹣2m )在第四象限,则m 的取值范围是 ( )A .m >12B .m >4C .m <4D .12<m <4 【答案】B 【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A (m-1,1-2m )在第四象限,∴40120m m -⎧⎨-⎩>①,<②解不等式①得,m >1,解不等式②得,m >12所以,不等式组的解集是m >1,即m 的取值范围是m >1.故选B .【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.4.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5% 【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 5.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.6.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关【答案】C 【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D .【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.8.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴b=-,x>3.x2a∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.9.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.10.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.【答案】1【解析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=k x 中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=k x的图象上, ∴k=2612⨯=,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.12.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.【答案】(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=2)5,B5所在的象限为第三象限;∴OB6=2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).14.分解因式:ax2﹣2ax+a=___________.【答案】a(x-1)1.【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax 1-1ax+a ,=a (x 1-1x+1),=a (x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.计算:21m m ++112m m ++=______. 【答案】1.【解析】利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=12112121m m m m m +++==++. 【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.16.分解因式:a 3-a=【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+17.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S 甲2、S 乙2,则S 甲2__S 乙2(填“>”、“=”、“<”)【答案】>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:3626463+++++=4, S 甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,。
最新届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ ) (A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ )(A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ;(C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )//; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ .10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC 于点E 、F ,且23=EC AE .(1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示EF .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =,联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.A;2.D;3.B;4.A;5.C;6.D.二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,与方向相反 ∴a CF 53-= (2分)同理:b EC 52=(2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分) ∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分)∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分)∴)13(8+=x (1分)∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
【数学】上海市16区2018届中考一模数学试卷分类汇编平面向量含答案
【关键字】数学上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编平面向量专题宝山区20.(本题满分10分,每小题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设,,用含、的式子表示.崇明区20.(本题满分10分,每小题各5分)如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.奉贤区20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE、BD想交于点F,过点F作FG∥BC,交边DC于点G.(1)求FG的长;(2)设,,用的线性组合表示.虹口区如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,,用向量表示向量;(2)若∠B=∠ACE,AB=6,,BC=9,求EG的长.黄浦区嘉定区金山区如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设,,求向量关于、的分解式.静安区闵行区浦东新区20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC ,且DE 经过△ABC 的重心,设.(1) ▲ (用向量表示);(2)设,在图中求作.(不要求写作法,但要指出所作图中表示结论的向量.)普陀区22.(本题满分10分)下面是一位同学做的一道作图题:已知线段、、(如图),求作线段,使.他的作法如下:1.以点为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作∥,交于点.所以:线段____________就是所求的线段.(1)试将结论补完整:线段 ▲ 就是所求的线段x .(2)这位同学作图的依据是 ▲ ;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .松江区20.(本题满分10分,每小题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF //AB ,2CF AD FA DB==. (1)设AB a =,AC b =.试用、表示AE(2)如果△ABC 的面积是9,求四边形ADEF 的面积. 徐汇区19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.(1)求AC 的长(2)若设,CA a CB b ==,试用、的线性组合表示向量CD . 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB =90°,sin B =3,点D 、E 分别在边AB 、BC (第20题图) C E F BA D上,且AD ∶DB =2∶3,DE ⊥BC .(1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .