用点差法解圆锥曲线的中点弦问题

合集下载

“点差法”在圆锥曲线中的应用与推广

“点差法”在圆锥曲线中的应用与推广


a2 b2
.接下来
我们看看高考真题中的“点差法”及其应用. 例 1 . ( 2015 全 国 卷 II , 理 科 20 ) 已 知 椭 圆
C : 9x2 y2 m2 (m 0) ,直线 l 不过原点 O 且不平行于坐 标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .
证明:根据椭圆的对称性可知A、B关于原点对称,设
A(x1, y1), B(x2 , y2 ), P(x, y)
x12 a2

y12 b2
x2 1① a2

y2 b2
1②,
①-②可得如下表达式
( x1

x)( x1 a2

x)

( y1

y)( y1 b2

y)

0





(x1 x)(x1 x)
,

k

y2 x2
y1 x1
,
x2

x1

2x0
,
y2

y1

2 y0 .
将点A、B的坐标带入椭圆方程可得,
x12 a2

y12 b2
1
①,
x22 a2

y22 b2
1②


-


得: (x2 x1)(x2 x1) ( y2 y1)( y2 y1) 0
a2
b2

2x0 (x2 a2
1 k( )
1
b2
a2
,由点F及A、B中点可求出 k

1 2

用“点差法”妙解圆锥曲线“中点弦”的问题

用“点差法”妙解圆锥曲线“中点弦”的问题

用“点差法”妙解圆锥曲线“中点弦”的问题
胡巧玲
【期刊名称】《学苑教育》
【年(卷),期】2011(000)007
【摘要】点差法的步骤:设点一代点一作差。

利用中点坐标公式来求出中点弦所在直线的斜率,中点弦所在的直线方程,弦的中点轨迹,中点弦所在直线的存在问题。

最大的优点是计算量小。

通过“设而不求”来达到求解的目的。

【总页数】1页(P57-57)
【作者】胡巧玲
【作者单位】新疆兵团农三师中学
【正文语种】中文
【中图分类】G633.65
【相关文献】
1.用点差法解圆锥曲线的中点弦问题 [J], 胡文敏;
2."点差法"解决圆锥曲线的中点弦问题 [J], 韩晓刚
3.巧用点差法解决圆锥曲线中点弦问题 [J], 李德宝
4.点差法解圆锥曲线中点弦问题新发现 [J], 李虎
5.构造中点弦妙解圆锥曲线问题
——中点弦结论的拓展运用 [J], 蔡珍珍
因版权原因,仅展示原文概要,查看原文内容请购买。

用点差法巧解圆锥曲线问题

用点差法巧解圆锥曲线问题

用“点差法”巧解圆锥曲线问题江苏省高淳中等专业学校 喻国忠解析几何是高考的重点内容,而圆锥曲线又是解析几何的重点、难点知识。

这里面,直线与圆锥曲线的位置关系问题综合性强,涉及知识面较多,运算量大,题型灵活多变,常常是打击学生们学习兴趣的罪魁祸首。

直线与圆锥曲线相交形成的弦中点、对称问题等,我们称之为圆锥曲线的“中点弦”问题。

解这类中点弦问题的常规做法是:联立直线和圆锥曲线的方程,借助根的判别式及韦达定理中根与系数的关系、中点坐标公式求解,但运算过程复杂,计算量偏大,解题效率低,尤其是对于基础较差、计算能力较弱的学生来说,很容易算错。

而使用“点差法”来进行求解中点弦问题,往往可以使解题过程化繁为简,优化解题过程,出奇制胜。

所谓“点差法”,就是在求解 “中点弦”问题时用到的一种“代点作差”的解题方法,其特点是代点作差后可巧代直线斜率和中点坐标,进而通过“设而不求”以达到减少计算量的目的。

使用“点差法”时,一般分三个步骤进行:设点、作差、检验。

下面试举几例,感受“点差法”在解题过程中的妙用。

例1.求以椭圆22185x y +=内的一点A(2,-1)为中点的弦所在的直线方程。

解法一:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则221(2)185y k x x y +=-⎧⎪⎨+=⎪⎩,消去y 得:222(85)16(21)8[(21)5]0k x k k x k +-+++-=12216(21)85k k x x k +∴+=+ ,A 2-1又(,)MN 为弦的中点,124x x ∴+=,即216(21)=485k k k ++,54k ∴=,从而直线方程为54140x y --=。

解法二:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则2211222258405840x y x y ⎧+=⎨+=⎩ (1)(2),(2)(1)-得222221215()8()0x x y y -+-=, A 2-1又(,)MN 为弦的中点,124x x ∴+=,122y y +=-,2121205=164y y x x -∴=-,即54k =,从而直线方程为54140x y --=。

巧用“点差法”破解圆锥曲线中点弦和切线问题

巧用“点差法”破解圆锥曲线中点弦和切线问题

巧用 点差法 破解圆锥曲线中点弦和切线问题唐金波(深圳科学高中ꎬ广东深圳518129)摘㊀要: 点差法 是圆锥曲线中一类非常重要的方法ꎬ代点作差ꎬ模式化强ꎬ计算量少ꎬ能很好地优化解题过程.高中阶段用 点差法 来解决有关圆锥曲线上一点的切线问题易于理解ꎬ且能更好地理解数学的本质ꎬ欣赏到数学之美.关键词:点差法ꎻ中点弦ꎻ切线中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0060-03收稿日期:2023-04-05作者简介:唐金波ꎬ男ꎬ湖南省衡阳人ꎬ硕士ꎬ中学一级教师ꎬ从事数学教学研究.㊀㊀在处理直线与圆锥曲线相交所得弦的中点和切线的相关问题时ꎬ我们经常会用到 点差法 :设弦的两个端点坐标x1ꎬy1()和x2ꎬy2()ꎬ代入圆锥曲线的方程后ꎬ把所得的两个方程相减ꎬ得到弦的中点坐标与弦所在直线斜率的关系ꎬ使问题得到解决.此方法巧妙地将中点坐标公式和斜率公式 珠联璧合 ꎬ设而不求ꎬ代点作差ꎬ减少了计算量ꎬ模式化强ꎬ优化了解题过程ꎬ对解决此类问题有很好的效果[1].1 点差法 的介绍1.1中点弦问题结论1㊀设l为不过原点O的直线ꎬ与椭圆C:x2a2+y2b2=1(a>b>0)相交于AꎬB两点ꎬM为线段AB的中点ꎬ则kAB kOM=-b2a2=e2-1(其中e为椭圆的离心率).分析㊀设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬMx0ꎬy0()ꎬ则x21a2+y21b2=1ꎬx22a2+y22b2=1.ìîíïïïï两式相减ꎬ得y1-y2x1-x2=-b2a2 x1+x2y1+y2=-b2a2 x0y0.所以kAB kOM=-b2a2=e2-1.说明㊀本篇后续例题等直接引用该表达式ꎬ没有给出推导ꎬ正式解题作答时需要给出推导过程.对于双曲线和抛物线可类似推导如下结论ꎬ有兴趣的读者可以自行推导.结论2㊀设l为不过原点O的直线ꎬ与双曲线C:x2a2-y2b2=1(a>0ꎬb>0)相交于AꎬB两点ꎬM为线段AB的中点ꎬ则kAB kOM=b2a2=e2-1(其中e为双曲线的离心率).结论3㊀设点Ax1ꎬy1()ꎬBx2ꎬy2()(x1ʂx2)是抛物线C:y2=2px(p>0)上两点ꎬ则直线AB的斜率kAB=y1-y2x1-x2=2py1+y2.1.2切线问题结论4㊀设P(x0ꎬy0)为椭圆C:x2a2+y2b2=1(a>06b>0)上一个定点ꎬ过点P的切线记为lꎬ则l:x0xa2+y0yb2=1且kl kOP=-b2a2=e2-1.分析㊀设Q(x1ꎬy1)为椭圆上不同于点P的任意一点ꎬ则x20a2+y20b2=1ꎬx21a2+y21b2=1.ìîíïïïï两式相减ꎬ得kPQ=y1-y0x1-x0=-b2a2 x1+x0y1+y0.过点P的切线l可以看作割线PQ当QңP时的极限位置.①若y0ʂ0ꎬ当x1ңx0ꎬy1ңy0时ꎬkPQң-b2a2x0+x0y0+y0=-b2a2 x0y0.此时切线l的方程为y-y0=-b2x0a2y0(x-x0).化简得x0xa2+y0yb2=1ꎬ并且kl kOP=-b2a2=e2-1.②若y0=0ꎬ容易验证切线l的方程为x0xa2+y0yb2=1.综上①②ꎬ可知结论成立.通过利用极限的思想结合 点差法 推导椭圆的切线方程ꎬ有助于更好地理解点差法ꎬ挖掘其本质ꎬ进一步说明点差法为什么能解决与中点弦相关的问题ꎬ对提升数学思维和数学核心素养有很大的帮助.本结论也可以通过点差法推广到双曲线和抛物线ꎬ有兴趣的读者可以自行证明.结论5㊀设P(x0ꎬy0)为双曲线C:x2a2-y2b2=1(a>0ꎬb>0)上一个定点ꎬ过点P的切线记为lꎬ则l:x0xa2-y0yb2=1且kl kOP=b2a2=e2-1.结论6㊀设P(x0ꎬy0)为抛物线C:y2=2px(p>0)上一个定点ꎬ过点P的切线记为lꎬ则y0y=p(x0+x)且kl=py0.2 点差法 的应用2.1应用 点差法 解中点弦问题例1㊀(2022年新高考Ⅱ卷 16)如图1ꎬ已知椭圆x26+y23=1ꎬ直线l与椭圆在第一象限交于AꎬB两点ꎬ与x轴ꎬy轴分别交于MꎬN两点ꎬ且MA=NBꎬMN=23ꎬ则直线l的方程为.解析㊀设AB的中点为Eꎬ因为MA=NBꎬ所以ME=NE.图1㊀2022年新高考Ⅱ卷16题图由结论1ꎬ有kOE kAB=-12.设直线AB:y=kx+mꎬk<0ꎬm>0ꎬ令x=0得y=mꎬ令y=0得x=-mk.即M-mkꎬ0æèçöø÷ꎬN0ꎬm().所以E-m2kꎬm2æèçöø÷.即kˑm/2-m/2k=-12.解得k=-22或k=22(舍去).又MN=23ꎬ即MN=m2+2m()2=23ꎬ解得m=2或m=-2(舍去).所以直线AB:y=-22x+2ꎬ即x+2y-22=0.评注㊀由问题中的条件MA=NBꎬ借助几何图形的特点ꎬ可自然联想到取线段AB的中点Eꎬ从而利用椭圆中 点差法 的结论ꎬ得到直线斜率和截距的关系式ꎬ进而解决问题.2.2应用点差法 解切线问题例2㊀(2022年淮北中学第一次联考 21)已知椭圆C:x2a2+y2b2=1a>b>0()的右焦点为F(1ꎬ160)ꎬ离心率为12.(1)求椭圆C的方程ꎻ(2)若过点F的直线l交C于AꎬB两点ꎬ线段AB的中点为Mꎬ分别过AꎬB作C的切线l1ꎬl2ꎬ且l1与l2交于点P.证明:OꎬMꎬP三点共线.解析㊀(1)x24+y23=1ꎻ(2)当直线l的斜率不存在时ꎬOꎬMꎬP三点共线显然成立.当直线l的斜率存在设为k(易知kʂ0)ꎬ设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬ由结论1知ꎬk kOM=-b2a2=-34ꎬ即kOM=-34k.由结论2知ꎬl1:x1x4+y1y3=1ꎬ①l2:x2x4+y2y3=1.②由①②ꎬ得x(x1-x2)4=-y(y1-y2)3.即kop=yx=-3(x1-x2)4(y1-y2)=-34k.于是kOM=kopꎬ因此OꎬMꎬP三点共线.评注㊀上述有关中点弦和曲线上一点的切线问题若借助 点差法 得到直线的斜率与中点到原点的斜率的关系式ꎬ能有效减少计算量.用点差法得到的切线方程也简单易懂ꎬ给我们推导圆锥曲线上一点的切线提供了更为初等的方法ꎬ充分说明了 点差法 的威力ꎬ更能让我们欣赏到数学之美.2.3对 点差法 深入理解例3㊀已知双曲线C:x2-y22=1ꎬ是否存在过点M(1ꎬ1)的直线lꎬ使l与双曲线交于AꎬB两点ꎬ且M是线段AB的中点?若存在求出l的方程ꎻ若不存在ꎬ说明理由.解析㊀当直线l的斜率不存在时ꎬ显然不合题意.当直线l的斜率存在设为kꎬ设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬ则由结论2ꎬ知k kOM=2ꎬ即k=2.于是ꎬ直线l的方程为y=2x-1.但若将y=2x-1代入双曲线x2-y22=1ꎬ消去yꎬ整理ꎬ得2x2-4x+3=0ꎬ此方程没有实数解.所以满足题意的直线l不存在.评注㊀解答例3的问题时ꎬ在用点差法求出直线方程后ꎬ认为已经 大功告成 ꎬ这就反应出解题过程中理性思维的缺失.此例体现了 点差法 在应用中的特殊性和局限性ꎬ有助于我们对数学更深入地理解.事实上ꎬ(1)当曲线是椭圆或者抛物线时ꎬ若中点在其内部ꎬ则满足条件的直线存在ꎻ若中点在其外部ꎬ则满足条件的直线不存在.(2)当曲线是双曲线时ꎬ若中点在其内部ꎬ则所求的直线存在ꎻ若中点在其外部ꎬ则满足的条件可能存在ꎬ也可能不存在ꎬ此时需要验证判别式.3总结反思点差法 是一种非常典型且简单易学的方法ꎬ但它仍然不是圆锥曲线中的通解通法.从上述例题的解答过程可以看出ꎬ当遇到中点弦㊁切线等条件时ꎬ我们可以尝试该法.对于联立直线与圆锥曲线方程的通法ꎬ该法过程简洁㊁计算量小ꎬ能进一步提高解题效率.对于圆锥曲线上一点的切线问题也能很好地解决ꎬ是高中阶段非常好用㊁易用㊁实用的好方法.但是该法仍然具有其局限性ꎬ我们在平时的学习过程中ꎬ要结合自身掌握知识的程度和对知识本质理解的程度ꎬ选择最优的解题方法.要学会从不同的解法中汲取不同的数学思想ꎬ加深对数学本质的理解ꎬ从而提高自身的数学核心素养.参考文献:[1]苏立标.圆锥曲线的秘密[M].杭州:浙江大学出版社ꎬ2021.[责任编辑:李㊀璟]26。

