2014年中考数学总复习资料大全
2014年中考数学复习知识点与公式A3
2014年数学中考考前知识点或公式1 .抛物线)0(2≠++=a c bx ax y 的顶点坐标是(ab ac a b 44,22--); 对称轴是直线x=-a b 2.ab ac y 442-=最值2.弧长公式:r n l π2360∙=扇形面积公式:lr r n s 213602=∙=π 3.菱形的面积等于对角线乘积的一半。
4.韦达定理:若方程有两个实数根x 1和x 2,则 x 1+x 2=ab -, x 1x 2=a c。
5.乘法公式(反过来就是因式分解的公式):①(a+b)(a -b)=a 2-b 2. ②(a ±b)2=a 2±2ab+b 2.6.一元二次方程:对于方程:ax 2+bx+c=0:①求根公式是x=aacb b 242-±-,其中=b 2-4ac 叫做根的判别式.①当Δ>0时,方程有两个不相等的实数根; ②当Δ=0时,方程有个相等的实数根; ③ 当Δ<0时,方程没有实数根. 注意:当Δ≥0时,方程有实数根.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=am -n. ③(a m )n =a mn . ④(ab)n =a n b n .8.圆的辅助线:(1)已知切线,常过切点作半径.(2)已知直径,常作直径所对的圆周角. (3)求解有关弦的问题,作弦心距.9. 422122==⎪⎭⎫⎝⎛- 一个数的负n 次幂等于它的倒数的n 次幂。
10.反比例函数的面积不变性: k s =矩形 k s 21=∆ 11.取值范围:①。
分式有意义的条件:分母≠0;②。
二次根式有意义的条件:被开方数≥012·一次函数的图象位置的确定:⎭⎬⎫⎩⎨⎧四象限过二三象限过一,k ,k 00 ⎭⎬⎫⎩⎨⎧四象限过三二象限过一,b ,o b 0 13·掌握()2014201411--与的区别;14.特殊角的三角函数值:15.1331-=-16.增长率问题公式:始量·(1+x )2=末量 17.点的平移⎭⎬⎫⎩⎨⎧。
2014中考数学总复习经典题
2014中考总复习经典题目录第1课时实数的有关概念 (2)第2课时实数的运算 (4)第3课时整式与分解因式 (6)第4课时分式 (8)第5课时二次根式 (10)第6课时一元一次方程及二元一次方程(组) (12)第7课时一元二次方程 (14)第8课时方程的应用(一) (16)第9课时方程的应用(二) (18)第10课时一元一次不等式(组) (20)第11课时平面直角坐标系、函数及其图像 (22)第12课时一次函数图象和性质 (24)第13课时一次函数的应用 (26)第14课时反比例函数图象和性质 (28)第15课时二次函数图象和性质 (30)第16课时二次函数应用 (32)第17课时数据的描述、分析(一) (34)第18课时数据的描述、分析(二) (36)第19课时概率问题及其简单应用(一) (38)第20课时概率问题及其简单应用(二) (40)第21课时线段、角、相交线与平行线 (42)第22课时三角形基础知识 (44)第23课时全等三角形 (46)第24课时等腰三角形 (48)第26课时尺规作图 (52)第27课时锐角三角函数 (54)第28课时锐角三角函数的简单应用 (56)第29课时多边形及其内角和、梯形 (58)第30课时平行四边形 (60)第31课时矩形、菱形、正方形(一) (62)第32课时矩形、菱形、正方形(二) (64)第33课时四边形综合 (66)第34课时相似形 (68)第35课时相似形的应用 (70)第36课时圆的基本性质 (72)第37课时直线与圆、圆与圆的位置关系 (74)第38课时圆的有关计算 (76)第39课时圆的综合 (78)第40课时图形的变换(一) (80)第41课时图形的变换(二) (82)第42课时视图与投影 (85)第1课时 实数的有关概念一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2B =C .22x +32x =52x D .235()a a =3.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境内举行,火炬传递路线全程约12900m ,将12900用科学记数法表示应为( ) A .0.129×105 B .41.2910⨯ C .312.910⨯ D .212910⨯ 4.下列各式正确的是( ) A .33--= B .326-=- C .(3)3--= D .0(π2)0-=5.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .46.计算2(3)-的结果是( )A .6-B .6C .9-D .9 7.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 8.下列实数中,无理数是( )B.2πC.13D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 10.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学记....数法..表示为( ) A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米11.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( ) A.102个 B 104个 C 106个 D 108个12.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题:13.若n m ,互为相反数,=-+555n m .14.唐家山堰塞湖是“5.12汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米. 15.如果2180a -=,那么a 的算术平方根是 .16.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 . 17.如果□+2=0,那么“□”内应填的实数是______________.18.“五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元. 19. 某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学有_________名.20.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.21.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411a b …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)22.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只 环保购物袋至少..应付给超市元.23.将正整数按如图所 示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右 第m 个数,如(4,2)表示实数9, 则表示实数17的有序实数对是 . 24.如图所示,①中多边形(边数为12)是由 正三角形“扩展”而来的, ②中多边形是由正方形“扩展” 而来的,,依此类推,则由正n 边形“扩展”而来的多边形的边数为 .25.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第25题图① ② ③ ④ 第24题图第2课时 实数的运算一、选择题1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )A .﹣7℃B .7℃C .﹣1℃D .1℃2.在2008年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是 ( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负 3.