高考很难的数学题
高考最难的数学题及答案
高考最难的数学题及答案高考数学最难的题目及答案(1)1、利用数学归纳法证明平面向量a=(a1, a2)和b=(b1, b2)满足如下不等式:a1/b1 + a2/b2 > 0答案:设a=(a1, a2), b=(b1, b2),由数学归纳法,令n∈N,先给出基本情形:当n=1时:a1/b1 + a2/b2 = (a1 + a2)/(b1 + b2),由a1 + a2 > 0, b1 + b2 > 0可知a1/b1 + a2/b2 > 0进行归纳:假设n时成立,即a1/b1 + a2/b2 > 0,当n+1时,a1/b1 + a2/b2 > 0,根据a1/b1 + a2/b2 = [a1 + (n+1)a2]/[b1 + (n+1)b2],有[a1 + (n+1)a2]/[b1 + (n+1)b2] > 0,由a1 + (n+1)a2 > 0, b1 + (n+1)b2 > 0可知a1/b1 + a2/b2 > 0,因此,证明平面向量a=(a1, a2)和b=(b1, b2)满足a1/b1 + a2/b2 > 0。
2、求x的集合:A={x| x^2 + 6x + 9 ≠ 0 }答案:界说明:x∈R分析:x^2 + 6x + 9 = (x + 3)^2,表述:A={x| x^2 + 6x + 9 ≠ 0 } 等价于A={x| (x + 3)^2 ≠ 0 },即A={x| x ≠ -3 }答案:A={x| x ≠ -3 }3、求一元二次方程ax^2+bx+c=0中,b^2-4ac < 0时实根的取值范围答案:界说明:x∈R分析:b^2 - 4ac < 0⇒Δ= b^2 - 4ac < 0,表述:b^2-4ac < 0时实根没有解,取值范围为空集,即实根的取值范围为:空集。
答案:实根的取值范围为:空集。
4、设弦AB=12,角A=30°,则角C的度数为多少?答案:界说明:C∈[0,360](度)分析:弦AB=12,角A=30°,表述:根据余弦定理可得:cosC=12^2/2/2^2=12/4,即cosC=3/2,由cosC=3/2可以求出角C的度数。
高考数学最难的题
高考数学最难的题题目一:函数与方程思想题目:已知函数f(x) = x^2 + ax + b (a, b ∈R) 在区间[1, 3] 上有且仅有一个零点,求|a + b| 的可能取值。
解法:由于函数f(x) = x^2 + ax + b 在区间[1, 3] 上有且仅有一个零点,我们需要分别考虑以下两种情况:①当零点在区间[1, 3] 内时,根据零点存在定理,有f(1)f(3) ≤0,即(a + 2b + 1)(a + 4b + 9) ≤0。
同时,根据对称性,我们还可以得到f( - a/2) = 0,即a^2/4 + b = 0。
解这两个方程,得到a = -2, b = 1 或a = -6, b = 9。
经检验,这两种情况都满足题意。
②当零点为区间端点时,有f(1) = 0 或f(3) = 0,即a + 2b + 1 =0 或a + 4b + 9 = 0。
解这两个方程,得到a = -2, b = -1/2 或a = -6, b = -9/2。
经检验,这两种情况都满足题意。
综上所述,|a + b| 的可能取值为1, 5, 10。
题目二:数形结合思想题目:设x, y 为实数,满足1 ≤x ≤4,0 < y ≤2,若x^2 + y^2 = 1,则x/y 的取值范围是_______.解法:设直角坐标系中点P(x, y) 在圆x^2 + y^2 = 1 上,且已知圆的半径为r = 1。
设过原点的直线方程为y = kx (k > 0),与圆相切时切点为A。
根据切线的性质和勾股定理,我们有r^2 = OA^2 = x^2 + y^2 = k^2x^2 = 1。
解这个方程得到k = ±√2/2。
由于题目要求k > 0,所以k = √2/2。
此时切点A 的坐标为(x_A, y_A) = (√2/2, √2/2)。
由于原点O 和点A 在一条直线上,所以x/y 的最小值为OA/y_A = √2/2。
高考数学难点2充要条件的判定习题与答案