参考答案 宝山区长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE //BC ∴52==AC EC AB BD (2分) 又∵DF //AC ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴53-= (2分) 同理:b EC 52= (2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分) 崇明区20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分∴4BD DE ==∵ED BC ∥ ∴DE AD BC AB= ……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC = ………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB = ∴95BC DE = …………………………………………………………1分 又∵ED 与CB 同向 ∴95CB ED = ………………………………1分 (第20题图)∵AD a =,AE b = ∴ED a b =- ……………………………1分∴9955CB a b =- …………………………………………………………2分 奉贤区虹口区黄浦区金山区静安区闵行区20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a 、b 和p ,求作:(1)向量132a b -+. (2)向量p 分别在a 、b 方向上的分向量.20.解:(1)作图.…………………………………………………………………………(3分)结论. …………………………………………………………………………(1分)(2)作图.…………………………………………………………………………(4分)结论. …………………………………………………………………………(2分)浦东新区20.解:(1)=23a .……………………………(5分) (2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).普陀区22.解: (1)CD ; ·························································································································· (2分) (2)平行线分线段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或:三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例). ··············································································································································· (2分)(3)∵BD ∥AC ,∴AC OA BD OB=. ················································································ (1分) ∵4OA =,5AB =,∴49AC BD =. ········································································· (2分) 得94BD AC =. ········································································································· (1分) (第20题图)(第20题图)B∵94BD AC =,AC m =,DB 与AC 反向, ∴94DB m =-. ·········································································································· (2分) 青浦区松江区20.解:(1)∵EF //AB∴CF CE FA EB= 又CF AD FA DB= ∴CE AD EB DB=…………………………………………(1分) ∴DE ∥AC , ………………………………………(1分)∴四边形ADEF 是平行四边形………………………(1分)AE AF AD =+ ……………………………………(1分)∵2CF AD FA DB ==,AB a =,AC b = ∴13AF b =, 23AD a = 2133AE a b =+………………………………………(1分) (2)∵EF //AB ,2CF FA = ∴9:4:=∆∆ABC CEF S S ………………………………(1分)∵△ABC 的面积是9,∴4=∆CEF S ……………………………………………(1分)由(1)得DE ∥AC ,且2AD DB= ∴9:1:=∆∆ABC BDE S S ………………………………(1分)∴1=∆BDE S …………………………………………(1分)∴四边形ADEF 的面积=9-4-1=4……………………(1分)徐汇区19.(1)在△ABC 中,∠ACD =∠B ,∠A =∠A ,∴ ACDABC ∆. ……………………………………………………(2分) ∴AD AC AC AB=,即2AC AD AB = ∴249AC =⨯, 6.AC = ……………………………………………(2分)(2) 49CD CA AD a AB =+=+ ……………………………………………(2分) 4()9a AC CB =++4()9a ab =+-+ ………………………………(2分) 5499a b =+ ………………………………………………………(2分) 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分) ∴设AC =3a ,AB =5a . 则BC =4a .∵AD :DB =2:3,∴AD =2a ,DB =3a .∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC ,∴AC//DE. ∴DE BD AC AB =, CE AD CB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵AD :DB =2:3,∴AD :AB =2:5. ------------------------------------------------(1分) ∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2018届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.第2题图AB CDE 第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D AG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F EDABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EP D CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2018年上海市中考数学试题含参考解析
2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是( )A.4B.3C.2D.【分析】先化简,再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是( )A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29【分析】根据中位数和众数的概念解答.【解答】解:对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选:D.5.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是( )A.∠A=∠B B.∠A=∠C C.AC=BDD.AB⊥BC【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是( )A.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<7【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B 与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是 ﹣2 .【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.8.(4.00分)计算:(a+1)2﹣a2= 2a+1 .【分析】原式利用完全平方公式化简,合并即可得到结果.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+19.(4.00分)方程组的解是 , .【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【解答】解:②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为:,.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是 0.8a 元.(用含字母a的代数式表示).