绘制开环幅相频率特性曲线的教学方法研究

合集下载

5.3.15.2.2开环幅相特性曲线学习资料

5.3.15.2.2开环幅相特性曲线学习资料

j
1)
2 (1
k
0.25 2 )(1 2 ) [(1
2.5 2 )
j(0.5 2 )]
Im[ GK ( j)] 0.5 2
0
,求得
2 x
0.5 ,因此求得幅相曲线与实轴得交点为:Re[GK ( jx )] 2.67k
概略幅相曲线见右图:
入坐标原点;
n m 2 时, G( j) 0 180 0 ,Nyquist图从负实轴的方向进
入坐标原点;
n m 3时, G( j) 0 270 0 ,Nyquist图从正虚轴的方向进
入坐标原点。
图2
3)穿越实轴的位置。
令频率特性 G( j) 的虚部为零,即 Im[G( j)] 0 ,并求得相应的频率 x ,然后将此频率 x 代入 频率特性G( j) 的实部,则 Re[G( jx )] 就是Nyquist图与实轴的交点。
图1
5.2.2 开环幅相特性曲线
三要素
2)终点确定。
Nyquist图的终点是 时 G( j) 在复平面上的位置。
G(
j)
b0 s m a0 s n
b1sm1 a1sn1
... ...
bm1s an1s
bm an
b0 a0
(
1 j)nm
b0 / a0 ( j)nm
(3)
n m 1时, G( j) 0 900 ,Nyquist图从负虚轴的方向进
1)起点确定。
Nyquist图的起点是 0 时 G( j0 ) 在复平面上
的位置。
G(
j0 )
(
K
j)
G0 (
j)
0
(
K
j)
(2)

自动控制理论_19开环对数频率特性曲线的绘制

自动控制理论_19开环对数频率特性曲线的绘制

穿越法判断包围圈数 设 N 为开环幅相频率特性曲线穿越(- 1 , j0 ) 点左侧负实轴的次数, N +表示正穿越的次数(从 上往下穿越), N -表示负穿越的次数(从下往上 穿越),则
R 2N 2( N N )
5.2 例 系统开环传递函数为 G ( s) H ( s) 2 ( s 2)(s 2s 5)
圈时,F(s)总的相角增量为
n i 1
F ( s) ( s zi ) ( s pi )
i 1
n
( s z1 ) ( s z2 ) ( s zn ) ( s p1 ) ( s p2 ) ( s pn )
s
s zi
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
j
s
s zi
zi
s
j
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
S 平面上的闭合曲线 Γs 内部仅有 1 个 F(s) 的零点, F (s) 的其 它零极点如图所示。当闭合曲线Γs上任一点S沿顺时针方向转动一
第五章
频率域方法
5.3
开环对数频率特性曲线的绘制
根据叠加原理,绘出各环节的对数幅频特性 分量,再将各分量的纵坐标相加,就得到整个系 统的开环对数幅频特性;将各环节的相频特性分 量相加,就成为系统的开环对数相频特性。

10(0.5s 1) G( s) s ( s 1)(0.05s 1)
1 180 ,即A() 1 (-1,j0)点表示成幅角形式是 ( ) 180 而A(ω)=1对应于对数幅频坐标图上L(ω)=0 的水平线; () 180则对应于对数相频坐标图上- 180°的水平线。因此可以进行坐标系转换。