圆锥曲线解题技巧和方法综合方法

圆锥曲线解题技巧和方法综合方法

圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。

2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。

a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。

过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。

(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。

2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。

sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。

高考数学点差法在圆锥曲线中的应用(解析版)

高考数学点差法在圆锥曲线中的应用(解析版)

点差法在圆锥曲线中的应用一、考情分析圆锥曲线中的中点弦问题是高考常见题型,在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为x1,y1、x2,y2,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”.二、解题秘籍(一)求以定点为中点的弦所在直线的方程求解此类问题的方法是设出弦端点坐标,代入曲线方程相减求出斜率,再用点斜式写出直线方程.特别提醒:求以定点为中点的双曲线的弦所在直线的方程,求出直线方程后要检验所求直线与双曲线是否有2个交点.【例1】过椭圆x216+y24=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.【解析】设直线与椭圆的交点为A(x1,y1)、B(x2,y2)∵M(2,1)为AB的中点∴x1+x2=4 y1+y2=2∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16两式相减得(x12−x22)+4(y12−y22)=0于是(x1+x2)(x1−x2)+4(y1+y2)(y1−y2)=0∴y1−y2x1−x2=−x1+x24(y1+y2)=−44×2=−12即k AB=−12,故所求直线的方程为y−1=−12(x−2),即x+2y−4=0.【例2】已知双曲线C:x2a2-y2b2=1(a>0,b>0),离心率e=3,虚轴长为22.(1)求双曲线C的标准方程;(2)过点P1,1能否作直线l,使直线l与双曲线C交于A,B两点,且点P为弦AB的中点?若存在,求出直线l的方程;若不存在,请说明理由.【解析】(1)∵e=ca=3,2b=22,∴c=3a,b=2.∵c2=a2+b2,∴3a2=a2+2.∴a2=1.∴双曲线C的标准方程为x2-y22=1.(2)假设以定点P(1,1)为中点的弦存在,设以定点P(1,1)为中点的弦的端点坐标为A(x1,y1),B(x2,y2)(x1≠x2),可得x1+x2=2,y1+y2=2.由A,B在双曲线上,可得:x21-y212=1 x22-y222=1,两式相减可得以定点P(1,1)为中点的弦所在的直线斜率为:k=y2-y1x2-x1=2(x1+x2)y1+y2=2,则以定点P(1,1)为中点的弦所在的直线方程为y-1=2(x-1).即为y=2x-1,代入双曲线的方程可得2x2-4x+3=0,由Δ=(-4)2-4×2×3=-8<0,所以不存在这样的直线l .(二)求弦中点轨迹方程求弦中点轨迹方程基本类型有2类,一是求平行弦的中点轨迹方程,二是求过定点的直线被圆锥曲线截得的弦的中点轨迹方程.【例3】(2023届湖北省腾云联盟高三上学期10月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 经过点P 0,1 ,且离心率为32.(1)求椭圆C 的标准方程;(2)设过点0,-35的直线l 与椭圆C 交于A ,B 两点,设坐标原点为O ,线段AB 的中点为M ,求MO 的最大值.【解析】(1)∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (0,1),其离心率为32.∴b =1,c a =32⇒1-b 2a2=34,∴b a =12,∴a =2,故椭圆C 的方程为:x 24+y 2=1;(2)当直线l 斜率不存在时,M 与O 重合,不合题意,当直线l 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有x 0=x 1+x 22,y 0=y 1+y 22,直线l 的斜率为y 1-y 2x 1-x 2=y 0+35x 0,A ,B 两点在椭圆上,有x 124+y 12=1,x 224+y 22=1,两式相减,x 12-x 224=-y 12-y 22 ,即x 1+x 24y 1+y 2 =-y 1-y 2x 1-x 2,得x 04y 0=-y 0+35x 0,化简得x 02=-4y 02-125y 0,MO =x 02+y 02=-3y 02-125y 0=-3y 0+25 2+1225,∴当y 0=-25时,MO 的最大值为235【例4】直线与圆锥曲线相交所得弦的中点问题,是解析几何重要内容之一,也是高考的一个热点问题.引理:设A x 1,y 1 、B x 2,y 2 是二次曲线C :Ax 2+By 2+Cx +Dy +F =0上两点,P x 0,y 0 是弦AB 的中点,且弦AB 的斜率存在,则Ax 21+By 21+Cx 1+Dy 1+F =0⋯⋯(1)Ax 22+By 22+Cx 2+Dy 2+F =0⋯⋯(2)由(1)-(2)得A x 1-x 2 x 1+x 2 +B y 1-y 2 y 1+y 2 +C x 1-x 2 +D y 1-y 2 =0,∵x 0=x 1+x 22,y 0=y 1+y 22,∴x 1+x 2=2x 0,y 1+y 2=2y 0∴2Ax 0x 1-x 2 +2By 0y 1-y 2 +C x 1-x 2 +D y 1-y 2 =0,∴2Ax 0+C x 1-x 2 =-2By 0+D y 1-y 2 ,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-2Ax 0+C2By 0+D2B +D ≠0,x 1≠x 2 .二次曲线也包括了圆、椭圆、双曲线、抛物线等.请根据上述求直线斜率的方法(用其他方法也可)作答下题:已知椭圆x 22+y 2=1.(1)求过点P 12,12且被P 点平分的弦所在直线的方程;(2)过点A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程.【解析】(1)设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x 0,y 0 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵12=x 1+x 22,12=y 1+y 22,∴x 1+x 2=1,y 1+y 2=1∴x 1-x 2+2y 1-y 2 =0,∴直线AB 的斜率k AB =-12.直线AB 的方程为y -12=-12x -12,即2x +4y -3=0.因为P 12,12在椭圆内部,成立.(2)由题意知:割线的斜率存在,设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x ,y 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1 ,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵x =x 1+x 22,y =y 1+y 22,∴x 1+x 2=2x ,y 1+y 2=2y∴2x x 1-x 2 +4y y 1-y 2 =0,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-x2yx 1≠x 2又k AB =y -1x -2,所以 y -1x -2=-x 2y ,化简得:x 2+2y 2-2x -2y =0-2≤x ≤2 ,所以截得的弦的中点的轨迹方程为x 2+2y 2-2x -2y =0-2≤x ≤2 (三)求直线的斜率一般来说,给出弦中点坐标,可求弦所在直线斜率【例5】已知椭圆C :x 25+y 2=1的左、右焦点分别为F 1,F 2,点M ,N 在椭圆C 上.(1)若线段MN 的中点坐标为2,13,求直线MN 的斜率;(2)若M ,N ,O 三点共线,直线NF 1与椭圆C 交于N ,P 两点,求△PMN 面积的最大值.【解析】(1)设M x 1,y 1 ,N x 2,y 2 ,则x 215+y 21=1,x 225+y 22=1,两式相减,可得x 1+x 2 x 1-x 25+y 1+y 2 y 1-y 2 =0,则4x 1-x 2 5+2y 1-y 2 3=0,解得k MN =y 1-y 2x 1-x 2=-65,即直线MN 的斜率为-65;(2)显然直线NF 1的斜率不为0,设直线NF 1:x =my -2,N x 3,y 3 ,P x 4,y 4 ,联立x =my -2x 25+y 2=1,消去x 整理得m 2+5 y 2-4my -1=0,显然Δ=20m 2+1 >0,故y 3+y 4=4m m 2+5,y 3⋅y 4=-1m 2+5,故△PMN 的面积S △PMN =2S △OPN =2⋅12OF 1 ⋅y 3-y 4=2⋅4m m 2+5 2-4⋅-1m 2+5=45m 2+1m 2+5,令t =m 2+1,t ≥1,则S △PMN =45t t 2+4=45t +4t≤454=5,当且仅当t =2,即m =±3时等号成立,故△PMN 面积的最大值为5.【例6】已知椭圆x 225+y 29=1上不同的三点A x 1,y 1 ,B 4,95,C x 2,y 2 与焦点F 4,0 的距离成等差数列.(1)求证:x 1+x 2=8;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .【解析】(1)证略.(2)解∵x 1+x 2=8,∴设线段AC 的中点为D 4,y 0 .又A 、C 在椭圆上,∴x 1225+y 129=1,(1)x 2225+y 229=1,(2)1 -2 得:x 12-x 2225=-y 12-y 229,∴y 1-y 2x 1-x 2=-9x 1+x 2 25y 1+y 2=-925⋅82y 0=-3625y 0.∴直线DT 的斜率k DT =25y 036,∴直线DT 的方程为y -y 0=25y 036x -4 .令y =0,得x =6425,即T 6425,0 ,∴直线BT 的斜率k =95-04-6425=54.(四)点差法在轴对称中的应用【例7】(2023届江苏省南京市建邺区高三上学期联合统测)已知O 为坐标原点,点1,62 在椭圆C :x 2a 2+y 2b 2=1a >b >0 上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12.(1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22 ,k AB =y 1-y 2x 1-x 2=1,k OM=y 1+y 22x 1+x 22=y 1+y 2x 1+x 2=-12∵A x 1,y 1 ,B x 2,y 2 在椭圆上,则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1两式相减得x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=y 1+y 2x 1+x 2×y 1-y 2x 1-x 2=-b 2a 2∴k AB ⋅k OM =-b 2a 2,即-12=-b2a2,则a 2=2b 2又∵点1,62 在椭圆C :x 2a 2+y 2b 2=1上,则1a 2+32b 2=1联立解得a 2=4,b 2=2∴椭圆C 的方程为x 24+y 22=1(2)不存在,理由如下:假定存在P ,Q 两点关于l :y =x +1对称,设直线PQ 与直线l 的交点为N ,则N 为线段PQ 的中点,连接ON∵PQ ⊥l ,则k AB ⋅k PQ =-1,即k PQ =-1由(1)可得k ON ⋅k PQ =-12,则k ON =12,即直线ON :y =12x联立方程y =12x y =x +1,解得x =-2y =-1 即N -2,-1∵-2 24+-1 22=32>1,则N -2,-1 在椭圆C 外∴假定不成立,不存在P ,Q 两点关于l 对称【例8】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-12.