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境内外游客约11370000人次,11370000用科学记数法表示为( ) A .1.137×107 B .1.137×108 C .0.1137×108 D .1137×104 4.在下列实数中,无理数是( )A .13B .πC D .2275.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号6.()23-运算的结果是( )A .-6B .6C .-9D .97.(2009年武汉) ) A .3-B .3或3-C .9D .38.估计30的值 ( ) A .在3到4之间 B .在4到5之间 C .在5到6之间D .在6到7之间9.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2, 3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!二、填空题:10.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:12.如图,在数轴上表示到原点的距离为3个单位的点有第12题图13. 2008(1)-+_______420=-.14.2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是________米. 15.计算:23-+= ;(2)(3)-⨯-= . 16.若()2240a c -+-=,则=+-c b a . 17.在函数y =x 的取值范围是____________.三、计算:(1)0(1)π-⋅sin 60°+321(2)()4-⋅(2)0113(()3---(3)9212)1(13+⎪⎭⎫ ⎝⎛-+-- (4)1301()(2)3()92-+-+--(5)101453(2007π)2-⎛⎫+⨯- ⎪⎝⎭(6)122(4)3-⎛⎫--+ ⎪⎝⎭(7)112)4cos30|3-⎛⎫++- ⎪⎝⎭°1112sin 452o -⎛⎫-++ ⎪⎝⎭第7题第3课时 整式与分解因式一、选择题1.下列运算正确的是( ) A.a 2·a=3a B.a 6÷a 2=a 4 C.a+a=a 2 D.(a 2)3=a 5 2.计算:()23ab=( )A .22a b B .23a b C .26a b D .6ab 3.下列计算正确的是( )A .623a a a ÷= B .()122--=C .()236326x x x -=-· D .()0π31-=4.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+5.若的值为则2y-x 2,54,32==yxA.53 B. -2 C. 553 D. 56 6.下列命题是假.命题的是( ) A. 若x y <,则x +2008<y +2008 B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小 7.一个正方体的表面展开图如图所示,每一个面上都写有一个 整数,并且相对两个面上所写的两个整数之和都相等,那么( )A .a=1,b=5B .a=5,b=1C .a=11,b=5D .a=5,b=11 8. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab ab a +-=-C .))((22b a b a b a -+=- a图甲第8题D .222))(2(b ab a b a b a -+=-+二.填空题.9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = .11.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律 拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为(用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值15.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1) 用a ,b ,x 表示纸片剩余部分的面积;(2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时, 求正方形的边长.第一个图案 第二个图案 第三个图案 …第12题图第4课时 分式一、选择题 1.化简分式2bab b +的结果为( )A .1a b+ B .11a b + C .21a b + D .1ab b+ 2.要使22969m m m --+的值为0,则m 的值为( )A .m=3B .m=-3C .m=±3D .不存在 3.若解方程333-=-x mx x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .1 4.如果04422=+-y xy x ,那么yx y x +-的值等于( )A .31- B . y31- C . 31 D .y31二、填空题.5.当x = 时,分式6422---x x x 的值为0.6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..即可) 7.已知432z y x ==,求分式yx zy x 32534++-= 8.若分式方程12552=-+-x ax x 的解为x =0,则a 的值为 . 9.已知分式方程k x k=++131无解,则k 的值是 . 三、解答题 10.化简: (1)211()(1)11x x x ---+ (2)24142x x +-+11.先化简,再求值:224242x x x +---,其中2x =.12.当a=2时,求1121422-÷+--a a a a 的值.13.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.三、解分式方程. (1)01221=---x x (2) 123514-+=--+x x x x (3)163104245--+=--x x x x (4)4)25.01(11=++x x (5)52742316--=+-x x x x (6)141112-=--+-x x x x x四、当m 为何值时,分式方程xxx m --=+-2142无解?第5课时二次根式一、选择题: 1. 2的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间2.)A .BC .2-D .23. 下列运算正确的是()A 3=B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D 3=±4. 若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 5.下列计算正确的是( )A . 22-=-= C. 325a a a ⋅= D.22x x x-=6. )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8.+y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间10. 3a =-,则a 与3的大小关系是( )A . 3a <B .3a ≤ C.3a > D .3a ≥ 11.下列说法中正确的是() A B .8的立方根是±2 C .函数x 的取值范围是x >1 D .若点P(2,a)和点Q(b ,-3)关于x 轴对称,则a+b 的值为-5二、填空题:1.=_________.2.的结果是 .3. 若|1|0a +,则a b -= .4= . 5.函数y =x 的取值范围是________. 