3、开环幅相曲线绘制开环幅相曲线绘制方法(1)由开环零点-极点

3、开环幅相曲线绘制开环幅相曲线绘制方法(1)由开环零点-极点

)
2型系统包含两个积分环节,例如
G(s)
K
s 2 (T1s 1)(T2 s 1)
G( j)
K
K
( j) 2 ( jT1 1)( jT2 1) 2 1 T12 2
() 180 arctgT1 arctgT2
2020/11/13
Automatic Control Theory
e j ( )
1 T22 2
起点: G( j0) A(0) K 终点: G( j) A() 0
G( j0) (0) 0o G( j) () 180o
与实轴的交点: Q(x ) 0 Q() K (T1 T2 ) /(1 T12 2 )(1 T22 2 ) 0
x 0
与虚轴的交点: P( y ) 0
P() K (1 T1T2 2 ) /(1 T12 2 )(1 T2 2 2 )
Hale Waihona Puke 变化的。例如P(0) K
0
G(s)
K(T1s 1)
(T2 s 1)(T3s 1)(T4 s 1)
n 3, m 1
G( j0) K0o , G( j) 0(1 3)90o 0 180o
2020/11/13
Automatic Control Theory
7
开环传递函数含有积分环节时的开环幅相曲线
T RC u r
C R uc
G(s) Ts s Ts 1 s 1/ T
试绘制其幅相特性。
2020/11/13
Automatic Control Theory
1
G( j) j T
T
j
(
arc
tgT
)
e2
jT 1 1 2T 2

开环系统频率特性曲线的绘制方法

开环系统频率特性曲线的绘制方法

开环系统频率特性曲线的绘制方法(一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω);112112221122121122121121122211221211221222222222(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2]m m m m j k j kk k j k j kk k k vn n n n i l i l lli l i l l lj T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωωω+-+---=+-+---∏∏∏∏∏∏∏∏ (1)式中:分子多项式中最小相位环节的阶次和为111212m m m =+,分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+,分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。

注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、11Ts -、22121nns s ξωω+-、2221nns s ξωω+-等非最小相位环节。

2、求N 氏曲线的起点当ω→0+时,(1)式可近似为:0lim ()()k vk G j j ωωω+→→(2)于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。

① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点:0k >时,沿着角度()2v πϕω=-⨯起始于无穷远点;0k <时,沿着角度()2v πϕωπ=--⨯起始于无穷远点。

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

用MATLAB进行系统频率特性曲线绘制

用MATLAB进行系统频率特性曲线绘制

目动控制原三课程验证性实验报告比较两图的区别与特点。

如果该系统变成^型系统,即G《)+ ',情况又发生怎么样的变s2(T s + 1)2化?—(一kV"),令u = 1,分别绘制k = 1,2,10时系统的Nyquist图并保持,比s u (s + 1)(s + 2)较分析系统开环增益k不同时,系统Nyquist图的差异,并得出结论。

令k = 1,分别绘制k=1,2,3,4时系统的Nyquist图并保持,比较分析u不同时,系统Nyquist图的差异,并得出结论。

e.二阶系统传递函数为G (s)= ----- w------ ,试用MATLAB绘制出不同z和w的伯德图。

s 2 + 2zw s + w 2 nn nf.系统的开环传递函数为G4)= ------ 35 ------- 求系统的幅值裕度和相角裕度,并求其闭环阶跃s3 + 2s2 + 3 s + 2响应。