(1)求椭圆C 的标准方程;(2)若椭圆C 上存在P ,Q 两点,使得P ,Q 关于直线l 对称,求实数m 的范围.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A ,B 在椭圆C 上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减得x 1+x 2 x 1-x 2 a 2+y 1+y 2 y 1-y 2 b 2=0,即1a 2+y 1+y 2 y 1-y 2b 2x 1+x 2 x 1-x 2=0,又k AB =y 1-y 2x 1-x 2=1,所以1a 2-12b2=0,即a 2=2b 2.又因为椭圆C 过点1,62 ,所以1a 2+32b2=1,解得a 2=4,b 2=2,所以椭圆C 的标准方程为x 24+y 22=1;(2)设P x 3,y 3 ,Q x 4,y 4 ,PQ 的中点为N x 0,y 0 ,所以x 3+x 4=2x 0,y 3+y 4=2y 0,因为P ,Q 关于直线l 对称,所以k PQ =-1且点N 在直线l 上,即y 0=x 0+m .又因为P ,Q 在椭圆C 上,所以x 234+y 232=1,x 244+y 242=1.两式相减得x 3+x 4 x 3-x 4 4+y 3+y 4 y 3-y 42=0.即x 3+x 44+y 3+y 4 y 3-y 42x 3-x 4=0,所以x 3+x 44=y 3+y 42,即x 0=2y 0.联立x 0=2y 0y 0=x 0+m,解得x 0=-2my 0=-m ,即N (-2m ,-m ).又因为点N 在椭圆C 内,所以(-2m )24+(-m )22<1,所以-63<m <63所以实数m 的范围为-63<m <63.(五)利用点差法可推导的结论在椭圆x 2a 2+y 2b2=1a >b >0 中,若直线l 与该椭圆交于点A ,B ,点P x 0,y 0 为弦AB 中点,O 为坐标原点,则k AB ⋅k OP =b 2a2,对于双曲线、抛物线也有类似结论,求自行总结.【证明】设A x 1,y 1 ,B x 2,y 2 且x 1≠x 2,则x 12a 2+y 12b 2=1,(1)x 22a 2+y 22b2=1,(2)1 -2 得:x 12-x 22a 2=-y 12-y 22b 2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2 ,∴k AB =y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2.又k OP =y 1+y 2x 1+x 2,∴k AB =-b 2a 2⋅1k OP ,∴k AB ⋅k OP =-b 2a 2(定值).【例9】(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ =0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-max +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.三、跟踪检测1.已知椭圆C :x 22+y 2=1,F 1为右焦点,直线l :y =t (x -1)与椭圆C 相交于A ,B 两点,取A 点关于x 轴的对称点S ,设线段AS 与线段BS 的中垂线交于点Q .(1)当t =2时,求QF 1 ;(2)当t ≠0时,求QF 1|AB |是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,线段AB 的中点M 坐标为x M ,y M ,联立得x 2+2y 2-2=0,y =2(x -1), 消去y 可得:9x 2-16x +6=0,所以x 1+x 2=169,x 1x 2=69,所以x M =89,代入直线AB 方程,求得y M =-29,因为Q 为△ABS 三条中垂线的交点,所以MQ ⊥AB ,有k MQ k AB =-1,直线MQ 方程为y +29=-12×x -89.令y =0,x Q =49,所以Q 49,0 .由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1,相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.2.(2023届重庆市南开中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,上顶点为D ,斜率为k 的直线l 与椭圆C 交于不同的两点A ,B ,M 为线段AB 的中点,当点M 的坐标为(2,1)时,直线l 恰好经过D 点.(1)求椭圆C 的方程:(2)当l 不过点D 时,若直线DM 与直线l 的斜率互为相反数,求k 的取值范围.【解析】(1)由题意知,离心率e =22,所以a =2b =2c ,设A x 1,y 1 ,B x 2,y 2 ,x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1两式相减得k ⋅k OM =-b 2a 2=-12,所以k =-1;所以直线为y -1=-(x -2),即y =-x +3,所以b =c =3,椭圆方程为x 218+y 29=1;(2)设直线为y =kx +m ,由y =kx +mx 2+2y 2=18得1+2k 2 x 2+4km x +2m 2-18=0,则x M =x 1+x 22=-2km 1+2k 2,y M =m1+2k2,�=16k 2m 2-41+2k 2 2m 2-18 =818k 2-m 2+9 >0,所以k DM =y M -3x M -0=6k 2+3-m 2km =-k ,解得m =6k 2+31-2k2,1-2k 2≠0,k ≠±22因为l 不过D 点,则6k 2+31-2k 2≠3,即k ≠0则18k 2+9-6k 2+3 21-2k 22>0,化简得4k 4-4k 2-3>0,解得2k 2-3 2k 2+1 >0,k 2>32,所以k >62或k <-62.3.已知椭圆x 22+y 2=1.(1)过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程;(2)求斜率为2的平行弦的中点Q 的轨迹方程;(3)求过点M 12,12且被M 平分的弦所在直线的方程.【解析】(1)设弦与椭圆两交点坐标分别为A x 1,y 1 、B x 2,y 2 ,设P x ,y ,当x 1=x 2时,P -1,0 .当x 1≠x 2时,x 22+y 2=1⇒x 2+2y 2=2,x 21+2y 21=2,x 22+2y 22=2, 两式相减得x 1+x 2 x 1-x 2 +2y 1+y 2 y 1-y 2 =0,即1+2⋅y 1+y 2 y 1-y 2 x 1+x 2 x 1-x 2=0(*),因为y 1-y 2x 1-x 2=k FP =yx +1,x 1+x 2=2x ,y 1+y 2=2y ,所以,代入上式并化简得x 2+x +2y 2=0,显然P -1,0 满足方程.所以点P 的轨迹方程为x 2+x +2y 2=0(在椭圆内部分).(2)设Q x ,y ,在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=2,x 1+x 2=2x ,y 1+y 2=2y 代入上式并化简得点Q 的轨迹方程为x +4y =0(在椭圆内部分).所以,点Q 的轨迹方程x +4y =0(在椭圆内部分).(3)在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=k ,x 1+x 2=1,y 1+y 2=1代入上式可求得k =-12.所以直线方程为2x +4y -3=0.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-0.5.(1)求椭圆C 的标准方程;(2)当m =1时,椭圆C 上是否存在P ,Q 两点,使得P ,Q 关于直线l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A,B在椭圆C上,所以x21a2+y21b2=1,x22a2+y22b2=1,两式相减得x1+x2x1-x2a2+y1+y2y1-y2b2=0,即1a2+y1+y2y1-y2b2x1+x2x1-x2=0,又k AB=y1-y2x1-x2=1,所以1a2-12b2=0,即a2=2b2.又因为椭圆C过点1,6 2,所以1a2+32b2=1,解得a2=4,b2=2,所以椭圆C的标准方程为x24+y22=1;(2)由题意可知,直线l的方程为y=x+1.假设椭圆C上存在P,Q两点,使得P,Q关于直线l对称,设P x3,y3,Q x4,y4,PQ的中点为N x0,y0,所以x3+x4=2x0,y3+y4=2y0,因为P,Q关于直线l对称,所以k PQ=-1且点N在直线l上,即y0=x0+1.又因为P,Q在椭圆C上,所以x234+y232=1,x244+y242=1,两式相减得x3+x4x3-x44+y3+y4y3-y42=0,即x3+x44+y3+y4y3-y42x3-x4=0,所以x3+x44=y3+y42,即x0=2y0.联立x0=2y0y0=x0+1,解得x0=-2y0=-1,即N-2,-1.又因为-224+-122>1,即点N在椭圆C外,这与N是弦PQ的中点矛盾,所以椭圆C上不存在点P,Q两点,使得P,Q关于直线l对称.5.(2022届广东省清远市高三上学期期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F且斜率为1的直线与抛物线C交于A,B两点,若AB的中点到准线l的距离为4.(1)求抛物线C的方程;(2)设P为l上任意一点,过点P作C的切线,切点为Q,试判断F是否在以PQ为直径的圆上.【解析】(1)设A x1,y1,B x2,y2,则y21=2px1, y22=2px2,所以y21-y22=2p x1-x2,整理得y1-y2x1-x2=2py1+y2=1,所以y1+y2=2p.因为直线AB的方程为y=x-p 2,所以x1+x2=y1+y2+p=3p.因为AB的中点到准线l的距离为4,所以x1+x22+p2=2p=4,得p=2,故抛物线C的方程为y2=4x.(2)设P(-1,t),可知切线PQ的斜率存在且不为0,设切线PQ的方程为x=m(y-t)-1,联立方程组x=m(y-t)-1,y2=4x,得y2-4my+4mt+4=0,由Δ=16m2-16(mt+1)=0,得t=m-1m,即P-1,m-1m,所以方程y 2-4my +4mt +4=y 2-4my +4m 2=0的根为y =2m ,所以x =m 2,即Q m 2,2m .因为FP =-2,m -1m ,FQ =m 2-1,2m ,所以FP ⋅FQ =-2m 2-1 +2m m -1m=0,所以FP ⊥FQ ,即F 在以PQ 为直径的圆上.6.(2022届河南省中原顶级名校高三上学期1月联考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点分别为F 1-1,0 ,F 21,0 ,过点F 1的直线l 1交椭圆C 于A ,B 两点.当直线l 1的斜率为1时,点-47,37是线段AB 的中点.(1)求椭圆C 的标准方程;(2)如图,若过点F 2的直线l 2交椭圆C 于E ,G 两点,且l 1∥l 2,求四边形ABEG 的面积的最大值.【解析】 (1)设A x 1,y 1 ,B x 2,y 2 .由题意可得b 2x 21+a 2y 21-a 2b 2=0,b 2x 22+a 2y 22-a 2b 2=0.∴y 1-y 2x 1-x 2=-b 2a 2⋅x 1+x 2y 1+y 2=-b 2a 2⋅-43,即4b 23a2=1,∴b 2a2=34.∵a 2-b 2=1,∴a 2=4,b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)根据对称性知AB =EG ,AB ∥EG ,∴四边形ABEG 是平行四边形,又S 四边形ABEG =2S △F 2AB ,∴问题可转化为求S △F 2AB 的最大值.