【分析】根据实际售价=原价×即可得.【解答】解:根据题意知售价为0.8a元,故答案为:0.8a.11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是 k<1 .【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是 0.25 .【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25,故答案为:0.25.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为 .【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而 减小 .(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为 +2 .【分析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.【解答】解:如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴==,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 540 度.【分析】利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.【解答】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是 .【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是 .【分析】先根据要求画图,设矩形的宽AF=x,则CF=x,根据勾股定理列方程可得结论.【解答】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,,解得:x=或0(舍),即它的宽的值是,故答案为:.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:20.(10.00分)先化简,再求值:(﹣)÷,其中a=.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当a=时,原式===5﹣2.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而B E⊥EP,∴EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长;(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标.【解答】解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,∴S△ACD=AC•DF=××(1﹣)=. 。
上海市16区2018届中考一模数学试卷分类汇编:计算题(Word版_含答案)
上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题宝山区19.(本题满分10分)计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)-长宁区19.(本题满分10分)计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2.崇明区19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区 虹口区19.(本题满分10分)计算:22sin 60sin 30cot 30cos30°°°°+-.黄浦区19.(本题满分10分)计算:2cot452cos 30sin60tan301︒︒+-︒︒+.嘉定区19. (本题满分10分,每小题5分) 计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒.静安区19.(本题满分10分)计算:οοοοο60sin 60tan 160cos 2130cos 45cot 3⨯-++.20.(本题满分10分)解方程组: . 闵行区 浦东新区 普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅-o o o o. 青浦区19.(本题满分10分)计算:()021--+-o .20.(本题满分10分)解方程:21421242x x x x +-=+--. 松江区 徐汇区①② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分)计算:cos45tan45sin60cot60cot452sin30︒⋅︒-︒⋅︒︒+︒参考答案宝山区长宁区19. (本题满分10分)解:原式=233)22(412--⨯(4分)=23321--(2分)=2332-+(2分)=232+(2分) 崇明区19、解:原式=32 3232-⨯+⨯-…………………………………………5分332322=+-+………………………………………………3分12232=-………………………………………………………2分虹口区黄浦区19.解:原式=233231⨯+⎝⎭+4分)=3333222+-————————————————————————(4分)=33(2分)嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan30cos2260sin30cot【解答】12331232223345tan30cos2260sin30cot+=-⋅+-=︒-︒+︒-︒金山区静安区三、解答题:19.解:原式= …………………………………(5分)=23212-+ ……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---y x y x , ……………………………………(2分)得03=--y x 或01=+-y x , ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5y x y x ⎩⎨⎧-=-=+;1,5y x y x…………………………………(2分) 解得,原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x…………………………………(4分) ∴原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x.闵行区浦东新区 普陀区19.解: 原式223()321=⨯- ····································································· (4分) 313+=·················································································· (4分) 233121212313⨯-+⨯+⨯12=. ····························································································· (2分) 青浦区19. 解:原式=1+2⨯(8分)=2-.………………………………………………………………………(2分) 20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区 徐汇区 杨浦区19.(本题满分10分)解:原式=12231122+⨯--------------------------------------------------(6分)=1222----------------------------------------------------------------(2分). --------------------------------------------------------------(2分)。
上海市长宁区2018年中考数学一模和答案解析
'.学年第一学期初三数学教学质量检测试卷2017-20182018.01分)(考试时间:100分钟满分:150分)一、选择题(本大题共6题, 每题4分, 满分24 【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B铅笔正确填涂】?3A???ABCACABC的长可以表示为(,则▲,1.在Rt =中,∠)=90°,33??cos3sin3 A)(D).;(B);(C)(;??sincos?CAEBAABCD 2.如图,在分别在边的延长线上,中,点、、ED AB2?BCDE),那么下列条件中能判断▲∥的是(A ADEC1AE2??(A);(B);ACEC2BC AC1DE2?? D)C).;((第2题图AEBC223?(x?1)y??▲2个单位后得到的新抛物线的表达式为()3.将抛物线向右平移223?))y??(x?1?1y??(x?1(A);(B);223)x?3?y1x?)?5??(y??((D.)(C );PP)▲(-2,3)为圆心,2为半径的圆与轴的位置关系是(4.已知在直角坐标平面内,以点x相离、相切、相交都有可能.相交;(D)C (A)相离;(B)相切;()e4b?e?2ae?是单位向量,且▲)已知,那么下列说法错误的是(,5...1b//a||b|??2|a?|a|2b?a?)()D);((AC).;;(B B2A AC ACBDOABCD,与相交于点.