高考数学难点2充要条件的判定习题与答案●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.三、解答题5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n}、{b n}满足:,求证:数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.8.(★★★★★)p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f(±2)>0.即有(2)必要性:∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,答案:充要条件4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是、(注意p中a、b满足的前提是Δ=a2-4b≥0)。
史上最难的1984全国高考理科数学试卷
/ 10 编者说明 1984年的第六题,考查解析几何。第1小题将椭圆参数藏在复数方程的根中;第2小题求椭圆的轨迹方程,给出的“衍生轨迹”而不是“直接轨迹”。使得广大考生无模式可套。本题 解:1.因为p,q为实数,0p,z1,z2为虚数,所以 0,04)2(22pqqp 由z1,z2为共轭复数,知Z1,Z2关于x轴对称, 所以椭圆短轴在x轴上又由椭圆经过原点, 可知原点为椭圆短轴的一端点 根据椭圆的性质,复数加、减法几何意义及一元二次方程根与系数的关系,可得椭圆的 短轴长=2b=|z1+z2|=2|p|, 焦距离=2c=|z1-z2|=2212212|4)(|pqzzzz, 长轴长=2a=.2222qcb 2.因为椭圆经过点M(1,2),且以y轴为准线,所以椭圆在y轴右侧,长轴平行于x轴 设椭圆左顶点为A(x,y),因为椭圆的离心率为21, 所以左顶点A到左焦点F的距离为A到y轴的距离的21, 从而左焦点F的坐标为),23(yx 设d为点M到y轴的距离,则d=1 根据21||dMF及两点间距离公式,可得 1)2(4)32(9,)21()2()123(22222yxyx即 这就是所求的轨迹方程 七.(本题满分15分) 在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, 34coscosabBA,P为△ABC的内切圆上的动点求点P到顶点A,B,C的距离的平方和的最大值与最小值
历届高考最难的数学题
历届高考最难的数学题
历届高考中,最难的数学题因人而异,不同考生可能会有不同的感受。
以下是一些历届高考中被认为比较难的数学题目的例子:
1.2018年江苏省高考数学试题中的一道选择题:已知函数
f(x)在区间[0,2π]上的单调递减区间是(0,π/2),则函数f(x)在区间[0,2π]上的单调递增区间是?
2.2010年全国卷数学理科试题中的一道选择题:已知函数
f(x)=x^2-3x+2,则不等式f(x)>0的解集是?
3.2008年广东省高考数学试题中的一道填空题:已知函数
f(x)=(x-2)(x+1),则不等式f(x)>0的解集是?
4.2005年北京市高考数学试题中的一道选择题:函数f(x) =a^x(a>0,a≠1)的图像在点(1,2)上,求a的值。
这些题目在高考中因为涉及到不同的数学概念和思维方式,被认为较难。
然而,随着时间的推移,难题的定义也会发生变化,因此可能会有其他历届高考数学题目被认为难度较大。
【史上最难】2015年四川高考数学理科21题压轴题解析
【史上最难】2015年四川高考数学理科21题压轴题解析
展开全文
今天晚上抽时间给大家解析一下2015年四川高考数学理科最后一题压轴题,号称史上最难,我们今晚就看看这个题目到底有多难!
题目看起来难度不小,但是第一个小问很简单,估计是出题人给考生打了一个台阶,主要目的就是给考生做第二个小问提供一些思路。
我们首先简单分析一下第一个小问,对于第一个小问,我总是会强调,如果导函数里有参数,一定要进行分类讨论,讨论参数的取值范围!
好了,接下来我们重点分析一下第二个小问,第二个小问确实是很有难度,关键是众多考生找不到问题的突破口,这一点很要命。
我在网上搜到的解析如下:
答案很长,说实话我没有认真去看,我感觉好复杂啊!我在想有没有什么好的方法呢?
到底有没有呢?
有没有?
有!
不过我的解法也不能说解答,毕竟本身这个题目难度是有的,但是大家可以参考学习一下,也欢迎各位同行老师或者同学一起分享更好地方法!