设直线l 1的方程为x =my -1,代入x 24+y 23=1,得3m 2+4 y 2-6my -9=0.则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,∴S △F 2AB =12⋅2⋅y 1-y 2 =y 1+y 2 2-4y 1y 2=6m 3m 2+4 2-4⋅-93m 2+4=121+m 23m 2+4.令1+m 2=t ,则t ≥1,且m 2=t 2-1,∴S △F 2AB =12t 3t 2+1=123t +1t .记h t =3t +1tt ≥1 ,易知h t 在1,+∞ 上单调递增.∴h t min =h 1 =4.∴S △F 2AB =123t +1t≤124=3.∴四边形ABEG 的面积的最大值是6.7.如图,AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足,点N 坐标为(-2,-3).(1)求抛物线的方程;(2)求△AOB 的面积(O 为坐标系原点).【解析】 (1)点N (-2,-3)在准线l 上,所以准线l 方程为:x =-2,则p 2=2,解得p =4,所以抛物线的方程为:y 2=8x ;(2)设A x 1,y 1 ,B x 2,y 2 ,由A 、B 在抛物线y 2=8x 上,所以y 21=8x 1y 22=8x 2 ,则y 1-y 2 y 1+y 2 =8x 1-x 2 ,又MN ⊥l ,所以点M 纵坐标为-3,M 是AB 的中点,所以y 1+y 2=-6,所以-6y 1-y 2 =8x 1-x 2 ,即k AB =-43,又知焦点F 坐标为(2,0),则直线AB 的方程为:4x +3y -8=0,联立抛物线的方程y 2=8x ,得y 2+6y -16=0,解得y =2或y =-8,所以y 1-y 2 =10,所以S △AOB =S △AOF +S △BOF =y 1-y 2 =10.8.在平面直角坐标系xOy 中,设点F (1,0),直线l :x =-1,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹E 的方程;(2)过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为M 、N .求直线MN 过定点D 的坐标.【解析】 (1)依题意,点P 在直线l :x =-1上移动,令直线l 交x 轴于点K ,而点F(1,0),又R 是线段PF 与y 轴的交点,当点P 与点K 不重合时,OR ⎳l ,而O 为FK 中点,则点R 是线段FP 的中点,因RQ ⊥FP ,则RQ 是线段FP 的垂直平分线,QP =QF ,又PQ ⊥l 于点P ,即PQ 是点Q到直线l 的距离,当点P 与点K 重合时,点R 与点O 重合,也满足上述结论,于是有点Q 到点F 的距离等于点Q 到直线l 的距离,则动点Q 的轨迹E 是以F为焦点,l 为准线的抛物线,其方程为:y 2=4x ,所以动点Q 的轨迹E 的方程为y 2=4x .(2)显然直线AB 与直线CD 的斜率都存在,且不为0,设直线AB 的方程为y =k(x -1),k ≠0,令A x A ,y A ,B x B ,y B ,M x M ,y M ,N x N ,y N ,由y 2A =4x A y 2B =4x B 两式相减得:(y A +y B )(y A -y B )=4(x A -x B ),则y A +y B =4k,即y M =2k,代入方程y =k (x -1),解得x M =2k 2+1,即点M 的坐标为2k 2+1,2k ,而CD ⊥AB ,直线CD 方程为y =-1k (x -1),同理可得:N 的坐标为(2k 2+1,-2k ),当2k 2+1=2k 2+1,即k =±1时,直线MN :x =3,当k ≠1且k ≠-1时,直线MN 的斜率为k MN =y M -y N x M -x N =k 1-k 2,方程为y +2k =k 1-k 2(x -2k 2-1),整理得y 1k -k =x -3,因此,∀k ∈R ,k ≠0,直线MN :y 1k-k =x -3过点(3,0),所以直线MN 恒过定点D (3,0).9.中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】 (1)设双曲线E 的标准方程为x 2a 2-y 2b2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±b a x ,由题意可得4b a 1+b a2=23,解得b a =3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2 ,由题意可得x 21-y 213=1x 22-y 223=1 ,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 2 3,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.10.己知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为42,短轴长为2,直线l 过点P -2,1 且与椭圆C 交于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 的斜率为1,求弦AB 的长;(3)若过点Q 1,12的直线l 1与椭圆C 交于E 、G 两点,且Q 是弦EG 的中点,求直线l 1的方程.【解析】 (1)依题意,椭圆C 的半焦距c =22,而b =1,则a 2=b 2+c 2=9,所以椭圆C 的方程为:x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),依题意,直线l 的方程为:y =x +3,由y =x +3x 2+9y 2=9消去y 并整理得:5x 2+27x +36=0,解得x 1=-125,x 2=-3,因此,|AB |=1+12⋅|x 1-x 2|=325,所以弦AB 的长是325.(3)显然,点Q 1,12在椭圆C 内,设E (x 3,y 3),G (x 4,y 4),因E 、G 在椭圆C 上,则x 23+9y 23=9x 24+9y 24=9 ,两式相减得:(x 3-x 4)(x 3+x 4)+9(y 3-y 4)(y 3+y 4)=0,而Q 是弦EG 的中点,即x 3+x 4=2且y 3+y 4=1,则有2(x 3-x 4)+9(y 3-y 4)=0,于是得直线l 1的斜率为y 3-y 4x 3-x 4=-29,直线l 1的方程:y -12=-29(x -1),即4x +18y -13=0,所以直线l 1的方程是4x +18y -13=0.11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB 的斜率为k 1,点P 的坐标为1,32(1)求椭圆C 的方程;(2)求证:k 1k 为定值.【解析】(1)由题意知1a 2+94b 2=1,c a =12,a 2=b 2+c 2, 解得a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1.(2)证明:设M x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,由于A ,B 为椭圆C 上的点,所以x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2 x 1-x 2 4=-y 1+y 2 y 1-y 2 3,所以k 1=y 1-y 2x 1-x 2=-3x 1+x 2 4y 1+y 2=-3x 04y 0.又k =y 0x 0,故k 1k =-34,为定值.12.已知双曲线C :2x 2-y 2=2与点P 1,2 .(1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【解析】(1)双曲线的标准方程为x 2-y 22=1,∴a 2=1,b 2=2.设存在过点P 的弦AB ,使得AB 的中点为P ,设A x 1,y 1 ,B x 2,y 2 ,x 21-y 212=1,x 22-y 222=1两式相减得y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a 2,即k AB ⋅21=b 2a2得:k ⋅2=2,∴k =1.∴存在这样的弦.这时直线l 的方程为y =x +1.(2)设CD 直线方程为x +y +m =0,则点P 1,2 在直线CD 上.则m =-3,直线CD 的方程为x +y -3=0,设C x 3,y 3 ,D x 4,y 4 ,CD 的中点为Q x 0,y 0 ,x 23-y 232=1,x 24-y 242=1两式相减得k CD ⋅y 0x 0=b 2a2,则-1⋅y 0x 0=2,则y 0=-2x 0又因为Q x 0,y 0 在直线CD 上有x 0+y 0-3=0,解得Q -3,6 ,x -y +1=02x 2-y 2=2 ,解得A -1,0 ,B 3,4 ,x +y -3=02x 2-y 2=2 ,整理得x 2+6x -11=0,则x 3+x 4=-6x 3⋅x 4=-11则CD =1+k 2x 3-x 4 =410由距离公式得QA =QB =QC =QD =210所以A 、B 、C 、D 四点共圆.13.李华找了一条长度为8的细绳,把它的两端固定于平面上两点F 1,F 2处,|F 1F 2|<8,套上铅笔,拉紧细绳,移动笔尖一周,这时笔尖在平面上留下了轨迹C ,当笔尖运动到点M 处时,经测量此时∠F 1MF 2=π2,且△F 1MF 2的面积为4.(1)以F 1,F 2所在直线为x 轴,以F 1F 2的垂直平分线为y 轴,建立平面直角坐标系,求李华笔尖留下的轨迹C 的方程(铅笔大小忽略不计);(2)若直线l 与轨迹C 交于A ,B 两点,且弦AB 的中点为N (2,1),求△OAB 的面积.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义知2a =8,故a 2=16.∵在Rt △F 1MF 2中,|F 1F 2|=2c ,假设|MF 1|=x ,|MF 2|=y (x ,y >0),又∵△F 1MF 2的面积为4cm 2,x +y =8xy =8 ,故4c 2=x 2+y 2=(x +y )2-2xy =48,∴c 2=12,b 2=a 2-c 2=4,∴椭圆的标准方程为x 216+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),∵弦AB 的中点为N (2,1),∴x 1+x 2=4,y 1+y 2=2 且 x 1≠x 2.又∵A ,B 均在椭圆上,∴x 21+4y 21=16x 22+4y 22=16,得x 21-x 22=-4(y 21-y 22),即(x 1+x 2)⋅(x 1-x 2)=-4(y 1+y 2)⋅(y 1-y 2).∴(x 1-x 2)=-2(y 1-y 2).∵x 1≠x 2,∴k AB =y 1-y 2x 1-x 2=-12故直线AB 的方程为:x +2y -4=0.联立 x +2y -4=0x 2+4y 2-16=0,整理得x 2-4x =0.得 x 1=0,x 2=4,∴A (0,2),B (4,0),∴S △OAB =12×2×4=4.∴△OAB 的面积为4cm 2.14.若抛物线C :y 2=x 上存在不同的两点关于直线l :y =m x -3 对称,求实数m 的取值范围.【解析】当m =0时,显然满足.当m ≠0时,设抛物线C 上关于直线l :y =m x -3 对称的两点分别为P x 1,y 1 、Q x 2,y 2 ,且PQ 的中点为M x 0,y 0 ,则y 12=x 1,(1)y 22=x 2,(2)1 -2 得:y 12-y 22=x 1-x 2,∴k PQ =y 1-y 2x 1-x 2=1y 1+y 2=12y 0,又k PQ =-1m ,∴y 0=-m 2.∵中点M x 0,y 0 在直线l :y =m x -3 上,∴y 0=m x 0-3 ,于是x 0=52.∵中点M 在抛物线y 2=x 区域内∴y 02<x 0,即-m 2 2<52,解得-10<m <10.综上可知,所求实数m 的取值范围是-10,10 .。

