工程流体力学教学课件ppt作者闻建龙工程流体力学习题答案(部分)
《工程流体力学》PPT课件
本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。
工程流体力学教学作者闻建龙工程流体力学习题+答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质就是按什么原则分为固体与液体两大类的?解:从物质受力与运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管就是液体还就是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的就是什么?在解决流动问题时,应用连续介质模型的条件就是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体瞧成就是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设就是流体力学中第一个根本性假设,将真实流体瞧成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可瞧成时间与空间位置的连续函数,使我们有可能用数学分析来讨论与解决流体力学问题。
在一些特定情况下,连续介质假设就是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水与C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ N A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律就是直线。
工程流体力学课后习题答案
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=t t dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp VV ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=tV V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
工程流体力学课后习题答案解析(第二版)
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学(闻建龙)课后答案(部分)
x
D
B
G
h3
yD
L
L T L cos F ( yD y0 ) G cos 2
(2)下游有水时的启门力
y
T L cos F ( yD y0 ) G
L cos F2 ( yD 2 y0 ) 2
L T L cos F ( yD y0 ) G cos 2 2 4 4 3 L h2 / sin 2 / sin 60 = = =2.3094 3 3/2 3 hc (h1 h2 / 2)=(1 2 / 2) 2
解:根据题意,雷诺数为
Re f (v , L, , )
选择 L、v、 作为基本单位,于是
π
Re ,π1 a1 1 1 La v L v
3 0 0, 0, 0 a 1 3 ( L(LT ) ML ) 1 0 1 1, 1 1, 1 1 0 1 1 3 1 1 1 La(LT1 1 ML3 1 ML1T 1 1 )( ) 1 Re f 1 Lv 1
解 该问题是一等直径长管输送问题,因此伯努利方程为
2 2 pA A v A pB B vB zA zB hf g 2g g 2g
由题意
z A zB,v A vB = v,取 A B
pA pB L v2 hf g d 2g
假设流动属于水力光滑区
2 v2 vm p 或 g m lm g p l p
2 2 1 vm v p 则 ,即kv kl2 lm l p
工程流体力学课后习题答案(第二版)【范本模板】
第一章 绪论1-1.20℃的水2。
5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力. [解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过.已知导线直径0.9mm,长度20mm,涂料的粘度μ=0.02Pa.s。
工程流体力学教学课件pt作者闻建龙工程流体力学习题答案部分
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ 油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
流体动力学基础(工程流体力学).ppt课件
dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程
(完整版)工程流体力学课后习题(第二版)答案.doc
h 12 h 6 2 1 0.1 12h 6 得h4 m 3 2-11.有一盛水的开口容器以的加速度 3.6m/s 2沿与水平面成 30o 夹角的斜面向上运动, 试求容器中水面的倾角。 [ 解 ] 由液体平衡微分方程 dp ( f x dx f y dy f z dz) f x a cos300 , f y 0 , f z ( g asin 300 ) 在液面上为大气压, dp a cos300 dx ( g a sin 300 )dz 0 dz a cos300 0.269 tan g a sin 300 dx 150 2-12.如图所示盛水 U 形管,静止时,两支管水面距离管口均为 h ,当 U 形管绕 OZ 轴以等角速度ω旋转 时, 求保持液体不溢出管口的最大角速度ωmax 。 [ 解 ] 由液体质量守恒知, 管液体上升高度与 管液体下降高度应相等,且两者液面同在一等压面上, 满足等压面方程: 2r 2 C z z I II
=45 °,闸门挡水深 h=3m ,试求水对闸门的作用力及 方向 [ 解 ] 水平分力: F px gh c A x hhb 1000 3.0 g 9.81 3 44.145kN 2 2 压力体体积: V [ h( h h) 1 h 2 ] 8 ( h ) 2 sin 45 2 sin 45 [ 3(3 3) 1 32 ] ( 3 )2 sin 45 2 8 sin 45 1.1629m 3 铅垂分力: F pz gV 1000 9.81 1.1629 11.41kN 合力: Fp F px 2 F pz 2 44.1452 11.412 45.595kN 方向: arctan
2g h 液体不溢出,要求 z I z II 2h , 以 r 1 a, r 2 b 分别代入等压面方程得: a b a>b gh 2 a2 b2 max 2 gh b2 a2 2-13.如图, 600 ,上部油深 h 1= 1.0m ,下部水深 h 2 = 2.0m ,油的重度 =8.0kN/m 3,求:平板 ab 单位 宽度上的流体静压力及其作用点。 [ 解 ] 合力 Pb 1 h11h22油 h 1 sin 600 2 水 h 2 sin 600 = 46.2kN +油h1h20 sin 60 作用点: 1
工程流体力学教学课件ppt作者工程流体力学习题答案
解:
,,=83.3
求:
,
2-11 绕轴转动的自动开启式水闸,当水位超过时,闸门自动开启。若闸门另一侧的水位,角,试求铰链的位置。
题2-21图
解: (取)
第三章 流体运动学基础
3-1 已知不可压缩流体平面流动的流速场为,,试求在时刻时点处流体质点的加速度。
解:
将代入得:,
3-2 用xx观点写出下列各情况下密度变化率的数学表达式:
基本比例尺之间的换算关系需满足相应的相似准则(如Fr,Re,Eu相似准则)。线性比例尺可任意选择,视经济条件、场地等条件而定。
4-2 何为决定性相似准数?如何选定决定性相似准数?