6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+, 如3※2=52323=-+.那么12※4= . 7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________三、解答题 : 1.计算: (1) 103130tan 3)14.3(27-+︒---)(π(2)11(1)52-⎛⎫π-+-+- ⎪⎝⎭(3)0112sin 602-⎛⎫+- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中第6课时 一元一次方程及二元一次方程(组)一、选择题1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x xC.09622=---x x .D.09622=+--x x 2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )A. 28B. 33C. 45D. 573.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( ) A. 1004=+x x B. 100104=-+x xC.()100104=-+x xD. 1001041=+-x x4.若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-25.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x的解,则k 的值为( )A.43-B.43C.34D.34-6.已知 与 是同类项,则 与 的值分别是 ( ) A.4、1 B.1、4 C.0、8 D.8、0 二、填空题 7.在349x y +=中,如果26y =,那么x = .8.在方程组 中,m 与n 互为相反数,则 9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶. 10.当m=______,n=______时, 是二元一次方程.11.如果 那么 12.写出一个二元一次方程组,使这个方程组的解为x 2y 2=⎧⎨=-⎩,你所写的方程组是 .13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)14.35122--=+x x 15.⎩⎨⎧=+=+032ny x my x .__________=x ()()x x x x --=--320379821=+-n m y x ,53=-y x .________38=+-y x m n m y x 344-yx n 5m n16. 17.四.解答题 18.已知方程 的两个解为 和 ,求 的值.19.某村果园里,13的面积种植了梨树,14的面积种植了苹果树,其余5ha 地种植了桃树.这个村的果园共有多少ha ?20.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲.乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?21.已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.⎩⎨⎧=+-=8372y x x y ⎩⎨⎧=-=-74143y x y x ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271y x b k ,第7课时 一元二次方程一、选择题1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =1C .x 2+1=0D . 2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对4.方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=0 5.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠ 6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 . 9.两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 .10.若方程022=+-cx x 有两个相等的实数根,则c = .11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m . 三、解方程:12.(1) (2) (3)11=+x x 2410x x +-=0132=--x x )1(332+=+x x 第6题图13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--总有两个不相等的实数根.15.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?16.某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件. (1) 求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?第21题图第13题图第8课时 方程的应用(一)一、选择题 :1.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) A .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯ 2. 某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )A.14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩D.15616140x y x y +=⎧⎨+=⎩3. 有两块面积相同的小麦试验田,分别收获小麦9000kg •和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,•若设第一块试验田每公顷的产量为xkg ,根据题意,可得方程( )900015000900015000..30003000900015000900015000..30003000A B x x x x C D x x x x==+-==+-4. 某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x ,则依题意列方程为( )A .25(1+x )2=82.75B .25+50x=82.75C .25+75x=82.75D .25[1+(1+x )+(1+x )]=82.75 二、填空题 :5. 某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 ______ .6. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .7.轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为__________.三、解答题8. 某供电公司分时电价执行时段分为平、谷两个时段,平段14小时,为8:00~22:00,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?9. 某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成,从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.10. “爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,•该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,•总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍和1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这批帐篷用卡车一次性运送到该地震灾区的A,B两地,•由于两市通往A,B两地道路的路况不同,卡车的运载量也不同,已知运送帐篷每千顶所需的车辆数,两地所急需的帐篷数如下表所示:请设计一种运送方案,使所需的车辆总数最少,说明理由,并求出最少车辆总数.