(完整)点差法求解中点弦问题

(完整)点差法求解中点弦问题

点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。

求出直线的斜率,然后利用中点求出直线方程。

用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。

【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-b y y a x x .2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200a b x y k MN =⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---b y y a x x .2212121212a b x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200ab x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0。

“点差法”解决圆锥曲线的中点弦问题

“点差法”解决圆锥曲线的中点弦问题
实 践 讲 堂
‘ ‘ 点茬法 ” 禳决圆锥曲线韵中 点弦 问题
韩 晓 刚 ( 山十 六 中 , 北 唐 河
摘 要 : 圆 锥 曲 线 的 弦 的 中点 有 关 的 问 题 。 们 称 之 为 与 我 圆锥 曲线 的 中 点 弦 问 题 涉 及 至 解 决 圆锥 曲 线 中 点 弦 的 问 4 题 . 采 用 “ 差 法 ” 求 解 “ 差 法 ” 利 用 直 线 和 圆 锥 曲 常 点 来 点 是 线 的 两个 交 点 。把 交 点 代 入 圆 锥 曲 线 的 方 程 .得 到 两 个 等 式 . 式 相 减 . 以得 到 一 个 与 弦 的 斜 率 及 中 点 相 关 的 式 子 两 可 ( 称 中点 和 斜 率 结 合 公 式 ) 再 结 合 已 知 条 件 , 用 学 过 的 也 。 运 知 识 使 问题 得 到 解 决 。 当 题 目涉 及 弦 的 中 点 、 率 时 . 般 斜 一 都 可 以 用 点 差 法 来 解 与 韦 达 定 理 法 纷 繁 冗 长 的 计 算 相 比 。 点 差 法 可 以 大 大 减 少 运 算 量 . 化 解 题 过 程 . 到 “ 而 不 优 达 设 求 ” 目的 本 文将 从 求 弦 的 斜 率 与 弦 的 中 点 问 题 、 弦 中 的 求 点 轨 迹 、 弦 的 垂 直 平 分 线 问 题 和 求 曲 线 的 方 程 四 个 方 面 举
m则 肿 = 。 ‘弦 中点 轨 迹 在 已 知 椭 圆 内 , x y+ y k 2, 0 . ‘ 所 求 弦 中 点 的轨 迹 方 程 为 ( 已知 椭 圆 内 ) 在 变 式 1 直 线 Z似 一 一 o 5 : 0是 参 数 ) 抛 物 线 y : : (+ ) 0( 与 = (+ ) 的 相 交 弦 是 A 则 弦 A 的 中 点 轨 迹 方 程 是 12 B. B 。 过定 点弦 的中点轨迹 方程 ) 分 析 : 线 Za - 一 n 5 = 方 程 中带 有 参 数 0 即 直 线 直 :x y (+ )0, 。 是 过 定 点 的 直 线 还 要 注 意 弦 中点 轨 迹 在 已知 抛 物 线 内 . 最 后 要 注 明 所 求 弦 中点 的 轨 迹 方 程 为 y 2 27 在 已 知 抛 物 线 = x— ( 内 ) 。 变 式 2 已 知 定 长 为 0 0 ) 线 段 AB 的 两 端 点 在 抛 : ( ≥1 的 物线 y 上 移动 , 动 弦 AB的 中点 Ⅳ 的轨 迹方程 。 ( 长 求 弦 为定 值的 弦的中点轨 迹方 程 ) 解 : 两 端 点 坐 标 为 A( , 曰(。Y) 设 Y ) ,2 , 的 中 点 为 (oy) 则 l 220 因 两 端 点 在 抛 物 线 上 , 以 y 1 Y: X o , = x, 所 l 2 2 ,

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

_点差法_解决圆锥曲线的中点弦问题

_点差法_解决圆锥曲线的中点弦问题

中来。 如我在教学《分数的基本性质》时,是这样导入的:唐僧师 话。 然后又让学生亲自验证,但验证的结果是:想唱歌的学生抽
徒走到半路上,口渴了,孙悟空摘了一个西瓜回来,把它平分成 到了跳舞,想跳舞的学生反而抽到了讲故事。 通过这样一系列
四块,一人一块,八戒大喊道:“猴哥,分给我太少了,我不干! ” 的活动, 让学生真正体验到在现实生活中存在着不确定的现
第一个音符就准确、悦耳、动听。 ”新课的导入就好比演奏家定 乐! 师:我想让大家通过抽签表演节目的形式为尚利明同学过
弦,音调定准了,就为整个演奏奠定了基础。 一堂课如果一开头 一次有意义的生日,你愿意吗? 这时孩子们兴奋极了,个个脸上
就讲得索然无味,如同嚼蜡,学生就难以提高兴趣。 所以一定要 乐开了花。 随后我往讲台桌上放了 4 个签,并向学生介绍:有唱
据 题 意 ,a2=(y1y2)2+(x1x2)2=(x1-x2)2=(x12-x22)2-(x1-x2)2
=(x1-x2)2[(x1+x2)2+1]=[(x1+x2)2-4x1x2]·[(x1+x2)2+1]
=[(2x0)2-4(2x02-y0)][(2x0)2+1]=4(y0+x02)(1+4x02),所 求 动
悟空又切了两刀,把西瓜平均分成八块,拿给八戒两块,八戒笑 象,随后导入新课。 选择学生熟悉的事物组织教学,学生积极性
着说:“这还差不多,能多吃一块。 ”讲完后我问学生:“八戒多吃 高,课堂气氛活跃,效果显而易见。
了吗? ”有的学生说多吃了,有的说没有。 我便及时导入:“今天,
四、通过动手操作,激发学生兴趣
可迎刃而解了。
二、求弦中点的轨迹方程

点差法计算方法

点差法计算方法

点差法计算方法解决圆锥曲线的中点弦问题的一般方法是联立直线和圆锥曲线的方程,利用一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法来求解。