解:若决定流动的作用力是粘性力、重力、压力,则只要满足粘性力、重力相似准则,压力相似准则数自动满足。
所以,根据受力情况,分别确定这一相似相似流动的相似准则数。
1)假定截面1、2和3上的速度是均匀分布的,在三个截面处圆管的直径分别为、、,求三个截面上的速度。2)当,,,时计算速度值。3)若截面1处的流量,但密度按以下规律变化,即,,求三个截面上的速度值。
题3-4图
解:1) ,,
2) ,,
3) ,
即
即
3-5 二维、定常不可压缩流动,方向的速度分量为,求方向的速度分量,设时,。
1-3 底面积为的薄板在液面上水平移动(图1-3),其移动速度为,液层厚度为,当液体分别为的水和时密度为的原油时,移动平板所需的力各为多大?
题1-3图
解: 水:
,, 原油:
水:
油:
1-4 在相距的两平行平板间充满动力粘度液体(图1-4),液体中有一边长为的正方形薄板以的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
【免费下载】工程流体力学课后习题答案
【1-1】500cm3 的某种液体,在天平上称得其质量为 0.453kg,试求其密度和相对密度。
【解】液体的密度
相对密度
m V
w
0.453 5 104
0.906 103 1.0 103
0.906 103
【1-2】体积为 5m3 的水,在温度不变的条件下,当压强从 98000Pa 增加到 4.9×105Pa 时,体积减少 1L。求水的压缩系数和
104265Pa
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)
工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)闻建龙主编的《工程流体力学》习题参考答案第一章绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ??=-3101μ20℃,3/856m kg =ρ,原油:s Pa ??='-3102.7μ水: 233/410416101m N u=??=?=--δμτ N A F 65.14=?=?=τ油: 233/8.2810416102.7m N u =??=?'=--δμτ N A F 2.435.18.28=?=?=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ?=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
(完整版)工程流体力学习题及答案.doc
第 1 章绪论选择题( a )流体的分子; ( b )流体内的固体颗粒; 【1.1 】 按连续介质的概念,流体质点是指:( c )几何的点;( d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子, 且具有诸如速度、密度及压强等物理量的流体微团。
( d )【1.2 】 与牛顿内摩擦定律直接相关的因素是:( a )切应力和压强; ( b )切应力和剪切变 形速度;( c )切应力和剪切变形; ( )切应力和流速。
ddv dv解:牛顿内摩擦定律是dy,而且速度梯度dy是流体微团的剪切变形速度dddt ,故dt 。
( b )【1.3 】 流体运动黏度 υ 的国际单位是: ( a ) m 2/s ;( ) N/m 2 ;( ) kg/m ;( )N ·s/m 2。
bcd解:流体的运动黏度 υ 的国际单位是 m 2 /s 。
( a )p 【1.4 】 理想流体的特征是:( a)黏度是常数;( b )不可压缩;( c )无黏性;( d )符合RT。
解:不考虑黏性的流体称为理想流体。
( c )【1.5 】当 水的 压 强 增 加一 个 大 气 压 时, 水 的 密 度 增 大约 为 :( a ) 1/20 000 ;( b ) 1/1 000 ;( c ) 1/4 000 ;( d ) 1/2 000 。
解 : 当 水 的 压 强 增 加 一 个 大 气 压 时 , 其 密 度 增 大 约 dkdp0.5 10 9 1 105120 000 。
( a )【1.6 】 从力学的角度分析,一般流体和固体的区别在于流体:( a)能承受拉力,平衡时不能承受切应力; ( )不能承受拉力,平衡时能承受切应力; ( )不能承受拉力,bc平衡时不能承受切应力; (d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力, 同时具有很大的流动性, 即平衡时不能承受切应力。
工程流体力学课件2详解
39.2kPa ; 3m
露天水池水深5m处的相对压强为:
A. 5kPa ; B. 49kPa ; C. 147kPa ; D. 205kPa
什么是等压面?等压面应用的条件是什么?