第9课时 方程的应用(二)一、选择题1. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14- D.14k ≥-且0k ≠2. 已知a 、b 、c 分别是三角形的三边,则关于x 的一元二次方程(a + b)x 2 + 2cx + (a + b)=0的根的情况是( ) A .没有实数根 B .可能有且只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根3. 如图所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g4. 今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为( ) A .45250x += B .245(1)50x += C .250(1)45x -= D.45(12)50x += 二、填空题5. 一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 .6. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .7. 若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为____. 8.在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 .9.参加会议的人两两彼此握手,统计一共握了45次手,那么到会人数是 人. 三、解答题10. 08年奥运会时,某工艺厂当时准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?11.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m 2?12.商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本)13.某移动公司开通了两种通讯业务:“全球通”使用者先缴50元/月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,•付话费0.6元(这里均指市内通话).若一个月通话时间为x分钟,两种通讯方式的费用分别为y1元和y2元.(1)分别写出y1,y2与x的关系式.(2)一个月内通话多少分钟时,两种通讯方式的费用相同?(3)请你运用你所学的知识帮助李大伯选一种便宜的通讯方式.14.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?15.如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)设矩形EFGH的面积为S,确定S与x的函数关系式;(3)当x为何值时,矩形EFGH的面积为S最大?第11题图第10课时 一元一次不等式(组)一、选择题1.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与②B .②与③C .③与④D .①与④2.若0a b <<,则下列式子:①12a b +<+;②1a b>;③a b ab +<;④11a b <中,正确的有( )A .1个B .2个C .3个D .4个3. 下列哪个不等式组的解集在数轴上表示如图所示 ( ) A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩4. 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔. A .1B .2C .3D .45. 已知两圆的半径分别是5和6,圆心距x 满足522841314x x x x +⎧+⎪⎨⎪-+⎩,则两圆的位置关系是( ) A. 内切 B. 外切 C. 相交 D. 外离 6.直线y =k 1x +b 与直线y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A.x >1 B.x <1 C.x >-2 D.x <-2二、填空题:7. 不等式210x +>的解集是 .8. 不等式组3010x x -<⎧⎨+⎩≥的解集是 .9.已知三个连续整数的和小于10,且最小的整数大于1,则三个连续整数中,最大的整数为 .10. 若关于x 的不等式组3(2)224x x a xx --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 . 第15题图k 1x +b 第3题图11.如果不等式组2223xax b⎧+⎪⎨⎪-<⎩≥的解集是01x<≤,那么a b+的值为.三、解答题:12. 解不等式3x+2>2(x-1),并将解集在数轴上表示出来.13. 解不等式组331213(1)8xxx x-⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.14. 中国移动某公司组织一场篮球对抗赛.为组织该活动此公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000张80元的门票和1800张200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少张?15.把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个. 问有几个孩子?有多少苹果?16.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x 之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?第11课时 平面直角坐标系、函数及其图像一、选择题:1.(2008贵阳)对任意实数x ,点P (x ,x 2-2x )一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如图是中国象棋棋盘的一部分,若○帅在点(1,-1) 上,○车在点(3,-1)上,则○马在点( ) A .(-1,1) B .(-1,2) C .(-2,1) D .(-2,2)3.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O 按顺时针方向旋转135°,则点A ,B 的对应点A ,B 的坐标分别是( ) A .,(2,2) B .0),(2,2) C .(0,(2,2) D .,(2,2) 4.已知点A (2a+3b ,-2)和点B (8,3a+2b )关于x 轴对称,那么a+b=( ) A .2 B .-2 C .0 D .45.若点A (-2,n )在x 轴上,则点B (n -1,n+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A’的坐标为( ) A .(2,2) B .(2,4) C .(4,2) D .(1,2)7.(2009威海)如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a +b 的值为( )第2题图第6题图A .2B .3C .4D .58.已知点A (m 2+1,n 2-2)与点B (2m ,4n+6)关于原点对称,则A 关于x 轴的对称点的坐标为_____,B 关于y 轴的对称点的坐标为______.二、填空题:9.