g.系统的开环传递函数为G《)=( 吁+° ),求系统的幅值裕度和相角裕度。

(s + 1)(s 2+ s +9)4、实验方法、步骤:a)num=10,den=[1 2 10];w=0::100;axis([-1,,-2,2]);nyquist(num,den)b)num=;den=[1 2 1 ];figure(1);nyquist(num,den)c)k=1,T1=3,T2=2,T1>T2 num=4;den=[2 1 0];nyquist(den,num)num=3;den=[3 1 0];nyquist(den,num)k=1,T1=3,T2=2,T1>T2 num=[3 1];den=[2 1 0 0];nyquist(den,num))k=1,T1=2,T2=3,T1<T2 num=[2 1];den=[3 1 0 0];nyquist(den,num) d)(1)u=1,k=1 num=1;den=conv([1 0],conv([1 1],[1 2]));nyquist(den,num)u=1,k=2 num=2;den=conv([1 0],conv([1 1],[1 2]));nyquist(den,num) u=1,k=10 num=2;den=conv([1 0],conv([1 1],[1 2]));nyquist(den,num) (2)k=1,u=2num=2;den=conv([1 0 0],conv([1 1],[1 2]));nyquist(den,num) k=1,u=3num=2;den=conv([1 0 0 0],conv([1 1],[1 2]));nyquist(den,num)k=1,u=4 num=2;den=conv([1 0 0 0 0],conv([1 1],[1 2]));nyquist(den,num)k=1,T1=2,T2=3,T1<T2e)(1):为固定值,z变化时,运行下面的程序, wn=1,zet=[0::1,2,3,4,5];hold onfor i=1:length(zet)num=wn^2;den=[1,2*zet(i)*wn,wn^2];bode(num,den);endgrid onhold off2) z为固定值,:变化时,运行下面的程序 Wn=[::1];zet=;hold onfor i=1:length(wn)num=wn(i)八2;den=[1,2*zetwn(i),wn(i)八2];bode(num,den);endgrid on ,hold offf)G=tf,[1,2,3,2]);G_close=feedback(G,1);[Gm,Pm,Wcg,Wcp]=margin(G)step(G_close),grid ong) G=tf(100*conv([1,5],[1,5]),conv([1,1],[1,1,9]));[Gm,Pm,Wcg,Wcp]=margin(G) G_close=feedback(G,1);step(G_close),grid on 5、实验现象、实验数据记录:(a)系统的Nyquist 图-1“Real Axis 叱 1 -1.5-1-0.50.511.51.5Real AxisK=1, T 时的Nyquist 图0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5-9-8-7-6-5-4 -3-2-1Real Axisk=1,T1=3,T2=2,T1>T2-0.8-16-14 -12 -10 -8 -6 -4 -2 0Real Axisk=1,T1=2,T2=3,T1<T2-3 -2500-2000 -1500 -1000 -500 0 500Real Axisu=1,k=2Real AxisX107(d) u=1,k=1Real AxisRnxa vran.oam —6、实验现象、实验数据的分析:1、从(a)可以得出结论,闭环系统有2个不稳定极点。

关于绘制开环幅相频率特性曲线的方法研究

关于绘制开环幅相频率特性曲线的方法研究

特性 曲线 的绘制则是利用乃奎斯特判据的基础 。针对许多学生对概念理解 不清的现状 , 本文着 重介绍绘制一般线性 系统开环幅相频率特性 曲
线 的原理 。 并分析其起点和终点的幅值与相位 , 详细阐述绘制步骤的推理过程 通过实例表 明, 该绘 制方法 简便 , 并且在教学 实践 中收 到了 良
Ab ta t Th t o ffe u n ya a y i o l e rs s e i av r sr c : e me h d o r q e c n l sst i a- y tm s e yi o t n eh di ls ia u o — n mp ra t t o ca sc l t ma m n a t n t e r ,a d t e Ny u i cie in i k y i e r i g a d ta h n . Dr wig t e c r e o g iu e i h o y n h q st rt r s e n lan n n e c i g o o a n h u v fma n t d - p a e fe u n y c aa trs i b s d o p n —lo sf u d t n o sn y u i cie in . I r e o h s rq e c h r ce it a e n o e c o p i o n a i fu ig N q st rt r o o n o d rt i r v h t d n s n e sa dn b u t o c p ,t i ril m p a ie rn i lso r wig c r e mp o e t e su e t ’u d r t n ig a o ti c n e t h sa t ee h sz sp icp e f a n u v s c d a o tg n r ll e rs se m a nt d p a e fe u n y c a a trsi n o e -o p.t e n lz s ma n — b u e e a i a- y t m g iu e h s r q e c h r ce it o p n l o n - c h n a ay e g i t d n h s fc r e Sp i a n e m ia.S m ee a p e n ia et a hsm e h d i s p ea dc n u ea dp a eo u v ’ r la d tr n 1 o x m lsid c t h tt i t o s i l n o — m m v n e t u t em o e i g t o d ta h n fe t e in ;f rh r r e sa g o e c i ge fc. t Ke w r s m a n f d p a efe u n y c a a trsi f p n lo ; y u s u v ;r q e c -il n l ss y o d : g i e — h s r q e c h r c eit o e -o p N q itc r e fe u n y f d a ay i i c o e