等压面是指流体中压强相等的各点所组成的面。只有重 力作用下的等压面应满足的条件是:静止、连通、连续 均质流体、同一水平面。
【例】已知ρ1=900kg/m3 ,d=4mm,D=40mm。p1
=p2时,U形管中水面平齐,h=0;若h=100mm,求压
强差p1-p2 。
p
p
2
1
Δh
Δh
D
N
D
油
ρ
1
h 0
h
N
ρ2 水 d
微压计的放大效果为11mm→100mm,放大效果显著。
如图所示的密闭容器中,液
面压强p0=9.8kPa,A点压强
3 油4
5
6
水银
一、流体静力学基本方程
2.能量形式的静力学基本方程
p gz C
z p C
g
——不可压缩流体的 静力学基本方程 (能量形式)
p2
p0
g
2
z2
1
0
p1 g
对静止容器内的液体中 的1、2两点有
z1
0
z1
p1
g
z2
p2
g
C
z
2.静力学基本方程的物理意义 p0
❖ 能量意义
单位重量流体
A Z
p lim P dP A0 A dA
单位:N/m2,Pa
作用在单位面积上的力
二、流体静压强的特性
工程流体力学孔珑第四版ppt课件
《工程流体力学》——第一章 绪论——课程的工程地位 石油化工
专业基础课
11
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 机械冶金
专业基础课
12
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 环境
专业基础课
13
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 气象
1883年用实验验证了粘性流体 的两种流动状态——层流和紊流的 客观存在,找到了实验研究粘性流 体运动规律的相似准则——雷诺数, 以及判别层流和紊流的临界雷诺数。
专业基础课
32
2021/4/11
《工程流体力学》——第一章 绪论——流体力学发展简史
专业基础课
L. Prandtl (1875-1953)
一、流体的定义、特征
1、定义:能够流动的物质为流体;力学定义,则在任何微小 切力的作用下都能发生连续变形的物质称为流体。
2、特征: 流动性、压缩、膨胀性、粘性
物态
固体 液体 气体
专业基础课
分子间的作用力、分子间距离的影响下
固定 固定 自由 明显压 抵抗微 体积 形状 液面 缩 小剪力
有有 否
否
能
有无 有
w —4o C时 水 的 密 度 。 2021/4/11
《工程流体力学》——第二章 流体及物理性质
四、流体的密度
混合物的密度:
11 22 ii nn 其中,i — 第i种物质的密度;i — 第i种物质的体积百分比;
或者,混合物的密度:
1
2
1
i
n
1 2
i
n
其 中 ,i — 第i种 物 质 的 密 度 ;i — 第i种 物 质 的质 量百 分 比 ;
工程流体力学(闻建龙)课后答案(部分)
为了简化湍流计算,研究者们提出了各种湍流模型,如零方程模型、一方程模型 和两方程模型等。这些模型通过建立数学方程来描述湍流的统计性质和流动特性 。
模拟方法
针对湍流模拟,常用的数值方法包括直接数值模拟(DNS)、大涡模拟(LES)和 雷诺平均模拟(RANS)。这些方法在精度和计算成本上各有优缺点,适用于不同 的流动条件和工程问题。
它描述了颗粒运动的速度与颗粒半径和流体粘性的关系。
流体动力学的基本方程
要点一
总结词
流体动力学的近似解法、数值解法。
要点二
详细描述
对于一些复杂的问题,我们可能无法得到精确的解析解, 这时就需要采用近似解法或者数值解法。近似解法包括摄 动法、迭代法等,数值解法则包括有限差分法、有限元法 等。这些方法可以帮助我们得到相对精确的结果,但是计 算量较大,需要借助计算机进行计算。
工程流体力学(闻建龙)课后答 案(部分)
目
CONTENCT
录
• 绪论 • 流体静力学 • 流体动力学基础 • 流体流动的能量转换与损失 • 流体流动的湍流与噪声 • 工程流体力学的应用实例
01
绪论
流体的定义与分类
总结词
流体的定义与分类
详细描述
流体是具有流动性的连续介质,可分为牛顿流体和非牛顿流体。牛顿流体遵循 牛顿第二定律,具有粘性和剪切应力;非牛顿流体不遵循牛顿第二定律,其流 动行为与剪切速率、温度和压力等条件有关。
THANK YOU
感谢聆听
流体流动的效率与节能措施