如图,在四边形中,对角线6O DBCDABDAC)∠,那么下列结论不一定正确的是(平分∠▲,且∠=.....DOC?AOD?BOCAOB??∽∽;A)(B);(DCOA?BC?CDAC?BCCD.C())=;(D 6题图第每题二、填空题(本大题共12题, 4分, 分)满分48 【在答题纸相应题号后的空格内直接填写答案】a1a?b?b、a,则满足7.若线段的值为▲.b2b8.正六边形的中心角等于▲度.;.'.2ax?2)y?(a 9.若抛物线的开口向上,则的取值范围是▲.23x?y?x?4的顶点坐标是▲.10.抛物线?????DEFABCDEFABCDEF的相似比为11.已知2:3与与,的面积为相似,且36,若?ABC 的面积等于▲.则APAP<BPAB=PAB,那么4,点的黄金分割点,且是线段12.已知线段的长为▲.31:,则该坡面的坡角为▲度..若某斜面的坡度为132ty?x?2x?nAmBnm与).已知点都在抛物线(-2,、)上,则(2,的大小关系14nm”)“<”或“是=▲.(填“>”、?GABCBAC中,∠是重心,15.如图,在Rt=90°,点A DABGDG//BCDGAG作于点,,联结交,过点?ADGAB=BC= 6,的周长等于▲.9,则若DG BC OOOO R的半径为与⊙,⊙,若⊙16.已知⊙相切,的半径为4题图第15221110OO?R的值为▲.,则且21BA 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个ABCD如图,已知梯形是等距四边形,四边形的等距点.CD10?cosA BCAB//CDB,. 若=10,点,是等距点 17题图第10CD则的长等于▲.AD?D??60ABCD中,的菱形.如图,在边长为2,18?EFBCE、FABBEF点翻折,沿着直线分别在边、将上. CB BEGBAD的长等于▲.的中点点恰好与边重合,则题图第18三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】19.(本题满分10分)cot45??cos30?.计算:2060tan??45sin4;.'.20.(本题满分10分,第(1)小题5分,第(2)小题5分)?BC ABCDABDEBCDFACDE、AC、DF分别交边中,点//在边,上,如图,在,//A3AE?FE、于点,且.2ECBF 1)求的值;(DE BC EF baBC?AC?ba EF.、2)联结,用含的式子表示,设,(BCF 20题图第分)2)小题5521.(本题满分10分,第(1)小题分,第(DAB BCAC?DCOCOAB,上,联结于点并延长交弦如图,点,在⊙O5?20AC CDOBAC,若,=40联结.、AB的长;(1)求弦C ABO?sin)求的值.(2 21题图第.(本题满分10分)22DCDAB如图,一栋居民楼,的高为16米,远处有一栋商务楼°60DA小明在居民楼的楼底处的仰角为处测得商务楼顶,又在商°45CA、DB.其中务楼的楼顶处的俯角为处测得居民楼的楼顶CB、DA、两点的正下方,且两点分别位于两点在同一水平线上,BCD求商务楼的高度.4141.2?7331.?米.,结果精确到) (0.1参考数据CA题22)小题6分))小题23.(本题满分12分,第(16分,第(F?∠ADB=∠CDEADABCDBC,上,联结中,点,在边如图,E2DFDE??AD FBAEDEDEAC交,且交边延长线于点于点.,CAD?BFD?(1)求证:;BD ADBF?DE??AB()求证:.2题图第23分)分,每小题24.(本题满分1241122x??bx?y??y?xc xCyA轴、分别与在直角坐标平面内,直线轴交于点、抛物线.22BDCxACA的上方.轴的另一个交点为点在该抛物线上,且位于直线. 经过点与点点,且与(1)求上述抛物线的表达式;??ABCABEEBDBC、BDAC的面积之比为4:5)联结(2,,且交于点,如果的面积与DBA的余切值;求∠;.'.??DFDDFACCDAOCCFD作的坐标.⊥,垂足为点相似,求点3)过点,联结与. 若(第24题图备用图)小题5分)2)小题6分,第(3325.(本题满分14分,第(1)小题分,第(DBADABCDABPBDP,中,=2,、=4. 不与点是对角线重合)已知在矩形上的一个动点(点EPEBAPBFFPPFBDBCAPFPE. 交,画∠于点⊥,交射线=∠于点. 联结,过点作yEFPD=x =设., ABFFAP在一条直线上时,求(1)当点、的面积;、xBCyF上时,求在边关于的函数解析式,并写出函数定义域;2 ()如图1,当点PDPCFPCBPE)联结(3,请直接写出,若∠=∠的长.DADA DA PBFEC B备用图1备用图图25题图第;.'.答案和评分建议学长宁区2017-2018学年第一学期初三数参考2018.1(本大题共6题,每题4分,满分24分)一、选择题:D.;6.B1.A;2.D;3.;4.A;5.C 分)12题,满分48(本大题共二.填空题:30a1656?260),?1(2>.;.2;10.11.12;8;.7;;9.27016630?..;17.;16;15.10;.18或13.1414;.5分,、1920、21、22题每题10分,第23、24题每题12分,第2514题三、(本大题共7题,第分)满分7831?) 解:原式分(4=19. (本题满分10分)2223?4?()231? (2 =分) 232?3?32?=) (2分23?2) = (2分2分))小题20.(本题满分10分,第(1)小题5分,第(252ECAE3??)∵∴(1分)1(解:52ACEC2BDEC??(2∵DE//BC∴分)5ABAC2BFBD??又∵DF//A分)(2∴5ABBC3BF2FC??)∵(2∴5BC5BC3BCCF aBC?aCF??与方向相反(,2∴分)∵52b?EC 2同理:分)(523??EF?b?aCFEF??EC(1∴分)又∵5521.(本题满分10分,第(1)小题5分,第(2)小题5分)AC?BC过圆心O,1解:()∵CD DABAB=AD=BD(2C∴⊥,22分);.'.0520AC?90ADC=CD,∵又∵∠=402220AD?AC??CD 2∴分)(AD=AB=∴12分)40(rODrO =40-分)()设圆的半径为1,则(22202OB?90?BDOD ODB=ADBD∴= ∵=20, ∠222r?(40?r)?20分)(∴1ODr =25,分)=15 (∴2315OD???sin?ABO∴分)(1525OB分)(本题满分1022.045∠DBE=BECDE,B⊥,作与点由题意可知解:过点060CE=AB=,∠DAC=分)(216x?3CD BE=AC=xAC=x则1,分)设(,??CEDE?CD3x?16∵分)(10016??3xx45?DBE??BED?90,BE=DE分)(∴2∵∴16?x(1∴分)1?3)18(3?x?(∴1分)937.?83?CD?3x?241∴分)(CD分)(1答:商务楼米。
中考数学试题-2018.4初三数学答案(长宁) 最新
2018初三数学教学质量检测卷评分建议一、选择题(本大题共6题,每题4分,满分24分.)1.D2.C3.A4.B5.C6.D二、填空题(本大题共12题,每题4分,满分48分.填对得4分,填错或不填、多填均得0分) 7. 2 8.1 9.x5 10. 1 11. b a - 12. 3±≠x 13. 2321+=x y14. △OAF ,△OED 15.0120-22=+x x (或()12112=+x ,()12111=+++x x x )16.31 17.()b a +43(或b a 4343+) 18. 30三、解答题:(本大题共7题,满分78分)19.(本题10分)解:︒︒-︒+︒60sin 30sin 260sin 30sin 22=()260sin 30sin ︒-︒ ………4分=22321⎪⎪⎭⎫⎝⎛-=2321- ……………… 4分 =213-(或2123-) …… 2分 20.(本题10分)解:整理(1)\(2)得⎪⎩⎪⎨⎧+>+->335211x x x (2)()()⎪⎩⎪⎨⎧->-+-+>22212121x x⎩⎨⎧<+->22)21(x x …………… 2分⎩⎨⎧<-->121x x …… …….2分∴ 121<<--x …… ……..1分 ∴不等式组的整数解为-2,-1,0 …….. 3分21.(本题10分)(1)80;……………..2分(2)0.18 ;………...2分(3)84;…………..3分(4)不合理,初三年级学生的随机样本不能代表该校全体学生。
……3分22.(本题10分)证明:如图,过点P作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N。
.….2分则垂线段PQ、PM、PN即为P点到三边AB、BC、CA所在直线的距离。
……2分∵P是∠ABC的平分线BD上的一点∴PM=PQ……………………………………2分∵P是∠ACM的平分线CE上的一点∴PM=PN……………………………………2分∴PQ=PM=PN∴P点到三边AB、BC、CA所在直线的距离相等。
2018年上海长宁区初三一模数学试卷答案
jia
os
hi
∣ ⃗ ∣ ∣ b = −2 ∣ ∣a ⃗ ∣ ∣ ∣
/1
a ⃗ = −
2/
学生版 答案
A 教师版
答案版
04
编辑
).
⃗ b
= ∠DBC
,那么下列结论不一定正确
A. C.
△AOD ∽ △BOC
B. D.
△AOB ∽ △DOC
C D = BC
BC ⋅ C D = AC ⋅ OA
答案 解析
= 3
,
18 /1
,
答案
2/ 0
4
.
答案 解析
6
或14
如下两图易得10 − 4 = 6 或10 + 4 = 14 .
17. 如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等 距点,如图,已知梯形ABC D是等距四边形.AB//C D,点B是等距点,若BC 于 .