已知A ,B ,C ,D 点的坐标如图所示,E 是图中两条 虚线的交点,若△ABC 和△ADE 相似,则E 点的坐标 为___ ____.10.在如图的直角坐标系中,△ABC 的顶点都在网格点上,A 点 坐标为(2,-1),则△ABC 的面积为_______平方单位. 11.在直角坐标系中,已知点A (-5,0),B (-5,-5), ∠OAB=90°,有直角三角形与Rt △ABO 全等并以BA 为公共 边,则这个三角形未知顶点的坐标是_______.12.已知m 为整数,且点(12-4m ,19-3m )在第二象限,则m 2+2005的值为______. 三、解答题13.如图所示,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB=3,AD=5,矩形以每秒2个单位长度沿x 轴正方向做匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A─B─C─D 的路线做匀速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动. (1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (s ); ①当t=5时,求出点P 的坐标;②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).第9题图 第10题图第13题图第7题图。
2014中考数学总复习(详解版,教师学生都适用)
第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根. 10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x就叫做a 的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13. 开立方:求一个数a 的立方根的运算叫做开立方. 【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C .93=±D .3273-=-例2.2的相反数是( ) A .2- B .2 C .22- D .22例3.2的平方根是( )A .4B .2C .2-D .2±例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a 在数轴上的位置如图所示,则化简2|1|a a -+的结果为( ) A .1 B .1- C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是____,()24-=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则―‖内应填的实数是( ) A . 32B . 23C .23-D .32-1-1 0 a 第4题图0 a 1 1-0 b 例5图第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.北京 汉城 8 9 0 伦敦 -4 多伦多纽约国际标准时间(时) -5 例2图……例3图例4.下列运算正确的是( ) A .523=+B .623=⨯C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π (2)03(2)tan 45π---+º(3)102)21()13(2-+--; (4)20080131(1)()83π--+-+.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元 3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) A .7B .7-C . 3.2-D .10-5.计算: (1)02200960cos 16)21()1(-+--- (2)()113142-⎛⎫--+ ⎪⎝⎭3- 2- 1- O 1 2 3P 第4题图第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nn a a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6D.6a 2÷2a 2=3a 2 【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )m 平方 -m ÷m +2 结果 A .m B .m2C .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算―⊗‖:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =--=-,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥ (,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 . 【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b ---第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 .3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x +--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值.方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= . 例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .月份 用电量 交电费总数 3月 80度 25元 4月 45度 10元⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元.3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023;(3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根.当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想【例题精讲】例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.aac b b x 242-±-=【当堂检测】一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+ ③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = .5.一元二次方程ax 2+bx+c=0有一根-2,则b ca 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 .二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( )A.非负数B.正数C.整数D.不能确定的数9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( )A.3B.3或-2C.2或-3D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=011.下面是李刚同学在测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2B .方程x(2x-1)=2x-1的解为x=1C .方程x 2+2x+2=0实数根为0个D .