点差法是一种代点作差的方法,可以将直线和圆锥曲线的方程中的点代入并作差,从而得到一个与弦的中点和斜率有关的式子,可以减少运算量。

对于以定点为中点的弦所在直线的方程,可以通过点差法来解决。

例如,在过椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$内一点M(2,1)引一条弦,使弦被M点平分的问题中,设直线与椭圆的交点为A(x1,y1)、B(x2,y2),利用中点坐标公式可得到$x_1+x_2=4$和$y_1+y_2=2$。

由于A、B两点在椭圆上,因此$x_1+4y_1=16$和$x_2+4y_2=16$。

将这两个式子相减得到$(x_1-x_2)^2+4(y_1-y_2)^2=4$,因此$k_{AB}=-\frac{1}{2}$,所求直线的方程为$y-1=-(x-2)$,即$x+2y-4=0$。

对于探索性问题,如已知双曲线$x^2-y^2=1$,点M(1,1)能否作一条直线l,使l与双曲线交于A、B,且点M是线段AB的中点,可以假设存在这样的直线,然后验证它是否满足题设的条件。

由于这是一道中点弦问题,可以考虑点差法或韦达定理。

假设存在被点M平分的弦AB,且A(x1,y1)、B(x2,y2),则$x_1+x_2=2$,$y_1+y_2=2$,$y_2=\frac{x_1-1}{x_2}$,$y_2=\frac{x_2+2}{x_1}$。

将这两个式子相减得到$2x^2-4x+3=0$,根据双曲线的方程$x^2-y^2=1$可知,直线AB与双曲线不相交,因此被点M平分的弦不存在,即不存在这样的直线l。

设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x,y),则有:x = (x1 + x2)/2.y = (y1 + y2)/2又根据椭圆的性质可知,有:x1 - x2)^2/a^2 + (y1 - y2)^2/b^2 = 1又因为直线y = 3x - 2过点M,所以有:y = 3x - 2将y带入椭圆方程,得到:x1 - x2)^2/a^2 + (9x1 - 9x2 + 4)^2/b^2 = 1将x带入直线方程,得到:y = 3x - 2将y带入椭圆方程,得到:x^2/25 + (3x - 2)^2/75 = 1化简得到:4x^2 - 12x + 7 = 0解得x = 1/2或x = 7/4当x = 1/2时,y = 3x - 2 = -3/2,此时P在椭圆上,Q不在椭圆上,不符合题意。

圆锥曲线专题:中点弦及点差法的7种常见考法高二数学上学期同步讲与练(选择性必修第一册)(解析版)

圆锥曲线专题:中点弦及点差法的7种常见考法高二数学上学期同步讲与练(选择性必修第一册)(解析版)

圆锥曲线专题:中点弦及点差法的7种常见考法一、椭圆与双曲线的中点弦与点差法1、根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2、点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:直线l (不平行于y 轴)过椭圆12222=+by a x (0>>b a )上两点A 、B ,其中AB 中点为)(00y x P ,,则有22ab k k OPAB -=⋅。

证明:设)(11y x A ,、)(22y x B ,,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x ,上式减下式得02222122221=-+-b y y a x x ,∴2222212221a b x x y y -=--,∴220021210021212121212122a b x y x x y y x y x x y y x x y y x x y y -=⋅--=⋅--=++⋅--,∴22a b k k OP AB -=⋅。

焦点在y 轴:直线l (存在斜率)过椭圆12222=+bx a y (0>>b a )上两点A 、B ,线段AB 中点为)(00y x P ,,则有22ba k k OPAB -=⋅。

3、双曲线的用点差法同理,可得220220()AB AB OP x b b k k k a y a=⋅⋅=二、抛物线的中点弦与点差法设直线与曲线的两个交点)(11y x A ,、)(22y x B ,,中点坐标为)(00y x P ,代入抛物线方程,2112=y px ,2222=y px ,将两式相减,可得()()()1212122-+=-y y y y p x x ,整理可得:12121202-===-+AB y y p pk x x y y y三、点差法在圆锥曲线中的结论AB AB M AB AB M AB AB AB AB b e x a y k k k x ab e b e x a y k k k x a y b e pk y pk y x k px k p222002222220222011-y 1111⎧-=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=⇔⎪⎪⎪⎪=-⇔⎪⎨⎪=⇔⎪⎪⎪=-⇔⎪⎩gg gg 焦点在轴椭圆:焦点在轴焦点在轴双曲线:焦点在轴开口向右开口向左抛物线:开口向上开口向下题型一中点弦所在直线的斜率与方程【例1】已知椭圆22195x y +=的弦被点()1,1平分,则这条弦所在的直线方程为______.【答案】59140x y +-=【解析】已知椭圆22195x y +=的弦被点()1,1平分,设这条弦的两个端点分别为()11,A x y 、()22,B x y ,则12121212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得121222x x y y +=⎧⎨+=⎩,由于点A 、B 均在椭圆22195x y +=上,则22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212095x x y y --+=,可得2212221259y y x x -=--,即()()()()1212121259y y y y x x x x -+=--+,所以直线AB 的斜率为121259AB y y k x x -==--,因此,这条弦所在直线的方程为()5119y x -=--,即59140x y +-=.故答案为:59140x y +-=.【变式1-1】已知椭圆2222:1(0)x y C a b a b +=>>,直线l 与椭圆C 交于A ,B 两点,直线12y x =-与直线l 的交点恰好为线段AB 的中点,则直线l 的斜率为()A.12B.14C.1D.4【答案】C【解析】由题意可得2c e a ==,整理可得a =.设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=两式相减可得()()()()12121212220x x x x y y y y a b -+-++=.因为直线12y x =-与直线l 的交点恰好为线段AB 的中点,所以121212y y x x +=-+,则直线l 的斜率21212212121(2)12y y x x b k x x a y y -+==-⋅=-⨯-=-+.故选:C 【变式1-2】已知双曲线22142x y -=被直线截得的弦AB ,弦的中点为M (4,2),则直线AB 的斜率为()A.1D.2【答案】A【解析】设交点坐标分别为1(A x ,1)y ,2(B x ,2)y ,则128x x +=,124y y +=,2211142x y -=,2222142x y -=两式相减可得22221212042x x y y ---=,即()()()()1212121242x x x x y y y y +-+-=,所以()()121212122248144AB x x y y k x x y y +-⨯====-+⨯,即直线AB 的斜率为1;故选:A.【变式1-3】过点(2,1)M 的直线交抛物线24y x =于,A B 两点,当点M 恰好为AB 的中点时,直线AB 的方程为()A.250x y +-=B.210x y --=C.250x y +-=D.230x y --=【答案】D【解析】设()()1122,,,A x y B x y ,所以2211224,4y x y x ==,两式相减得,()()()1212124y y y y x x +-=-,因为点(2,1)M 为AB 的中点,所以122y y +=,所以12122y y x x --=,故直线AB 的斜率为2,所以直线AB 的方程为()122y x -=-,即230x y --=,联立22304x y y x--=⎧⎨=⎩,所以241690x x -+=,()2164490∆=--⨯⨯>,故斜率为2符合题意,因此直线AB 的方程为230x y --=,故选:D.【变式1-4】已知斜率为1k ()10k ≠的直线l 与椭圆2214yx +=交于A ,B 两点,线段AB 的中点为C ,直线OC (O 为坐标原点)的斜率为2k ,则12k k ⋅=()A.14-B.4-C.12-D.2-【答案】B【解析】设()11,A x y ,()22,B x y ,AB 的中点()00,C x y ,则1202x x x +=,1202y y y +=.因为A ,B 两点在椭圆上,所以221114y x +=,222214y x +=.两式相减得:()22222112104x y x y -+=-,()()()()11112222104x x y y x x y y +-+-+=,()()0122011202x y x y y x --+=,()()2102011202y y y x x x --+=,即121202k k +⋅=,解得124k k ⋅=-.故选:B【变式1-5】椭圆()222210x y a b a b +=>>离心率为3,直线20x y b -+=与椭圆交于P ,Q 两点,且PQ 中点为E ,O 为原点,则直线OE 的斜率是_______.【答案】43-【解析】因为椭圆()222210x y a b a b +=>>所以3c e a ==,所以2223b a =设()11,P x y ,()22,Q x y ,所以121212PQ y y k x x -==-,1212,22x x y y E ++⎛⎫⎪⎝⎭,因为P ,Q 在椭圆上,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得22221212220x x y y a b --+=,即2221222212y y b x x a -=--,即()()()()1212121223y y y y x x x x -+-=-+,即23PQ OE k k ⋅=-,所以43OE k =-,故答案为:43-【变式1-6】已知离心率为12的椭圆()222210y x a b a b+=>>内有个内接三角形ABC ,O 为坐标原点,边AB BC AC 、、的中点分别为D E F 、、,直线AB BC AC 、、的斜率分别为123k k k ,,,且均不为0,若直线OD OE OF 、、斜率之和为1,则123111k k k ++=()A.43-B.43C.34-D.34【答案】C【解析】由题意可得12c a =,所以2243,b a =不妨设为22143y x +=.设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,222211221,14343y x y x +=+=,两式作差得21212121()()()()34x x x x y y y y -+-+=-,则21212121()3()()4()x x y y y y x x +-=-+-,134OD AB k k =-,同理可得1313,44OF OE AC BC k k k =-=-,所以12311133()44OD OE OF k k k k k k ++=-++=-,故选:C .题型二求圆锥曲线的方程问题【例2】过椭圆2222:1(0)x y C a b a b+=>>的右焦点(2,0)F 的直线与C 交于A ,B 两点,若线段AB 的中点M 的坐标为95,77⎛⎫- ⎪⎝⎭,则C 的方程为()A.22195x y +=B.2215x y +=C.22162x y +=D.221106x y +=【答案】A【解析】设()()1122,,,A x y B x y ,则12x x ≠AB 的中点95,77M ⎛⎫- ⎪⎝⎭,所以5071927AB MFk k ⎛⎫-- ⎪⎝⎭===-,又2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--,即2121221212y y y y b x x x x a-+⋅=--+,而12121ABy y k x x -==-,121252579927y y x x ⎛⎫⨯- ⎪+⎝⎭==-+⨯,所以2255199b a =⨯=,又2c =,所以22222254499c a b a a a =-=-==,所以2295a b ==,椭圆方程为:22195x y +=.故选:A.【变式2-1】已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为(1215)N --,,求双曲线E 的方程.【答案】22145x y -=【解析】设双曲线的方程为22221x y a b-=(0a >,0b >),由题意知3c =,229a b +=,设11()A x y ,、22()B x y ,则有:2211221x y a b -=,2222221x y a b -=,两式作差得:22121222121245y y x x b b x x a y y a-+=⋅=-+,又AB 的斜率是1501123--=--,∴2254b a =,代入229a b +=得,24a =,25b =,∴双曲线标准方程是22145x y -=.【变式2-2】已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率等于32,点()5-在双曲线C 上,椭圆E 的焦点与双曲线C 的焦点相同,斜率为12的直线与椭圆E 交于A 、B 两点.若线段AB 的中点坐标为()1,1-,则椭圆E 的方程为()A.2214536x y +=B.2213627x y +=C.2212718x y +=D.221189x y +=【答案】D【解析】设双曲线方程为22221(0,0)x y m n m n-=>>,则223224251m mn =⎪⎪⎨⎪-=⎪⎩,解得2245m n ⎧=⎨=⎩,故双曲线方程为22145x y -=,焦点为()3,0±;设椭圆方程为22221x y a b+=,则椭圆焦点为焦点为()3,0±,故22a b 9-=,设1122(,),(,)A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x a y y -+=-⋅-+,即221121b a =-⋅-,解得222a b =,故2218,9a b ==,椭圆方程为221189x y +=.故选:D.【变式2-3】斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;【答案】24y x=【解析】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.【变式2-4】设()11,A x y 、()22,B x y 是抛物线()2:20C x py p =>上不同的两点,线段AB 的垂直平分线为y x b =+,若1212x x +=-,则p =______.【答案】14【解析】由题知,2112x py =,2222x py =,两式相减得()()()1212122x x x x p y y -+=-,所以1212122AB y y x x k x x p-+==-,由题知1AB k =-,所以12122x x p +=-=-,所以14p =.故答案为:14.题型三求圆锥曲线的离心率问题【例3】过点()1,1M 作斜率为12-的直线与椭圆C :22221x y a b+=(0a b >>)相交于A 、B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于()A.22B.3C.12D.13【答案】A【解析】设1122(,),(,)A x y B x y ,则12122,2x x y y +=+=,121212AB y y k x x -==--,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差得1212121222()()()()0x x x x y y y y a b -+-++=,所以1212222()2()0x x y y a b --+=,即21221212y y b a x x -=-=-,所以该椭圆的离心率2c e a ==【变式3-1】已知直线3y x m =-与椭圆()2222:10x y C a b a b+=>>相交于P ,Q 两点,若PQ 中点的横坐标恰好为2m ,则椭圆C 的离心率为______.【答案】2【解析】设()11,P x y ,()22,Q x y ,代入椭圆方程得2211221x y a b +=,2222221x y a b+=,两式作差得22221212220x x y y a b --+=,整理得122122121222y y y y b x x x x a +-⋅=-+-,因为1222x x m +=,所以12123322y y x m x mm +-+-==-,又因为12121PQ y y k x x -==-,所以2212m b m a -⨯=-,所以2212b a =,所以ce a======2212c a=.故答案为:2.【变式3-2】已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为()A.14B.12C.2D.4【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以2e =.【变式3-3】已知斜率为1的直线l 与双曲线C :()222210,0x y a b a b-=>>相交于B ,D 两点,且BD 的中点为()1,3M ,则C 的离心率是______.【答案】2【解析】设1122(,),(,)B x y D x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差可得:2222121222x x y a b y =--,即1212121222()()()()x x x x y y y y a b -+-+=,因为()1,3M 为BD 中点,所以12122,6x x y y +=+=,又直线BD 斜率为1,所以12121y y x x -=-,代入可得,223b a=,所以C的离心率2e ==.故答案为:2【变式3-4】已知直线l :30x y -+=与双曲线C :22221x y a b-=(0a >,0b >)交于A ,B两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为()A.43B.2C.2【答案】D【解析】设()()1122,,,A x y B x y 点()1,4P 是弦AB 的中点根据中点坐标公式可得:12122,8x x y y +=⎧⎨+=⎩A ,B 两点在直线l :30x y -+=根据两点斜率公式可得:12121y y x x -=-,A B 两点在双曲线C 上∴22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩∴222212122210x x y y a b ---=,即()()()()2221212122221212128142y y y y y y b a x x x x x x +--===⨯=-+-解得:2b a =∴c e a ===题型四弦中点的坐标问题【例4】已知直线:1l y x =+,椭圆22:13xC y +=.若直线l 与椭圆C 交于A ,B 两点,则线段AB 的中点的坐标为()A.13,44⎛⎫- ⎪⎝⎭B.31,44⎛⎫- ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.31,22⎛⎫-- ⎪⎝⎭【答案】B【解析】由题意知,22113y x x y =+⎧⎪⎨+=⎪⎩,消去y ,得2230x x +=,则9810∆=-=>,32A B x x +=-,所以A 、B 两点中点的横坐标为:13()24A B x x +=-,所以中点的纵坐标为:31144-=,即线段AB 的中点的坐标为31()44-,.故选:B【变式4-1】求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。