D
A
.∵∠AOD = ∠BOC ,且∠DAC
= ∠DBC
,
∴△AOD ∽ △BOC ,
B
.由A得
OA OD
=
OB OC
,
又∵∠AOB = ∠DOC ,以△AOB∽△DOC ,
C
.由B得∠OAB = ∠ODC ,
= ∠DBC
又∵AC 平分∠DAB,∠DAC
,
∴∠OAB = ∠OAD = ∠OBC , 故∠C DO = ∠C BO ,以C D = BC ,
= 10
,cos A =
− − √ 10 10
.则C D的长等
/0
4
os
解析
[试卷合集3套]上海市长宁区2018届中考数学一月一模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x =-【答案】B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x =,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x =-,每个象限内,y 随着x 的增大而增大,故此选项错误;故选B .考点:反比例函数的性质;正比例函数的性质.2.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A 、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 5.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<4【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.若23,则a的值可以是()A.﹣7 B.163C.132D.12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a <3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.9.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.5【答案】D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.二、填空题(本题包括8个小题)11.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.【答案】(6,1)或(﹣6,1)【解析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.当y=1时,12x1-1=1,解得x=±6当y=-1时,12x1-1=-1,方程无解故P点的坐标为(62,)或(-62,)【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.12.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.【答案】4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,222253 4.BC DB CD =-=-=故答案为:4cm.13.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.【答案】2【解析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、P .∵六边形ABCDEF 的六个角都是110°,∴六边形ABCDEF 的每一个外角的度数都是60°.∴△AHF 、△BGC 、△DPE 、△GHP 都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.14.计算tan 260°﹣2sin30°2cos45°的结果为_____.【答案】1【解析】分别算三角函数,再化简即可.【详解】解:原式=23()-2×1222 =1.【点睛】本题考查掌握简单三角函数值,较基础.15.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.【答案】1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 18.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.三、解答题(本题包括8个小题)19.解方程:112 22xx x-=---【答案】无解【解析】解:去分母:方程两边同时乘以x-2,得1-x=-1-2(x-2)1-x="-1-2x+4X="2检验:当x=2时,x-2=0,所以x=2不是原方程的解.∴原方程无解.【详解】请在此输入详解!20.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.【答案】8.2 km【解析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.21.如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.【答案】(1)证明见解析;(2)610 5【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,22AD222=+=∴2222DF OF OD125=++=,∵BD BD=,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴DF BF AD BE =,即53BE22=, ∴6BE 105=. 【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.22.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y 与x 的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y 与x 的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20, 因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.23.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.【答案】300米【解析】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.24.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -.故答案为()12n n -.(3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.25.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元. ①若设购进甲种羽毛球m 筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W (元)与甲种羽毛球进货量m (筒)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】(1)设甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m 筒,则乙种羽毛球为(200﹣m )筒,由条件可得到关于m 的不等式组,则可求得m 的取值范围,且m 为整数,则可求得m 的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.26.全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【答案】(1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件【答案】C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误.故选C .【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.2.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3.已知抛物线y=ax 2+bx+c 与反比例函数y=b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( ) A . B . C .D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0. 4.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.5.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
【数学】长宁区2018年一模试卷及答案
(考试时间:100 分钟 满分:150 分)2018.01
一、选择题(本大题共 6 题, 每题 4 分, 满分 24 分) 【每小题只有一个正确选项, 在答题纸相应题号的选项上用 2B 铅笔正确填涂】 1.在 Rt ∆ ABC 中,∠C=90°, ∠A = α ,AC= 3 ,则 AB 的长可以表示为( ▲ ) (A)
联结 AC、OB,若 CD=40, AC = 20 5 . (1)求弦 AB 的长; (2)求 sin ∠ABO 的值.
O
C
第 21 题图
咨询电话:4000-121-121
3