方程x 2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】 例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )A .4场B .5场C .6场D .13场例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1)B .⎩⎨⎧x+y= 49y=2(x+1)C .⎩⎨⎧x –y= 49y=2(x –1)D .⎩⎨⎧x+y= 49y=2(x –1) 例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=-- 例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下:购票人数 1~50 51~100 100人以上每人门票(元) 13元 11元 9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,•―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( )⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A •种彩票每张1.5元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20扎,请你设计进票方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .61例2. 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米例3. 为执行―两免一补‖政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++=例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法.【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <- D.12x <- 例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( )A. 49kgB. 50kgC. 24kgD. 25kg例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3 例7.解不等式组:(1)21113x x x +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x43210 B A O C 0)c a (b >-1 0 1- 1 0 1- 1 0 1- 10 1-【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.脐 橙 品 种 A B C 每辆汽车运载量(吨) 6 5 4 每吨脐橙获得(百元) 12 16 10。
2014-2015中考数学总复习资料
2014-2015中考数学总复习资料课时1.实数班级___________ 姓名___________【学习目标】1.了解有理数、无理数、实数、数轴、绝对值的概念; 2.了解有效数字、近似数、科学记数法的意义; 3.理解平方根、算术平方根、立方根的概念及运算。
【考点链接】 1.实数的意义⑴ 实数可分为: 和 ;⑵ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑶ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑷非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑸ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑹常见的非负数形式:)0(,,2≥a a a a ,若几个非负数的和是零,则每个非负数都是零。
⑺科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有_____个平方根,它们互为_______.其中正的平方根a 叫_______. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3.负指数幂、零指数幂:当0≠a 且n 为整数时,_____=-n a ;当0≠a 时,_____0=a 。
【典例精析】【例1】 在实数-7,tan 450, sin 600 ,π,9,32,227,0.585885888588885⋅⋅⋅(每2个5之间依次增加1个8)中,无理数有( ) A .2个 B .3个 C .4个 D .5个【例2】 在如图所示的数轴上,点B 与点C 关于点A对称,A 、B 两点对应的实数分别是3和﹣1,则点C所对应的实数是﹙ ﹚A.31+B.32+C.132-D.132+ 【例3】若()22a +与3-b 互为相反数,求a ,b 的值【例4】计算: (1)()()122160cos 22---+-ο (2) ()()22014311524-⎪⎭⎫⎝⎛+-+---+π【例5】对实数a,b 定义运算☆如下:a ☆b= b a (a >b ,a≠0).b a -(a≤b,a≠0).例如2☆3=32- =81,计算[2☆(-4)]×[(-4)☆(-2)]【例6】 观察下列图形:(1) 根据图①②③的规律,写出第4次分割后三角形的个数。
2014-2015中考数学总复习资料
课时1.实数班级___________ 姓名___________【学习目标】1.了解有理数、无理数、实数、数轴、绝对值的概念; 2.了解有效数字、近似数、科学记数法的意义; 3.理解平方根、算术平方根、立方根的概念及运算。
【考点链接】 1.实数的意义⑴ 实数可分为: 和 ;⑵ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑶ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑷非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑸ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑹常见的非负数形式:)0(,,2≥a a a a ,若几个非负数的和是零,则每个非负数都是零。
⑺科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有_____个平方根,它们互为_______.其中正的平方根a 叫_______. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3.负指数幂、零指数幂:当0≠a 且n 为整数时,_____=-n a ; 当0≠a 时,_____0=a 。
【典例精析】【例1】 在实数-7,tan 450, sin 600 ,π2,227,⋅⋅⋅(每2个5之间依次增加1个8)中,无理数有( )A .2个B .3个C .4个D .5个【例2】 在如图所示的数轴上,点B 与点C 关于点A对称,A 、B 两点对应的实数分别是3和﹣1,则点C所对应的实数是﹙ ﹚A.31+B.32+C.132-D.132+ 【例3】若()22a +与3-b 互为相反数,求a ,b 的值【例4】计算: (1)()()122160cos 22---+- (2) ()()22014311524-⎪⎭⎫⎝⎛+-+---+π【例5b (a >b ,a≠0).b a -(a≤b,a≠0).例如2☆3=2-【例6】观察下列图形: (1) 根据图①②③的规律,写出第4次分割后三角形的个数。
2014中考数学第一轮复习资料
课时40.视图与投影……………………………………………(118)
课时41.轴对称与中心对称……………………………………(121)
课时42.平移与旋转……………………………………………(124)
第一章 实数
课时1.实数的有关概念
【课前热身】
1.(08重庆)2的倒数是.
