基坑支护结构内力变形监测分析

合集下载

基坑变形监测工程方案

基坑变形监测工程方案

基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。

在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。

1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。

监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。

监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。

2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。

可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。

3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。

监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。

4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。

可以使用倾斜仪、位移计等仪器设备进行监测。

二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。

传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。

在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。

三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。

在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。

四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。

一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。

五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。

基坑变形监测的内容

基坑变形监测的内容

基坑变形监测的内容基坑变形监测是指对工程基坑在施工和使用过程中产生的变形进行实时监测和分析的过程。

基坑变形监测的目的是为了确保工程的安全稳定,及时发现和解决可能出现的问题,保障施工进度和质量。

在基坑施工过程中,地面开挖和支护施工会引起周围土体的变形和移位。

这些变形和移位可能会导致地面沉陷、周围建筑物的倾斜甚至坍塌等严重后果。

因此,基坑变形监测必不可少。

基坑变形监测的常用方法包括测量法和监测仪器法。

测量法是指通过测量基坑周围建筑物、地面和地下水位等参数的变化来判断基坑的变形情况。

监测仪器法则是通过安装各种监测仪器,如倾斜仪、位移计、应变计等来实时监测基坑的变形情况。

基坑变形监测的内容主要包括基坑周围建筑物的倾斜监测、地面沉降监测、地下水位监测以及基坑支护结构的变形监测等。

这些监测内容可以通过测量法或监测仪器法进行实时监测和分析。

基坑周围建筑物的倾斜监测是基坑变形监测中的重要内容之一。

通过在建筑物上安装倾斜仪或激光测距仪等仪器,可以实时监测建筑物的倾斜情况。

如果发现建筑物倾斜超过安全范围,就需要采取相应措施,如加固建筑物或调整施工方案。

地面沉降监测是基坑变形监测的另一个重要内容。

地面沉降是指地面由于基坑开挖和土体变形等原因而发生的下沉现象。

通过在地面上设置沉降点,并使用沉降仪进行测量,可以实时监测地面沉降情况。

如果发现地面沉降过大,就需要及时采取补充土方案或加大支护措施。

地下水位监测是基坑变形监测中的重要环节。

地下水位的变化会直接影响到基坑周围土体的稳定性。

通过在基坑周围设置水位监测点,并使用水位计进行实时监测,可以及时掌握地下水位的变化情况。

如果发现地下水位过高或过低,就需要采取相应的排水或补水措施,以保证基坑的稳定施工。

基坑支护结构的变形监测也是基坑变形监测的重要内容。

基坑支护结构的变形情况直接关系到基坑的稳定性和安全性。

通过在支护结构上安装位移计、应变计等监测仪器,可以实时监测支护结构的变形情况。

深基坑围护结构位移变形及内外力监测技术

深基坑围护结构位移变形及内外力监测技术

深基坑围护结构位移变形及内外力监测技术一、深基坑围护结构及其位移变形1.地铁深基坑特点地铁施工中,通常在地铁车站处采用明挖法进行,必然产生比较深的深基坑,对于有多条地铁线路相交的换乘枢纽站来说,其深度更大,。

相对于一般基础工程而言,地铁深基坑工程具有许多特点,概括起来主要有以下几个方面:(1)深度大。

通常在十米以上,对于有线路交叉的换乘车站其深度会更大开挖面积大,长度与宽度有的达数百米给支撑系统的设计、施工和安全保障带来较大的困难。

(2)地铁往往修建在大型城市,而我国绝大部分大型城市位于沿海或滨江地带,这些区域的工程水文地质条件很差,且施工期受地表交通影响非常严重,在软弱的地层、高水位及其它复杂场地条件下开挖深基坑,极有可能会产生土体滑移、深基坑失稳、桩体变位、坑底隆起、支挡结构严重漏水、流土以至破损等病害,对深基坑工程自身及周边建筑物、地卜构筑物、市政设施和地下管线的安全造成很大威胁。