22. (本题满分 10 分) D 如图,一栋居民楼 AB 的高为 16 米,远处有一栋商务楼 CD, ,又在商 小明在居民楼的楼底 A 处测得商务楼顶 D 处的仰角为 60° 务楼的楼顶 D 处测得居民楼的楼顶 B 处的俯角为 45° .其中 A、C 两点分别位于 B、D 两点的正下方,且 A、C 两点在同一水平线上, 求商务楼 CD 的高度. (参考数据: 2 ≈ 1.414 , 3 ≈ 1.732 .结果精确到 0.1 米) A C 第 22 题图 B
2
▲
.
▲
.
11.已知 ∆ ABC 与 ∆ DEF 相似,且 ∆ ABC 与 ∆ DEF 的相似比为 2:3,若 ∆ DEF 的面积为 36,则 ∆ ABC 的面积等于 ▲ . ▲ .
12.已知线段 AB=4,点 P 是线段 AB 的黄金分割点,且 AP<BP,那么 AP 的长为 13.若某斜面的坡度为 1 : 3 ,则该坡面的坡角为 ▲ 度.
4.已知在直角坐标平面内, 以点 P(-2,3)为圆心, 2 为半径的圆 P 与 x 轴的位置关系是 ( ▲ ) (A) 相离; (B) 相切; (C) 相交; (D) 相离、相切、相交都有可能.
2018年上海市长宁区初三数学一模试卷
2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.第2题图AB CDE 第6题图O ABD二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .第18题图A B CDBCDA 第17题图第15题图D AG三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅.F EA第23题图第20题图AD E 第21题图24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DA DCBAF EP D CB A 第25题图长宁区2017学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2018年上海长宁区初三一模数学试卷
2018年上海长宁区初三一模数学试卷选择题(本大题共6题.每题4分.满分24分).1.A. B.C. D.在中,,,,则的长可以表示为( ).Rt △ABC ∠C =90∘∠A =αAC =3AB 3cos α3sin α3sin α3cos α2.A. B.C. D.如图.在中,点、分别在边、的延长线上,.那么下列条件中能判断的是( ).△ABC D E BA CA =2ABAD DE//BC=AE EC 12=2ECAC =DE BC 12=2ACAE 3.A. B.C. D.将抛物线向右平移个单位后得到的新抛物线的表达式为( ).y =−+3(x +1)22y =−+1(x +1)2y =−+3(x −1)2y =−+5(x +1)2y =−+3(x +3)24.A.相离 B.相切C.相交D.相离、相切、相交都有可能已知在直角坐标平面内,以点为圆心,为半径的圆与轴的位置关系是( ).P (−2,3)2P x 5.A. B.C. D.已知是单位向量,且..那么下列说法错误的是( ).e =−2a e =4b e//a b =2∣a ∣=−2∣∣b ∣∣∣a ∣=−a 12b填空题(本大题共12题.每题4分.满分48分).6.A. B.C. D.如图,在四边形中.对角线与相交于点,平分,且,那么下列结论不一定正确的是( ).ABCD AC BD O AC ∠DAB ∠DAC =∠DBC △AOD ∽△BOC△AOB ∽△DOC CD =BC BC ⋅CD =AC ⋅OA7.若线段、满足,的值为 .a b =a b 12a +b b8.正六边形的中心角等于 度.9.若抛物线的开口向上,的取值范围是 .y =(a −2)x 2a 10.抛物线的顶点坐标是 .y =−4x +3x 211.已知与相似,与的相似比为,的面积为.则的面积等于 .△ABC △DEF △ABC △DEF 2:3△DEF 36△ABC 12.已知线段,点是线段的黄金分割点,且,那么的长为 .AB =4P AB AP <BP AP 13.若某斜面的坡度为,则该坡面的坡角为 度.1:3√14.已知点、都在抛物线上,则与的大小关系是 .(填“”、“”或“”)A (−2,m )B (2,n )y =+2x −t x 2m n m n ><=15.如图,在中,.点是重心.联结,过点作,交于点.若,,则的周长等于 .Rt △ABC ∠BAC =90∘G AG G DG //BC DG AB D AB =6BC =9△ADG解答题(本大题共7题.满分78分).16.已知⊙的半径为.⊙的半径为,若⊙与⊙相切,且,则的值为 .O 14O 2R O 1O 2=10O 1O 2R 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点,如图,已知梯形是等距四边形.,点是等距点,若,.则的长等于 .ABCD AB //CD B BC =10cos A =10−−√10CD 18.如图.在边长为的菱形中,,点、分别在边、上,将沿着直线翻折.点恰好与边的中点重合.则的长等于 .2ABCD ∠D =60∘E F AB BC △BEF EF B AD G BE 19.计算:.−cos 30cot 45∘445−tan 60sin 2∘∘∘20.如图.在中,点在边上,,,、分别交边、于点、,且.△ABC D AB DE //BC DF //AC DE DF AC BC E F =AE EC 32(1)求的值.(2)联结,设.,用含、的式子表示.BF BC EF =BC −→−a =AC −→−b a b EF −→−21.(1)求弦的长.(2)求的值.如图,点在⊙上,联结并延长交弦于点,,联结、,若,.C O CO AB D =AC ⌢BC ⌢AC OB CD =40AC =205√AB sin ∠ABO 22.如图.一栋居民楼的高为米,远处有一栋商务楼,小明在居民楼的楼底处测得商务楼顶处的仰角为,又在商务楼的楼顶处测得居民楼的楼顶处的俯角为,其中、两点分别位于、两点的正下方,且、两点在同一水平线上,求商务楼的高度.(参考数据:..结果精确到米)AB 16CD A D 60∘D B 45∘A C B D A C CD ≈1.4142√=1.7323√0.123.如图,在中,点在边上,联结,,交边于点,交延长线于点,且.△ABC D BC AD ∠ADB =∠CDE DE AC E DE BA F A =DE ⋅DF D 2(1)求证:.(2)求证:.△BFD∽△CADBF⋅DE=AB⋅AD24.(1)求上述抛物线的表达式.(2)连结、,且交于点,如果的面积与的面积之比为.求的余切值.(3)过点作,垂足为点,连结,若与相似,求点的坐标.在直角坐标平面内,直线分别与轴、轴交于点、,抛物线经过点与点,且与轴的另一个交点为点,点在该抛物线上,且位于直线的上方.y=x+212x y A C y=−+bx+c12x2A C xB D ACBC BD BD AC E△ABE△ABC4:5∠DBAD DF⊥AC F CD△CFD△AOC D25.(1)当点、、在一条直线上时,求的面积.(2)如图.当点在边上时,求关于的函数解析式,并写出函数定义域.已知在矩形中,.,是对角线上的一个动点(点不与点、重合).过点作,交射线于点,联结,画,交于点,设,.ABCD AB=2AD=4P BD P B D P P F⊥BD BC F AP∠FP E=∠BAP P E BF E P D=x EF=yA P F△ABF1F BC y x(3)连结.若,请直接写出的长.P C∠FP C=∠BP E P D。
2018年上海市长宁区中考数学一模试卷(解析版)
2018年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为()A.B.C.3sinαD.3cosα2.(4分)如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A.B.C.D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+34.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P 与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误的是()A.B.||=2 C.||=﹣2|| D.=﹣6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)若线段a、b满足,则的值为.8.(4分)正六边形的中心角等于度.9.(4分)若抛物线y=(a﹣2)x2的开口向上,则a的取值范围是.10.(4分)抛物线y=x2﹣4x+3的顶点坐标为.11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF 的面积为36,则△ABC的面积等于.12.(4分)已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP 的长为.13.(4分)若某斜面的坡度为1:,则该坡面的坡角为度.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m n.(填“>”、“<”或“=”)15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG的周长等于.16.(4分)已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为.17.(4分)如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于.18.