运用点差法解答圆锥曲线中点弦问题的步骤

运用点差法解答圆锥曲线中点弦问题的步骤

思路探寻中点弦问题是指与圆锥曲线的弦的中点有关的问题.这类问题通常要求我们求弦的中点的坐标、弦所在直线的方程、圆锥曲线的方程,侧重于考查一元二次方程的根与系数的关系、线段中点的坐标公式、直线的斜率公式的应用,以及直线与圆锥曲线的位置关系.解答圆锥曲线中点弦问题,通常运用点差法.若直线与椭圆x 2a 2+y 2b2=1(a >b >0)相交于点A (x 1,y 1)、B (x 2,y 2),且AB 的中点M (x 0,y 0),运用点差法解答中点弦问题的步骤为:1.把A 、B 两点的坐标代入椭圆的方程,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②;2.将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即()x1-x 2()x 1+x 2a 2+()y1-y 2()y 1+y 2b 2=1,可得y 1-y 2x 1-x 2=()-b 2a 2(x 1+x 2y 1+y 2)=()-b 2a 2æèççççöø÷÷÷÷x 1+x 22y 1+y 22=()-b 2a2(x 0y 0)③;3.根据线段中点的坐标公式可得x 0=x 1+x 22,y 0=y 1+y 22,将其代入③得y 1-y 2x 1-x 2=()-b 2a 2()x 0y 0,即为直线AB 的斜率.类似地,对于焦点在y 轴上的椭圆y 2a 2+x 2b2=1(a >b >0),运用点差法可得直线AB 的斜率k AB =()-a 2b 2()x 0y 0;对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()b 2a 2()x 0y 0;焦点在y 轴上的双曲线y 2a 2-x2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()a 2b 2()x 0y 0.利用点差法,由弦AB 所在直线的斜率和圆锥曲线的方程,可以得到弦AB 中点的横坐标x 0与纵坐标y 0之间的关系式.例1.在直角坐标系xOy 中,曲线C 的参数方程为ìíîx =2cos θ,y =4sin θ,其中θ为参数,直线l 的参数方程为ìíîx =1+t cos θ,y =2+t sin θ,其中t 为参数.若曲线C 截直线l 所得线段的中点为(1,2),求直线l 的斜率.解:由ìíîïïïïx2=cos θ,y 4=sin θ,可得曲线C 的直角坐标方程是y 216+x 24=1,当直线l 的倾斜角θ≠π2时,由ìíîx -1=t cos θ,y -2=t sin θ,得y -2x -1=tan θ,则直线l 的直角坐标方程是y =x tan θ+2-tan θ.当直线l 的倾斜角θ=π2时,直线l 的斜率不存在,其方程是x =1,设直线l 与曲线C 相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,2),所以x 1+x 22=2,y 1+y 22=4,把A 、B 两点的坐标代入椭圆的方程中,得x 1216+y 124=1①,x 2216+y 224=1②,将①②两式作差得x 12-x 2216+y 12-y 224=1,可得直线l 的斜率k AB=()-164()x 1+x 2y 1+y 2=()-164×()12=-2.运用点差法,由弦的中点坐标和曲线的方程,可以直接通过整体代换,快速求得弦所在直线的斜率,这样可以大大减少运算量.例2.已知双曲线x 2-y 22=1,那么过点P (1,1)能否45思路探寻作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB的中点.解:设直线l 与双曲线相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,1),所以x 1+x 22=2,y 1+y 22=2,把A 、B 两点的坐标代入双曲线的方程,得x 12+y 122=1①,x 22+y 222=1②,将①②两式作差得()x 12-x 22+y 12-y 222=1,可得k AB =2()x 1+x 2y 1+y 2=2.得直线l 的方程为y -1=2(x -1),即y =2x -1.联立直线与双曲线的方程,得ìíîïïy =2x -1,x 2-y 22=1,消去y ,得2x 2-4x +3=0,所以△=16-24=-8<0,则方程无解.所以直线l :y =2x -1与双曲线x 2-y 22=1相离,故不存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.本题涉及了双曲线的弦、中点,属于中点弦问题,需运用点差法求解.将直线与双曲线的两个交点的坐标分别代入双曲线的方程中,并作差,从而求得弦所在直线的斜率和方程.最后还需构造出一元二次方程,根据方程的判别式来判断直线与双曲线是否有两个交点,检验所求的直线方程是否满足题意.例3.已知椭圆x 22+y 2=1上的两点A 、B 关于直线y =mx +12对称,求实数m 的取值范围.解:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程,得x 122+y 12=1①,x 222+y 22=1②,将①②两式作差得()x12-x 222+()y 12-y 22=1,可得-1m =()-12()x 1+x 2y 1+y 2.设弦AB 的中点M (x 0,y 0),则y 0=mx 0+12③,可得-1m =(-12)(x 0y 0)④,由③④可得ìíîïïïïx 0=-1m,y 0=-12,即M (-1m ,-12),因为弦AB 的中点M 必在椭圆内部,所以()-1m22+()-122<1,解得mm <由于A 、B 两点关于直线对称,所以A 、B 两点的中点在直线上.本题实质上是中点弦问题,需运用点差法求解.先将两点的坐标代入椭圆的方程中,并作差,即可求出直线的斜率;然后建立关于AB 中点坐标的方程组,求得中点的坐标;再将其代入椭圆的方程中,根据椭圆与点的位置关系,求得参数m 的取值范围.例4.已知直线AB 与椭圆x 2a 2+y 2b2=1交于A 、B 两点,B 与B '关于原点O 对称,证明:直线AB 与直线AB '的斜率之积为定值.证明:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程中,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②,将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即y 1-y 2x 1-x 2=()-b 2a2(x 1+x 2y 1+y 2),变形得y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2,而直线AB 的斜率为k AB =y 1-y 2x 1-x 2,直线AB '的斜率为k AB '=y 1-(-y 2)x 1-(-x 2),所以k AB ⋅k AB '=y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2.解答本题,需灵活运用点差法和直线的斜率公式,建立关于直线AB 和直线AB '的斜率的关系式,从而证明结论.运用点差法解题,只需通过简单的整体代换,即可求得直线的斜率、弦中点的坐标,这样可以有效地提升解题的效率.但是点差法的适用范围较窄,只适用于求解中点弦问题,且其中的x 1、x 2、y 1、y 2不一定是实数,有可能是虚数,因此在运用点差法解题时,还需检验所得的结果是否满足题意.(作者单位:陕西省宝鸡市岐山县蔡家坡高级中学)46。