(3)施工周期长,且场地受限制多。

地铁深基坑沿线往往有大量已建或正在建的高层建筑、市政管线等,进行深基坑施工时除保障其本身的工程安全外,还需严格控制变形值,保障周边建构筑物的安全。

(4)因地而异。

不同城市、不同地点的工程及水文地质条件存在较大差别,而且施工环境及气象也各不相同,这些都直接影响深基坑施工方案的选择及安全。

(5)技术要求高,涉及面广。

地铁深基坑工程牵涉到土力学、岩石力学、混凝土结构、钢结构等的设计及施工监测技术,必须选择合理的设计及施工参数、方法来组织施工及安全防护。

(6)施工与设计相互关联。

地铁深基坑工程对技术要求高,施工与设计必须相互协调,在设计时就要对施工工艺、支护方法、支护结构变形及受力情况进行充分考虑,以施工影响设计。

(7)对深基坑的支护技术要求高、方法多,深基坑支护的方法主要有、地下连续墙、预制桩、深层搅拌桩、钢木支撑、拉锚、抗滑桩、注浆、喷锚网支护法、人工挖孔桩、各种桩墙、板、管、撑同锚杆联合支护法和土钉墙法等,如何根据工程实际情况选择施工方法非常关键。

基坑支护结构内力变形监测分析

基坑支护结构内力变形监测分析

基坑支护结构内力变形监测分析摘要当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。

本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。

关键词基坑工程;支护结构;内力变形随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。

而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。

同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。

1 基坑支护结构内力变形监测要求基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。

其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。

由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。

为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从实际的检测到的数据用反分析的方法去修改计算机模型中的一些参数,再根据这些参数,运用正分析的方面从而计算出下一个施工阶段的数据。

2 基坑支护结构内力变形的控制措施2.1 控制要求基坑变形主要控制方法主要为加深、加刚、加固、降水、随挖随撑,增加维护结构和支撑的刚度,增加围护结构的入土深度,加固被动区土体,控制降水减少开挖时间,随挖随撑,缩短暴露。

2.2 控制措施2.2.1 冻结+排桩支护技术地基冻结排装桩伐法顾名思义就是将两种技术互相结合取长补短,是一种大胆的技术创新,将含有水的地基坑的封水结构,利用排桩和内部的支撑系统来作为受力层用来抵抗水土带来的压力。

深基坑支护结构变形控制与监测

深基坑支护结构变形控制与监测

二、 基坑 变形 机理 及影 响 因素
1基坑 施 工 中的 变形 机理
k 为 测段 的 长度 0 i 为倾 角 △i 为 位移 变化 值
- 1 测 斜仪 测 点布 置 图 根 据 上 式 测 得 数 据 绘 制 出 水 平 变 位 曲 图3 线。
4 . 数 据 优 化 处 理
利用桩体测斜仪在基坑壁按0 . 5 m 点距从 ■ 下 往上 进行 测 点布 置 , 测 斜仪 布 置 图如 图3 — 1 ■ 要求, 根据基坑土质的不 同和周围建筑物的影响, 根据支护周围土体参数和 所 示 。通过 取 点数 据 可 以根据 下 式进 行 计算 支 护结 构 的 相关 参 数 事先 预 测支 护 结 构 的变 形量 , 研 究 基坑 开 挖 变形 量 对施 位 移变 化 : 工 质量 和 周 围环境 的影 响 , 就具 有 十分 重 要 的意 义 。 △ i =L s i n 0 i

基坑 在 开 挖过 程 中 , 由于周 围土 体 的 应力 载 荷 发 生 了变 化 , 改 变 了原 有 应力平衡状态 , 使得周 围土体产生了新的应力挤压变形 , 土体在卸荷过程 中 发生 水 平 移动 , 使 支护 结 构 发生 水 平 位 移 , 从 而产 生 土 体移 动引 起 的 地表 开
靛体位移 / h
2 o l 5 l O 5 O - 5
裂和垂直沉降。 另外 , 在有支护结构或支护桩存在的基坑 内, 基坑内侧土体垂 直向的卸荷而产生坑底隆起变形。 因此 , 基坑变形主要表现为围护结构位移、 周 边 地表 沉 降及 基 坑底 部 隆起 三种 情 况 。 这 些 变形 容 易引 起 基坑 内墙 体 或桩 的变化 , 影响施工质量 , 带来质量隐患。