自动控制原理5.3 系统开环频率特性

自动控制原理5.3 系统开环频率特性
20 lg K的
[20 ]的 斜
率线。
20lgK
0
[ 20 ]
1
§5-3 系统开环频率特性

j
lim b0 sm a0 sn
s j
lim b0 a0 snm
s j

lim

b0 a0 nm
[(n

m)
2
]
0[(n m) ] 2
j
0
以确定Байду номын сангаас角度 收敛于原点
§5-3 系统开环频率特性
3. 确定幅相曲线与实轴的交点:
令Im[Gk ( j)] 0,求得,代入Re[Gk ( j)]中即可
s 20lgK为水平线。所以此时
L() 20lg K 20lg 20lg K 20 lg
顺序斜率迭加法(续)
§5-3 系统开环频率特性
当 1时,L() 20lg K,而 20 lg为 1处
过0db的[20 ]的斜率线。
因此低频起
始段为在
1处过
(n

m)
1、 0的起始段:
lim
0
G

j


lim
0
(
K
j
)

K
lim
0


(
)
2
υ =2
j
υ =3
K 0
υ =0
起始段只取决于和K。
不同,起始段的差异很大。
υ =1
§5-3 系统开环频率特性
开环幅相频率特性的绘制(续)
2、 的终止段:
lim G
得到曲线与实轴的交点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绘制开环幅相频率特性曲线的教学方法研究郑长勇安徽建筑大学电子与信息工程学院安徽合肥230601摘要线性控制系统的频率分析法是自动控制原理学习中的一个重要部分而奈奎斯特稳定判据是其中的一个重点内容开环幅相频率特性曲线的绘制是奈奎斯特稳定判据的基础
2 0 1 3年 1 1 月 第3 1 卷 第 6 期
的交点 的确 定
特 性 曲线 与实轴 的交 点 : 由 Q( 叫 ) 一0求 出对 应
的 ∞的值 , 再将 叫值代入到 P( ) 表达式 中, 得到的 值 即为频率 特性 曲线 与 实轴交 点 的坐 标 ;
同理 , 特 性 曲线 与 虚 轴 的 交 点 : 由 P( ) = = = 0求 出对 应 的 的值 , 再将 ∞值代 入到 Q( ∞ ) 表达式中, 得 到 的值 即为频率 特性 曲线 与 虚轴 交点 的坐 标 。 注: 问断 点 的问题 。随 着 叫的值 从 0开 始 不 断 增加 , 系统 的频率 特 性 曲线 在 某一 点 或某 些 点 处 不 连续 , 特 别要 注 意这些 不 连续 点 , 参 看本 文 开环 幅相 频率 特 性 曲线绘 制举 例部 分 中 的例 4 。
和虚部 的值及正负性 , 确定起点坐标及所处的象限。 步骤 二 开环 幅 相频 率特性 曲线 终 点 的确定 将∞ 一+。 。 分别代入到系统频 率特性 表达式 中的 实部和虚部 , 分别 求 出实部 及虚部 的值 。根 据 实部 和 虚部 的值 及正负性 , 确定终点坐标及所处的象限 。 步 骤 三 开环 幅 相频 率 特 性 曲线 与 实轴 、 虚 轴
2 开 环幅 相频 率特 性 曲线 绘制举 例 例 1 某 0型 单 位 反 馈 系 统 G( S )一
[ 收稿 日期]2 o 1 3 一O 6 —1 O [ 基金项 目]安徽省 教 育厅 自然科 学 重点 科 研项 目 ( K J 2 O 1 3 A O 7 1 ) ; 安 徽 省质 量工 程 项 目( 2 0 1 0 0 7 5 7 ) ; 安 徽 建 筑 大学 教 学 研究 项 目