2.(08白银)若向南走 记作 ,则向北走 记作 .
【课前热身】
1. x2y的系数是,次数是.
2.(08遵义)计算: .
3.(08双柏)下列计算正确的是( )
A. B. C. D.
4.(08湖州)计算 所得的结果是()
A. B. C. D.
5. a,b两数的平方和用代数式表示为( )
A. B. C. D.
6.某工厂一月份产值为 万元,二月份比一月份增长5%,则二月份产值为( )
课时5.分式……………………………………………………( 13 )
课时6.二次根式…………………………………………………( 16 )
第三章方程(组)与不等式
课时7.一元一次方程及其应用……………………………( 19 )
课时8.二元一次方程及其应用……………………………( 22 )
课时9.一元二次方程及其应用………………………………( 25 )
(1)_______________________,(2)_______________________,
(3)_______________________.
另有四个数3,-5,7,-13,可通过运算式(4)_____________________,使其结果等于24.
第二章 代数式
课时3.整式及其运算
9.(08扬州)如果□+2=0,那么“□”内应填的实数是()
2014中考数学知识点总结
2014年中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; …等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
2014年中考数学总复习资料
2014年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.1001……;特定意义的数,如π、45sin°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;(2)a和b互为相反数a+b=0 2、倒数:(1)实数a(a≠0)的倒数是a1;(2)a和b 互为倒数1ab;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:,0,00,aaaaaa(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
2014年度细分行业报告汇集制造行业报告互联网行业报告农林牧渔行业报告三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2014年中考数学总复习知识点汇总
2014年中考数学总复习知识点汇总第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2014年中考数学数与式总复习全面版
专题2:整式
考点
课标要求
难度
1.掌握代数式的概念,会判别代数式与方程、
不等式的区别;
2.知道代数式的分类及各组成部分的概念,如
整式、单项式、多项式;
整式 有关 概念
3.知道代数式的书写格式。注意单项式与多项 式次数的区别; 4.会用代数式表示常见的数量,会用代数式表 示含有字母的简单应用题的结果;
中等
6.会用乘法公式简化多项式的乘法运算;
7.能够运用整体思想将一些比较复杂的多项式运
算转化为乘法公式的形式。
考点
课标要求
难度
因式 分解
1.知道因式分解的意义和它与整式乘法的 区别; 2.会鉴别一个式子的变形过程是因式分解 还是整式乘法; 3.掌握提取公因式法、分组分解法和二次 项系数为1时的十字相乘法等因式分解的基 本方法。
a+b+c
A 3
2
C
D
命题方向:(1)给出四种运算,判断运算结果是否正确,常见的 运算有合并同类项,整式的加减乘除和乘方,乘法公式;(2)直接给 出一个简单的运算算式,要求出运算结式的化简求值问题,常涉及乘法公式、多项式的乘法以及整 式加减等运算;(2)乘法公式的变形。
中等
题型预测
对于整式的考查,中考试卷中有两种考法:一是考 查基本概念和公式,常见的形式是一道选择题涵盖四个 概念或四个公式判定对错;二是对整式运算和因式分解 的考查,可能作为填空或选择题,也可能作为计算题, 题量2题左右,分值3~8分。
次数最高的项
3
指数 合并同类项
系数
不变 改变
几个整式的乘积
【必知点】 1.能用提公因式法分解因式的多项式,各项必须存在公因式,
这个公因式可以是单项式,也可以是多项式; 2.能用平方差公式分解因式的多项式应满足条件是二项式,两
2014新人教版中考数学总复习资料方程和不等式
第三章:方程和方程组一、一元方程 1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 (5)一元二次方程根与系数的关系: 若21,x x 是一元二次方程02=++c bx ax的两个根,那么:ab x x-=+21,ac x x =⋅21 (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)分式方程的解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(2)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、一次方程组:(1)二元一次方程组: 一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0) 解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
2014数学中考汇总
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0.3.直角坐标系中,点A (1,1)在第一象限.4.直角坐标系中,点A (-2,3)在第四象限.5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1.2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数.2.函数y=4x+1是正比例函数.3.函数x y 21-=是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线2)1(212+-=x y 的顶点坐标是(1,2). 7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
2014年中考初中数学重要考点复习资料精编