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。

实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。

在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。

通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。

基于此,本文将对深基坑工程施工变形的监测进行分析。

关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。

确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。

基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。

监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。

基坑支护变形监测记录

基坑支护变形监测记录

基坑支护变形监测记录基坑支护变形监测是指在土木工程施工中对基坑支护体进行变形监测的过程。

基坑支护是为了保证土方开挖过程中土体的稳定性而进行的一系列工程措施。

基坑支护体变形监测是对这些措施的有效性进行评估的重要手段,有助于保障施工的安全和质量。

1.监测目的:需要明确该次监测的目的以及所要达到的效果。

例如,是否为了评估施工前后地下水位变化对支护体的影响,或者评估施工过程中支护体的变形情况等。

2.监测方法:记录使用的监测方法,包括监测设备、监测点布置和监测周期等。

常用的监测方法有测量孔法、全站仪法、倾斜仪法等。

3.监测过程:详细记录监测过程中的操作步骤、监测点的选择和布置情况、监测设备的使用情况等。

同时,还需记录监测过程中发现的问题和解决措施,如监测点测不出数据、设备故障等。

4.监测数据:将监测得到的原始数据进行整理和汇总,包括监测点的测量数据和变形量计算结果等。

对于监测点,需要记录测量时间、测量参数、测量值、测量精度等。

5.数据处理与分析:对监测数据进行处理与分析,包括数据的平滑处理、趋势分析、变形特征分析等。

根据分析结果,评估支护体的变形情况以及是否符合设计要求,进一步指导施工工艺的调整和优化。

6.结论与建议:根据监测数据的分析结果,给出本次监测的结论和建议。

结论应明确地评估支护体的安全性和稳定性,是否需要调整支护体结构或施工工艺等。

建议可以包括加强支护措施、改进施工方法或者增加监测频率等。

7.监测报告:将监测记录整理成监测报告,报告中应包含本次监测的目的、方法、过程、数据、分析结果、结论和建议等。

监测报告是对监测工作的总结和总结,并提供给相关人员进行参考。

基坑支护变形监测记录的重要性不可忽视。

通过监测记录,可以实时了解基坑支护体的变形情况,及时发现问题并采取措施,确保施工的安全性和质量。

基坑支护变形监测记录是施工单位与监理单位交流的重要依据之一,同时也为后续类似工程提供参考和经验。

因此,对基坑支护变形监测记录的编写和整理要严谨,尽量详细和准确,以便后续的分析和研究。

T0805_基坑支护变形监测报告

T0805_基坑支护变形监测报告

T0805_基坑支护变形监测报告一、引言基坑是建筑工程施工过程中常见的一项重要工程。

在基坑的施工中,为了保证工程的安全和质量,必须进行基坑支护结构的变形监测。

本报告旨在对工程基坑支护变形监测结果进行分析和总结,为施工过程中的管理和调整提供参考。

二、监测目的1.监测基坑支护结构的变形情况,及时发现变形异常,保证施工过程中的安全。

2.为后续的工程设计和调整提供数据依据。

3.对基坑支护工程的施工方案进行评估和验证。

三、监测方法与仪器1.监测方法采用常规的测量法和激光扫描技术相结合的方法。

对于测量法,采用水准仪和全站仪。

激光扫描技术采用三维激光扫描仪。

2.监测仪器包括水准仪、全站仪和三维激光扫描仪。

四、监测内容及结果分析1.监测内容1.1支护结构的竖向位移;1.2支护结构的水平位移;1.3支护结构的倾斜变形;1.4地下水位的变化。

2.监测结果分析2.1支护结构的竖向位移根据监测数据统计,支护结构的竖向位移以直线下降趋势为主,变形大小较小,且变化幅度稳定。

表明支护结构的稳定性良好。

2.2支护结构的水平位移支护结构的水平位移主要分为两个方向,即沿着基坑边坡方向和垂直边坡方向。

监测数据显示,沿着基坑边坡方向的位移较大,变形幅度较小,变形速度稳定;垂直边坡方向的位移变化较小,较为稳定,变形幅度较小。

整体上,支护结构的水平位移在可控范围内。

2.3支护结构的倾斜变形支护结构的倾斜变形主要体现在基坑边坡的倾斜度。

监测数据显示,基坑边坡的倾斜变形较小,且变形速度较慢。

说明支护结构的稳定性较好。

2.4地下水位的变化地下水位的变化是基坑支护变形监测的重要指标之一、监测数据显示,基坑施工过程中,地下水位的变化幅度较小,且变化趋势稳定。

表明基坑支护结构对地下水位变化的响应较好。

五、结论与建议1.结论通过对基坑支护变形监测数据的分析,可以得出以下结论:1.1支护结构的竖向位移变化较小,稳定性良好;1.2支护结构的水平位移在可控范围内,变形幅度小;1.3支护结构的倾斜变形较小,支护结构稳定性良好;1.4基坑施工过程中,地下水位变化幅度小,支护结构对地下水位变化的响应较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基坑支护结构内力变形监测分析
当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。

本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。

关键词基坑工程;支护结构;内力变形
随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。

而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。

同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。

1 基坑支护结构内力变形监测要求
基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。

其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。

由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。

为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从。

相关文档
最新文档