[ 2 ] 。笔者在教学过程 中发现许多学生在绘制开环 频 率 特性 曲线 过程 中非 常容 易 出错 。 笔者参 阅 了相 关 的 文 献 资 料 _ [ 3 ] , 常 见 的开 环 幅相 频率 特性 曲线 的绘 制 方 法 为 : 分 析 线 性 系统 的 每个典型环节在起始处和终点处的幅频和相频 , 而 后将 它们 叠加 起来 ,再绘 制整 个 系统 的开 环 幅相 频 率 特性 曲线 。 该 方 法 较 为繁 琐 , 且 相 位 容 易 出错 进 而 导致 起 始 点 象 限 出错 。本 文 结 合 多 年 的教 学 经 验, 提 出一种 绘 制开环 幅相 频率 特性 曲线 的方法 , 给 出详细 的绘 制步 骤 , 并 结 合 几个 典 型 的例 题 对 该 方 法 予 以详 细的 阐述 。多 年 的 教学 实践 表 明 , 该 方 法 的正 确使 用 , 使 学 生能 正 确 的绘 制 开 环 幅 相频 率 特 性 曲线 , 特 别是 起点 和终 点所 处 的象 限 , 取 得 了 良好 的教 学效果 。 1 开环 幅相 频率 特性 曲线 的绘 制 方法 对 于任 意 开 环 频 率 特 性 可 以表 示 为 : G( j c o ) H
之一 。其 主要 任务 是 通 过 对 控 制 理 论 知识 的学 习 ,
( j c o ) 一M ( ) P ’ 一P( ) + Q( ) , 其 中 M( ) 一{ G ( 叫 ) H( j w ) J 表 示 系 统 的幅 频 特性 , ( ∞ ) 表 示 系统
的相频 特性 , PG o ) 表示 系 统 的实 频 特性 , Q( ∞) 表示 系 统 的虚频 特性 。绘 制 系统 开环 幅相频 率 特性 曲线
的步骤 可归 纳如 下 :
培养 学生 对控 制 系统 的分 析 设 计 能 力 、 工 程 实 践 能 力 和创新 能 力 l 】 ] 。开 环 幅相 曲线 的 绘 制是 《自动 控 制 原理 》 中“ 线性 系统 频域分 析 法” 一 章 的教学 重 点 ,
[ 关键词] 自动控制原理 ; 奈奎斯特 曲线 ; 开环幅相频率特性 曲线 [ 中图分类号]TN 4 0 0 引 言 [ 文献标识码]B [ 文章 编号]1 6 7 4 — 2 2 7 3 ( 2 O l 3 ) 0 6 — 0 0 6 6 — 0 3
《自动 控制 原理 》 是 自动 化专 业 的一 门非 常重要 的专业 基 础课 , 也是机 电类 等 许 多工 科 专 业 必 须 掌 握 的课 程
合肥师范学 院学报
J o u r n a l o f He f e i No r ma l Un i v e r s i t y
NO V  ̄2 0 1 3
Vo 1 . 3 1 No . 6
绘制 开环 幅相 频 率特 性 曲线 的教 学 方 法研 究
郑长 勇
( 安徽建 筑大学 电子与信息工程学 院 , 安徽 合肥 2 3 0 6 0 1 )
[ 摘
要]线性控制 系统 的频 率分析 法是 自动控 制原理 学习中的一 个重要 部分 , 而奈奎 斯特稳 定判据是 其 中的一个重点
内容 , 开环幅相频率特性 曲线 的绘制是奈奎 斯特 稳定判据 的基础 。多年 的教 学经验表 明 , 开环幅相 频率特性 曲线 的绘 制是 同 学们在 学习频 率分析法过程 中的一个难点 。本文针对 此现 状 , 提 出一种绘 制开环 幅相 频率特 性 曲线 的方法 , 并给 出详细 的绘 制 步骤 , 并结合几个典型 的例 子对该方法予 以详细的 阐述 。教 学实践表 明 , 该方 法取得 了良好 的教 学效果 。
也 是学 生学 习 的难 点 , 它 是 乃 奎斯 特 曲线 绘 制 的基
步骤 一 开环 幅相频 率 特性 曲线 起 点 的确 定 将c o =O + 分 别代 入 到 系统频 率特 性 表达 式 中的
实 部 和虚部 , 分 别 求 出实 部 及 虚 部 的值 。根 据 实 部
础, 只有 掌 握开 环 幅相 频 率 特 性 曲线 的绘 制 ,才 能 在 频域 中利 用乃 奎斯 特判 据判 断 闭环 系统 的稳定 性
相关文档
最新文档