提高流速
减小流体的粘性和摩擦阻力,提高流速可以减小流体流动的能量 损失,提高流动效率。
优化流道设计
合理设计流道形状、尺寸和布局,减小流体的局部损失和摩擦阻力, 提高流动效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτ N A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
1)当mm h 10=时,求薄板运动的液体阻力。
2)如果h 可改变,h 为多大时,薄板的阻力最小?并计算其最小阻力值。
题1-4图解:1) 23/35010)1040(157.0m N h u =⨯-⨯=-⋅=-δμτ上 23/10501010157.0m N h u =⨯⨯=⋅=-μτ下 N 04.510601050350A )(23=)()=(下上-⨯⨯+⋅+=ττF2) hh u h h h h u h u h u )()()(-⋅=--+⋅=+-+δδμδδμδμτττ)(==下上 要使τ最小,则分母最大,所以:02][])[(2=-='-='-h h h h h δδδ, 2δ=h233/1050)102015102015(7.0)2/2/(m N u u =⨯+⨯=+=--δδμτ N A F 78.3)1060(105023=⨯⨯=⋅=-τ1-5 直径mm d 400=,长m l 2000=输水管作水压试验,管内水的压强加至Pa 6105.7⨯时封闭,经h 1后由于泄漏压强降至Pa 6100.7⨯,不计水管变形,水的压缩率为19105.0--⨯Pa ,求水的泄漏量。
解:dpdVV 1-=κ 19105.0--⨯=Pa κ, 26/105.0m N dp ⨯-=, 32251202000441m V =⨯=π36928.6105.025120105.0m Vdp dV =⨯⨯⨯⨯=-=-κ1-6 一种油的密度为3851m kg ,运动粘度为m 261039.3-⨯,求此油的动力粘度。
解:s Pa ⋅⨯=⨯⨯==--361088.21039.3851ρυμ1-7 存放34m 液体的储液罐,当压强增加MPa 5.0时,液体体积减少L 1,求该液体的体积模量。
解:1963105.0105.0101411----⨯=⨯⨯⨯=-=Pa dp dV V κ Pa k 9102/1⨯==κ1-8 压缩机向气罐充气,绝对压强从MPa 1.0升到MPa 6.0,温度从C 020升到C 078,求空气体积缩小百分数为多少。
解:MRT pV =111MRT V p =,222MRT V p =)20273(101.016+=⨯MR V ,)78273(106.026+=⨯MR V MR V 311093.2-⨯=,MR V 3210585.0-⨯=%808.01093.210585.01093.2333121==⨯⨯-⨯=----V V V第二章 流体静力学2-1 如图所示为一复式水银测压计,用来测水箱中的表面压强0p 。
试求:根据图中读数(单位为m )计算水箱中的表面绝对压强和相对压强。
题2-1图解:加0-0,1-1,2-2三个辅助平面为等压面。
表压强:0)2.13.2()2.15.2()4.15.2()4.10.3(0=汞水汞水---+---+g g g g p ρρρρ )4.15.2(81.910006.13)4.10.3(81.910000-⨯⨯⨯--⨯⨯+p0)2.13.2(81.910006.13)2.15.2(81.91000=-⨯⨯⨯--⨯⨯+ Pa p 2.2650660=绝对压强(大气压强Pa p a 101325=)Pa p 2.3663912.2650661013250=+=2-2 如图所示,压差计中水银柱高差m h 36.0=∆,A 、B 两容器盛水,位置高差m z 1=∆,试求A 、B 容器中心压强差B A p p -。
题2-2图解:作辅助等压面0-0,1-1。
h g h z x g p gx p B A ∆+∆+∆+-=-汞水水ρρρ)(Pah g h z g p p B A 36.6137136.098106.13)36.01(9810)(=⨯⨯++⨯=∆+∆+∆=-汞水ρρ2-3 如图2-45所示,一开口测压管与一封闭盛水容器相通,若测压管中的水柱高出容器液面m h 2=,求容器液面上的压强。