利用点差法处理圆锥曲线的“中点弦问题”

利用点差法处理圆锥曲线的“中点弦问题”

专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。

点差法解圆锥曲线中点弦问题新发现

点差法解圆锥曲线中点弦问题新发现
本文通过深入探究点差法在解圆锥曲线中点弦问题中的应用,提出了一种新的解题思路。首先,通过逻辑推理过程找出传统点差法可能存在的问题,即求出的直线不一定与双曲线有交点。进而,通过详细分析,得出了新的结论,即对于给定的双曲线和平面内任意一点,总存在某个实数使得该点成为双曲线上某条弦的中点。这一发现不仅揭示了问题的本质,还将原有性质从椭圆推广到双曲线的情形。此外,本文还强调了这一探学生发现问题、提出问题、探究问题和解决问题,使其经历“问题-探究-结论”的“再创造”过程,有助于促进学生数学学科核心素养的形成和发展。

中学数学利用点差法处理圆锥曲线的“中点弦问题”

中学数学利用点差法处理圆锥曲线的“中点弦问题”

专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。

圆锥曲线技巧--点差法

圆锥曲线技巧--点差法

x12 4 x22
4
y12 2 y22 2
1 1
两式相减得
x12
x22 4

y2
2
y2
,即
y1 y2 x1 x2
1

2
×
x1 y1
x2 y2
.
又线段
AB
的中点坐标是
1 2
,
1
,因此
x1+x2=1,y1+y2=(-1)×2=-2,
所以
y1 x1
y2 x2
=-
1 4
,即直线
AB
技巧 1 点差法在椭圆在的应用
【例 1】(1)(2020·全国高三专题练习)直线 y kx 1与椭圆 x2 y2 1相交于 A, B 两点,若 AB 中 4
点的横坐标为1,则 k =( )
A. 2
B. 1
C. 1 2
D.1
(2)2.(2020·高密市教育科学研究院高三其他模拟)已知椭圆
G
则 x1 x2 2x0 , y1 y2 2 y0 .
因为 A , B 两点在椭圆上,所以 x12
y12 4
1, x22
y22 4
1.
两式相减得:
x12
x22
1 4
y12 y22
0,
x1
x2
x1
x2
1 4
y1
y2
y1
y2
0

2 x0
x1
x2
1 2
y0
y1
y2
0,2
1 2
y0 y1 x0 x1
(3).(2020·黑龙江哈尔滨市·哈九中高三三模(文))已知斜率为 k1
k1 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用点差法解圆锥曲线的中点弦问题
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的 根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若设直线与圆锥曲线的交点(弦的端点) 坐标为A(x 1, y 1)、B(x 2,y 2),将这两点代入圆锥曲线
的方程并对所得两式作差,得到一个与弦 AB 的中点和斜率有关的式子,可以大大减少运算量。


们称这种代点作差的方法为“点差法” 。

一、以定点为中点的弦所在直线的方程
解:设直线与椭圆的交点为 A(x 1, y 1)、B(x 2, y 2)
是线段AB 的中点。

若存在这样的直线 I ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

解:设存在被点M 平分的弦AB ,且A(x 1, y 1)、B(x 2,y 2)
故直线 AB: y 1
2(x 1)
y 1 2(x 1) 由 2 y 2
消去y ,得2x 2 4x 3 0
x
1
2 2
(4)
4 2 3 8 0
评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。

由此题可看到中点弦问题 中判断点的M 位置非常重要。

(1)若中点M 在圆锥曲线内,则被点 M 平分的弦一般存在;(2)若 中点M 在圆锥曲线外,则被点 M 平分的弦可能不存在。

二、 过定点的弦和平行弦的中点坐标和中点轨迹
2 2
例3、已知椭圆 ——1的一条弦的斜率为 3,它与直线x
75 25
点M 的坐标。

x 2
例1、过椭圆乞
16
2
y
1内一点M(2,1)引一条弦,使弦被 4 M 点平分,求这条弦所在直线的方程。

M (2, 1)为AB 的中点
X 1 X 2 4 y 1 y 2 2 又A 、 B 两点在椭圆上,则
2 X
1
4y
2 .
2 2 16,X
2
4y 2
两式相减得
(才 X 22
) 4( y.
2 y 2
) 0
于是(x 1
X 2)(X 1 X 2)4(y 1
y 2)( y 1 y 2) 0 y 1
y 2 X 1 X 2
4
1
x-i x 2
4( y 1 y 2)
4 2
2
即k AB
1
,故所求直线的方程为
y 1
1
-(x 2),即
2
2
16
x 2y 4 0。

,使I 与双曲线交于A 、B ,且点M
则X 1 X 2 2 y 1 y 2 2
2
2
2
y 1 1
, 2
y 2 1
X 1
X 2
2
2 两式相减,得
1
(X 1 X2XX 1 X 2)
(y 1
y 2)(y 1
2
y 1 y 2 y 2)0
k AB 1 - 2
X 1 X 2
这说明直线 AB 与双曲线不相交,故被点 M 平分的弦不存在,即不存在这样的直线
1
的交点恰为这条弦的中点
2
M ,求
2
例2
、已知双曲线X 2
乡1
,经过点Mg 能否作一条直线
1
即 b 2(y i y 2) a 2(X i x ?)
解:设弦端点 P(x i ,yj 、Q(X 2,y 2),弦 PQ 的中点 M(x o ,y 。

),则 X 。

x i x 2
2x
0 i , y i
y 2 2y °
2
2
2
2

y i
X i i , y2 X
2 i
75 25 75 25
两式相减得 25(y i y 2)(y i y 2) 75(X i
X 2 )(X i
X 2)
即 2y 0(
y i
y 2)
3( x i X 2) 0

y 2
3
X i X 2
2y 0 k
yi
y 2
3
3 3
3,即
i y
X i X 2
2 y
2
点M 的坐标为 (-,-)o
2 2
2
2
例4、已知椭圆- —
1,求它的斜率为3的弦中点的轨迹方程。

75 25
解:设弦端点P(x i ,y i )、Q(X 2, y 2),弦PQ 的中点M(x, y),则
X-| x 2 2x ,
y i
y 2 2y
2
2
2
2
又y i
x i i y 2
X 2 i 75 25 75 25
两式相减得 25(y i y 2)(y i y 2) 75( x i x 2)(x-i
x 2) 0
3x
即 y (
y i
y 2)
3
x(x i X 2) 0
y i
y 2 即22 2
x i x 2
y i y 2 3x
3,即 x y
x

75 点M
X i X 2 y 0
2
—i 25
在椭圆内
,得 P(
它的斜率为3的弦中点的轨迹方程为 x y
0(
2
5 3、 x V )
三、求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为F(0, .. 50)的椭圆被直线I : y
3x 2截得的弦的中点的横坐标为
1
丄,求椭圆的方程。

2
i
i
X 0
-, y °
3x
2
X i
2
X 2 2x 0 i , y i y 2 2y 0
i
2 2
2
2
又 y i
x
i
i , y 2 2
J i
a b
a b
两式相减得b 2 (y i y 2)(y i y 2) a 2 (X i X 2)(
X i
X 2
) 0
2 2
解:设椭圆的方程为 芯 牛 i ,则a 2 b 2 50……①
a 2
b 2
设弦端点 P(x i ,y i )、Q(X 2,y 2),弦 PQ 的中点 M(x °,y °),则
五、注意的问题
1)双曲线的中点弦存在性问题;

U 用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且
应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴 趣。

2 Y 1 Y 2
a
2
a 2
为 x 2 b
b 2
联立①②解得a 2
75 , b 2 25 2
2
所求椭圆的方程是-x 1
75 25
四、圆锥曲线上两点关于某直线对称问题
2 2
例6、已知椭圆 — - 1,试确定的m 取值范围,使得对于直线 4 3
的两点关于该直线对称。

y 4x m ,椭圆上总有不同
解:设R(x 「y 1), F 2(X 2,y 2)为椭圆上关于直线 y 4x 则 3x-|
2
4%2 12, 3x 22 4y 22 12
两式相减得,3(x 12 x 22) 4(y 12 y 22) 0 即 3(x 1 X 2)(X 1
X 2)
4(
y 1 y 2)(y 1 y 2)
2x , y 1 y 2 2y ,勺―
X 1 X 2
这就是弦RP 2中点P 轨迹方程。

4x m 的交点必须在椭圆内 m 的对称两点,P(x, y)为弦RF 2的中点,
y 3x
它与直线 联立
y
y y
3x
4x
,得
x
m y
3m
则必须满足y 2
即(3m)2
討2,解得
2、
13
13
2.13 13
(2) 弦中点的轨迹应在曲线内。

相关文档
最新文档