(4分)如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:﹣cos30°.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设=,=,用含、的式子表示.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.22.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 的坐标.25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.2018年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为()A.B.C.3sinαD.3cosα【解答】解:∵Rt△ABC中,∠C=90°,∠A=α,AC=3,∴coaα=,∴AB==.故选:A.2.(4分)如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A.B.C.D.【解答】解:∵当=时,DE∥BC,∴选项D正确,故选:D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+3【解答】解:∵将抛物线y=﹣(x+1)2+3向右平移2个单位,∴新抛物线的表达式为y=﹣(x+1﹣2)2+3=﹣(x﹣1)2+3,故选:B.4.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P 与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【解答】解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故选:A.5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误的是()A.B.||=2 C.||=﹣2|| D.=﹣【解答】解:∵=﹣2,=4,∴∥,||=2,=﹣,∴A、B、D正确,故选:C.6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA【解答】解:A、∵∠DAC=∠DBC,∠AOD=∠BOC,∴△AOD∽△BOC,故此选项正确,不合题意;B、∵△AOD∽△BOC,∴=,∴=,又∵∠AOB=∠COD,∴△AOB∽△DOC,故此选项正确,不合题意;C、∵△AOB∽△DOC,∴∠BAO=∠ODC,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠BDC,∵∠DAC=∠DBC,∴∠CDB=∠CBD,∴CD=BC,故此选项正确,不合题意;D、无法得出BC•CD=AC•OA,故此选项错误,符合题意.故选:D.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)若线段a、b满足,则的值为.【解答】解:因为,所以,故答案为:;8.(4分)正六边形的中心角等于60度.【解答】解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.9.(4分)若抛物线y=(a﹣2)x2的开口向上,则a的取值范围是a>2.【解答】解:∵抛物线y=(a﹣2)x2的开口向上,∴a﹣2>0,解得a>2.故答案为:a>2;10.(4分)抛物线y=x2﹣4x+3的顶点坐标为(2,﹣1).【解答】解:∵﹣=﹣=2,==﹣1,∴顶点坐标是(2,﹣1).11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF 的面积为36,则△ABC的面积等于16.【解答】解:∵△ABC~△DEF,相似比为2:3,∴△ABC的面积与△DEF的面积比为:4:9,∵△DEF的面积为36∴△ABC的面积为16,故答案为16.12.(4分)已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP 的长为6﹣2.【解答】解:由于P为线段AB=4的黄金分割点,且AP<BP,则BP=×4=(2 ﹣2)cm.∴AP=4﹣BP=6﹣2故答案为:(6﹣2)cm.13.(4分)若某斜面的坡度为1:,则该坡面的坡角为30度.【解答】解:∵某斜面的坡度为1:,∴tanα==,∴α=30°.故答案为:30.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m<n.(填“>”、“<”或“=”)【解答】解:∵y=x2+2x﹣t=(x+1)2﹣t﹣1,∴a=1>0,有最小值为﹣t﹣1,∴抛物线开口向上,∵抛物线y=x2+2x﹣t对称轴为直线x=﹣1,∵﹣2<0<2,∴m<n.故答案为:<15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG的周长等于10.【解答】解:延长AG交BC于H.∵G是重心,∴AG:AH=2:3,∵DG∥BH,∴===,∴==,∴AD=4,DG=3,∵∠BAC=90°,AH是斜边中线,∴AH=BC=4.5,∴AG=AH=3,∴△ADG的周长=4+3+3=10.故答案为10;16.(4分)已知⊙O1的半径为4,⊙O2的半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R的值为6或14cm.【解答】解:当⊙O1和⊙O2内切时,⊙O2的半径为10+4=14cm;当⊙O1和⊙O2外切时,⊙O2的半径为10﹣4=6cm;故答案为:6或14cm.17.(4分)如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于16.【解答】解:如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.∵AB∥CD,易知四边形BEDF是矩形,∴DE=BF,∵点B是等距点,∴BA=BD=BC=10,在Rt△ABM中,cosA==,∴AM=DM=,BM=3,∵•AD•BM=•AB•DE,∴DE=BF=6,∵BD=BC,BF⊥CD,∴DF=CF==8,∴CD=2DF=16.故故答案为16.18.(4分)如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于.【解答】解:如图,作GH⊥BA交BA的延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,'∵AG=GD=1,∴AH=AG=,HG=,在Rt△BHG中,BG==,∵△BEO∽△BGH,∴=,∴=,∴BE=,故答案为.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:﹣cos30°.【解答】解:原式=﹣=﹣=2+﹣=2+.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设=,=,用含、的式子表示.【解答】解:(1)∵=,∴=,∵DE∥BC,∴==,又∵DF∥AC,∴==;(2)∵=,∴=,∵=,与方向相反,∴=﹣,同理:=,又∵=+=﹣.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.【解答】解:(1)∵CD过圆心O,=,∴CD⊥AB,AB=2AD=2BD,∵CD=40,AC=20,∠ADC=90°,∴AD==20,∴AB=2AD=40;(2)设圆O的半径为r,则OD=40﹣r,∵BD=AD=20,∠ODB=90°,∴BD2+OD2=OB2,即202+(40﹣r)2=r2,解得,r=25,OD=15,∴sin∠ABO==.22.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)【解答】解:过点B作BE⊥CD与点E,由题意可知∠DBE=45°,∠DAC=60°,CE=AB=16,设AC=x,则CD=x,BE=AC=x,∵DE=CD﹣CE=x﹣16,∵∠BED=90°,∠DBE=45°,∴BE=DE,∴x=x﹣16,∴x=8+8,CD=x=24+8≈37.9(米),答:商务楼CD的高度为37.9米.23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 的坐标.【解答】解:(1)当y=0时,x+2=0,解得x=﹣4,则A(﹣4,0);当x=0时,y=x+2=2,则C(0,2),把A(﹣4,0),C(0,2)代入y=﹣+bx+c得,解得,∴抛物线的解析式为y=﹣﹣x+2;(2)过点E作EH⊥AB于点H,如图1,当y=0时,﹣﹣x+2=0,解得x1=﹣4,x2=1,则B(1,0)设E(x,x+2),∵S=•(1+4)•2=5,△ABC而△ABE的面积与△ABC的面积之比为4:5,=4,∴S△AEB∴•(1+4)•(x+2)=4,解得x=﹣,∴E(﹣,),∴BH=1+=,在Rt△BHE中,cot∠EBH===,即∠DBA的余切值为;(3)∠AOC=∠DFC=90°,若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m+4=,解得m=﹣,∴Q(﹣,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴=,即===,设DG=4t,CG=3t,则D(﹣4t,3t+2),把D(﹣4t,3t+2)代入y=﹣﹣x+2得﹣8t2+6t+2=3t+2,整理得8t2﹣3t=0,解得t1=0(舍去),t2=,∴D(﹣,);当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,∴点D的纵坐标为2,把y=2代入y=﹣﹣x+2得﹣﹣x+2=2,解得x1=﹣3,x2=0(舍去),∴D(﹣3,2),综上所述,点D的坐标为(﹣,)或(﹣3,2).25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.