2014年中考初中数学重要考点复习资料精编,分成两个四边形,求其中以点O 为顶点的四边形面积的最大值.思路分析:问题情境:根据可以求得△ADE ≌△FCE ,就可以得出S △ADE =S △FCE 就可以得出结论; 问题迁移:根据问题情境的结论可以得出当直线旋转到点P 是MN 的中点时S △MON 最小,过点M 作MG ∥OB 交EF 于G .由全等三角形的性质可以得出结论;实际运用:如图3,作PP 1⊥OB ,MM 1⊥OB ,垂足分别为P 1,M 1,再根据条件由三角函数值就可以求出结论; 拓展延伸:分情况讨论当过点P 的直线l 与四边形OABC 的一组对边OC 、AB 分别交于点M 、N ,延长OC 、AB 交于点D ,由条件可以得出AD=6,就可以求出△OAD 的面积,再根据问题迁移的结论就可以求出最大值;当过点P 的直线l 与四边形OABC 的另一组对边CB 、OA 分别交M 、N ,延长CB 交x 轴于T ,由B 、C 的坐标可得直线BC 的解析式,就可以求出T 的坐标,从而求出△OCT 的面积,再由问题迁移的结论可以求出最大值,通过比较久可以求出结论. 解:问题情境:∵AD ∥BC , ∴∠DAE=∠F ,∠D=∠FCE . ∵点E 为DC 边的中点, ∴DE=CE .∵在△ADE 和△FCE 中,DAE F D FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS ), ∴S △ADE =S △FCE ,∴S 四边形ABCE +S △ADE =S 四边形ABCE +S △FCE , 即S 四边形ABCD =S △ABF ;问题迁移:出当直线旋转到点P 是MN 的中点时S △MON 最小,如图2,过点P 的另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,过点M 作MG ∥OB 交EF 于G , 由问题情境可以得出当P 是MN 的中点时S 四边形MOFG =S △MON . ∵S 四边形MOFG <S △EOF , ∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小;实际运用:如图3,作PP 1⊥OB ,MM 1⊥OB ,垂足分别为P 1,M 1,延伸:当α=60°时,如图6四、中考真题演练1.(2013•义乌)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的 %;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:;(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700.故答案为:0.03;3700.7.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用»AC的度数为60°,点B是»AC的中点,在直径CD 如图(3):已知⊙O的直径CD为2,上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.9.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.9.解:(1)如图,作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.。
2014年中考数学总复习资料大全(精华版)
2014年中考数学总复习资料大全实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同4. 级运算)从“左”到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
应用举例(略)附:典型例题已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2014中考数学复习要点
2014八年级数学复习二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d cb a +与dc b a -)2、二次根式的性质:(1) )0()(2≥=a a a ; (2)⎩⎨⎧<-≥==)0()0(2a aa aa a ; (3)b a ab ⋅=(a ≥0,b ≥0); (4))0,0(≥≥=b a bab a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。
(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。
(3)二次根式的除法:)0,0(≥≥=b a baba 二次根式运算的最终结果如果是根式,要化成最简二次根式。
勾股定理勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方:c b a =+22 勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系: 222c b a =+ 那么这个三角形是直角三角形.函数1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。
2、函数:一般地,设在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。
(1)自变量取值范围的确是:①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。
②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。
③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。
2014年初三数学知识点汇总(各章节)
2014年初三数学知识点汇总(各章节)
2014年初三数学知识点汇总(各章节)
2014年初三数学知识点汇总(各章节) 1 2014年初三数学第十章圆知识点整理 2 2014年初三数学解直角三角形知识点整理 3 2014年初三数学函数及其图象知识点整理 4 2014年初三数学一元一次不等式知识点整理 5 2014年初三数学列方程知识点整理 6 2014年初三数学第五章方程知识点整理
7 2014年初三数学四边形知识点整理 8 2014年初三数学三角形知识点整理 9 2014年初三数学直线相交线平行线知识点整理 10 2014年初三数学第三章统计初步知识点整理 11 2014年初三数学二章代数式知识整理 12 2014年初三数学第一章实数知识点。