题2-3图解:Pa gh p 19620298100=⨯==ρ 米水柱2/0=g p ρ2-4 如图所示,在盛有油和水的圆柱形容器的盖上加荷重N F 5788=。
已知:cm h 301=,cm h 502=,m d 4.0=,3800m kg =油ρ。
求U 形测压管中水银柱高度H 。
题2-4图解:油表面上压强:Pa A F p 8.460824.041578820===π 列等压面0-0的方程:gH gh gh p 汞水油ρρρ=++210H 9.81100013.60.59.8110000.39.8180046082.8⨯⨯⨯=⨯⨯+⨯⨯+ m H 4.0=2-5 如图所示,试根据水银测压计的读数,求水管A 内的真空度及绝对压强。
已知:m h 25.01=,m h 61.12=,m h 13=。
题2-5图解:a A p h h g h h g p =-+--)()(3212汞水ρρ)()(3212h h g h h g p p a A ---+=汞水ρρ)161.1(81.910006.13)25.061.1(81.91000101325-⨯⨯⨯--⨯⨯+=Pa 84.33282=Pa p 6804284.33282101325=-=γ2-6 如图所示,直径m D 2.0=,高度m H 1.0=的圆柱形容器,装水32容量后,绕其垂直轴旋转。
1)试求自由液面到达顶部边缘时的转速1n ;2)试求自由液面到达底部中心时的转速2n 。
题2-6图解:(1)4222222D g gR H ⋅==∆ωω由旋转抛物体体积=相应柱体体积的一半g D D g D H D x D 6442814121412422222ωπωπππ=⋅⋅=∆⋅⋅= gD x 1622ω=又 H g D H x H 31163122+=+=∆ω H g D D g 3116422222+=⋅ωω H g D 311622=ω 4.112.031.081.91631622=⨯⨯⨯==D gH ω 602n πω=min /10914.324.1160260r n =⨯⨯==πω (2)⎪⎪⎩⎪⎪⎨⎧'+⋅'-=⋅='')()(2 21])2([4132411 2222222H R H R D H D H gR πππω原体积 抛物体外柱体 抛物体式(2)H R H R H D H D 222221413241'+'-=⋅ππππH R H D 22213141'=⋅ππ 6D/R ='代入(1)H D g =⋅'6222ω16.172.01.081.91212=⨯⨯=='D gH ω min /9.16314.3216.1760260r n =⨯⨯==πω2-7如图所示离心分离器,已知:半径cm R 15=,高cm H 50=,充水深度cm h 30=,若容器绕z 轴以等角速度ω旋转,试求:容器以多大极限转速旋转时,才不致使水从容器中溢出。
题2-7图解:超高 gR H 222ω=∆由:原体积=旋转后的柱体体积+抛物体体积H R H H R h R ∆⋅+∆-=22221)(πππH R H R H R h R ∆⋅+∆-=222221ππππ4.0)3.05.0(2)(2=-=-=∆h H H由gR H 222ω=∆得s rad R Hg /6.1815.04.081.922=⨯⨯=∆=ωmin /7.17714.326.1860260r n =⨯⨯==πω 空的体积=)(2h H R ∆-π空的旋转后体积=有水的旋转抛物体体积=gR R 221222ωπ2-18 如图所示,一盛有液体的容器以等加速度a 沿x 轴向运动,容器内的液体被带动也具有相同的加速度a ,液体处于相对平衡状态,坐标系建在容器上。
液体的单位质量力为a f x -=,0=y f ,g f z -=求此情况下的等压面方程和压强分布规律。
题2-8图1)等压面方程0=++dz f dy f dx f z y x0=--gdz adxc gz ax =+ga dx dz tg -==θ 2)压强分布规律)()(gdz adx dz f dz f dx f dp z y x --=++=ρρc gz ax p +--=ρρ又00p pz x ===,0p c =gz ax p p ρρ--=02-19 如图所示矩形闸门AB 宽m b 3=,门重N G 9800=,060=α,m h 11=,m h 73.12=。