【解答】解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=90°,∴∠ABD+∠ADB=90°,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=90°,∴∠ABD+∠BAF=90°,∴∠ADB=∠BAF,∵tan∠ADB===,∴tan∠BAF==,∴BF=1,∴S=•AB•BF=×2×1=1.△ABF(2)如图1中,∵PF⊥BP,∴∠BPF=90°,∴∠PFB+∠PBF=90°,∵∠ABF=90°,∴∠PBF+∠ABP=90°,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴=,∵AD∥BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=,即=,∵BP=2﹣x,∴PF=(2﹣x),∴=,∴y=(≤x<2).(3)①当点F在线段BC上时,如图1﹣1中,∵∠FPB=∠BCD=90°,∴∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,∵∠4=∠5,∠4+∠7=90°,∠5+∠6=90°,∴∠6=∠7,∴△PEF∽△PCD,∴=,∴=,整理得:x2﹣2x+4=0,解得x=±1.②如图2中,当点F在线段BC的延长线上时,作PH⊥AD于H,连接DF.由△APH∽△DFC,可得=,∴=,解得x=或(舍弃),综上所述,PD的长为±1或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ )(A ) 21=EC AE ; (B ) 2=ACEC;(C ) 21=BC DE ; (D )2=AEAC .3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4.已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A )相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //;(B )2||=a ;(C )||2||a b -=;(D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆;(B )AOB ∆∽DOC ∆; (C )CD =BC ;(D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为▲. 8.正六边形的中心角等于▲度.第2题图 A BCDE第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是▲. 10.抛物线342+-=x x y 的顶点坐标是▲.11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于▲.12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为▲. 13.若某斜面的坡度为3:1,则该坡面的坡角为▲度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于▲.16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为▲.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于▲.18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于▲.三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D ABG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE .(1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F E DABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EPD CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23;8.060;9.a >2;10.)1,2(-;11.16;12.526-; 13.030;14.<;15.10;16.6或14;17.16;18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯(4分) =23321--(2分) =2332-+(2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分)又∵DF//A ∴52==AB BD BC BF (2分)(2)∵52=BC BF ∴53=BC FC∵=,与方向相反 ∴a CF 53-=(2分) 同理:b EC 52=(2分) 又∵→+=CF EC EF ∴→-=a 5352(1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O,AC BC = ∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40(1分)(2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090∴222OB OD BD =+ ∴222)40(20r r =-+(1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分)∵163-=-=x CE CD DE (1分)∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
(1分) 23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵DF DE AD ⋅=2∴ADDFDE AD =∵EDA ADF ∠=∠∴ADF ∆∽EDA ∆(2分)∴DAE F ∠=∠(1分)又∵∠ADB=∠CDE ∴∠ADB+∠ADF =∠CDE+∠ADF即∠BDF =∠CDA (2分) ∴BFD ∆∽CAD ∆(1分)(2)∵BFD ∆∽CAD ∆∴ADDFAC BF =(2分) ∵AD DF DE AD =∴DEAD AC BF =(1分) ∵BFD ∆∽CAD ∆∴C B ∠=∠∴AC AB =(1分) ∴DEAD AB BF =∴AD AB DE BF ⋅=⋅. (2分) 24.(本题满分12分,每小题4分) 解:(1)由已知得A (-4,0),C (0,2)(1分) 把A 、C 两点的坐标代入c bx x y ++-=221得 ⎩⎨⎧=-=0482b C (1分) ∴⎪⎩⎪⎨⎧=-=223c b (1分) ∴223212+--=x x y (1分)(2)过点E 作EH ⊥AB 于点H 由上可知B (1,0)∵ABC ABE S S ∆∆=54∴OC AB EH AB ∙⨯=∙215421∴5854==OC EH (2分) ∴)58,54(-E ∴59154=+=HB (1分)∵090=∠EHB ∴895859cot ===∠EH HB DBA (1分)(3)∵DF ⊥AC ∴090=∠=∠AOC DFC①若CAO DCF ∠=∠,则CD//AO ∴点D 的纵坐标为2把y=2代入223212+--=x x y 得x=-3或x=0(舍去) ∴D (-3,2)(2分)②若ACO DCF ∠=∠时,过点D 作DG ⊥y 轴于点G ,过点C 作CQ ⊥DG 交x 轴于点Q∵090=∠=∠AOC DCQ ∴090=∠+∠=∠+∠CAO ACO ACQ DCF ∴CAO ACQ ∠=∠∴CQ AQ =设Q (m ,0),则442+=+m m ∴23-=m ∴)0,23(-Q易证:COQ ∆∽DCG ∆∴34232QO CO GC DG ===设D(-4t,3t+2)代入223212+--=x x y 得t=0(舍去)或者83=t∴)825,23(-D (2分)25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分) 解:(1)∵矩形ABCD ∴090=∠=∠ABF BAD∴090=∠+∠ADB ABD ∵A 、P 、F 在一条直线上,且PF ⊥BD ∴090=∠BPA ∴090=∠+∠BAF ABD ∴BAF ADB ∠=∠ ∵2142tan ===∠AD AB ADB ∴21tan ==∠AB BF BAF ∴1=BF (2分) ∴1122121=⨯⨯=∙=∆BF AB S ABF(1分) (2)∵PF ⊥BP ∴090=∠BPF∴090=∠+∠PBF PFB ∵090=∠ABF ∴090=∠+∠ABP PBF ∴PFB ABP ∠=∠又∵∠BAP =∠FPE∴BAP ∆∽FPE ∆∴EFBPPF AB =(2分) ∵AD//BC ∴PBF ADB ∠=∠∴21tan tan =∠=∠ADB PBF 即21=BP PF∵x BP -=52∴)52(21x PF -=(2分)∴y xx-=-522522 ∴)52552(4)52(2<≤-=x x y (1分+1分) (3)15±(3分) 或514557-(2分)。