把a给换掉,找出函数f(x)的零点,这个地方我找出的区间是(1,e),主要是为了计算方便。
这个地方大家要注意,要找出导函数的单调性和正负性,从而判断出原函数的取值范围问题。
大家一定要注意多画图,便于自己容易去理解。
你们感觉复杂吗?其实我这个题目的思路很清晰,就是严格结合图像来进行分析。
但是我这里利用了一个小的技巧,就是把a给换掉,这是其一;第二,大家要认真分析导函数与原函数的关系,图像少不了!当然了,还有一些小的定理,比如说零点定理。
多说无益,大家好好思考这个题目,确实是一道很不错的题目,给出题老师点个赞!。
2023年数学高考真题--新高考2卷解析
2023新高考2卷很难?一份您值得拥有的逐题详细解析!!!123456789101112A B D B C C D C AC AC BCD ABD 131415163282,−2,12,−12中选一个即可;−32 (逐题详解)1.在复平面内1+3i3−i对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【参考解析】z=1+3i3−i=3−i+9i−3i2=6+8i,故在第一象限,故选A;2.设集合A=0,−a,B=1,a−2,2a−2,若A⊆B,则a=A.2B.1C.23D.−1【参考解析1】直接验证选项,观察BD,因此先验证a=1,此时A=0,−1,B=1,−1,0,满足,故直接选B;【参考解析2】依题有a−2=0或2a−2=0;当a−2=0时,解得a=2,此时A=0,−2,B=1,0,2,不满足;当2a−2=0时,解得a=1,后面同解析1;3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有()种A.C45400C15200B.C20400C40200C.C30400C30200D.C40400C20200【参考解析】由分层抽样已知初中部抽40人,高中部抽20人,所以为C40400C20200,故选D;4.若f x =x+aln 2x−12x+1为偶函数,则a=A.−1B.0C.12D.1【参考解析】由九大奇函数易知y=ln 2x−12x+1为奇函数,所以y=x+a也要为奇函数,故a=0,故选B;5.已知椭圆C:x23+y2=1的左右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若ΔF1AB的面积是ΔF2AB的2倍,则m=A .23B .23C .−23D .−23−2+m 2=2×2+m 2,解得m =−23或m =−32(舍),故选C ;【参考解析】依题有6.已知函数f x =ae x −ln x 在区间1,2 上单调递增,则a 的最小值为A .e 2B .eC .e −1D .e −2【参考解析】f x =ae x −1x≥0在1,2 上恒成立,即0<1a ≤xe x 在1,2 上恒成立,令g x =xe x ,则g x =x +1 e x 在1,2 上单增,所以1a ≤g 1 =e ,所以a ≥e −1,故选C ;7.已知α为锐角,cos α=1+54,则sin α2=A .3−58B .−1+58C .3−54D .−1+54【参考解析1】由二倍角公式得cos α=1+54=1−2sin 2α2⇒sin 2α2=3−58,用代选项验证法知D 对;【参考解析2】由二倍角公式得cos α=1+54=1−2sin 2α2⇒sin 2α2=3−58=6−2516=5−14 2,所以sin α2=±−1+54,而sin α2=−−1+54无选项对应,故本题肯定不满足,故选D ;验证的事就留到考后分析;8.记S n 为等比数列a n 的前n 项和,若S 4=−5,S 6=21S 2,则S 8=A .120B .85C .−85D .−120【参考解析1】依题有a 11−q 4 1−q =−5a 11−q 6 1−q =21×a 11−q 21−q⇒q 2=4a 11−q =13,所以S 8=a 11−q 8 1−q =13×1−44 =−85,故选C ;【参考解析2】易知S 2,S 4−S 2,S 6−S 4,S 8−S 6也为等比数列,所以S 4−S 2 2=S 2⋅S 6−S 4 ,解得S 2=−1或S 2=54,当S 2=−1时,S 6−S 4 2=S 4−S 2 ⋅S 8−S 6 ⇒S 8=−85;当S 2=54时,与S 4=−5联立会推出q 2=−5,故舍去;多选:9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,∠APB =120°,PA =2,点C 在底面圆周上,且二面角P −AC −O 为45°,则A .该圆锥的体积为πB .该圆锥的侧面积为43πC .AC =22D .ΔPAC 的面积为3【参考解析】如上图所示,由几何关系易知PO =1=h ,AO =BO =3=r ,取AC 中点为H ,则二面角P −AC −O 即为∠PHO =45°,所以OH =PO =1,所以AH =CH =AO 2−OH 2=2,所以AC =22,对于A :V =13πr 2h =π,故A 对;对于B :S 侧=πrl =23π,故B 错;对于C :由前面分析知对;对于D :S ΔPAC =12×AC ×PH =2,故D 错;综上,选AC .10.设O 为坐标原点,直线y =−3x −1 过抛物线C :y 2=2px p >0 的焦点且与C 交于M ,N 两点,l 为C 的准线,则A .p =2B .MN =83C .以MN 为直径的圆与l 相切D .ΔOMN 为等腰三角形【参考解析】易知焦点为1,0 ,所以p2=1⇒p =2,故A 对;由抛物线常见结论知MN =4sin 22π3=163,故B 错;(下面增加联立的常规过程);联立y =−3x −1 y 2=4x ⇒3x 2−10x +3=0,所以M 13,233,N 3,−23 ,所以MN =163,故B 错;同样由抛物线常见结论知C 对;由前面知OM =133,ON =21,MN =163,故D 错;综上,选AC .考后分析C :圆心为M 53,−233,r =MN 2=83=53+1,故C 对;11.若函数f x =a ln x+b x+cx2a≠0既有极大值也有极小值,则A.bc>0B.ab>0C.b2+8ac>0D.ac<0【参考解析】因为f x =a ln x+bx+cx2a≠0,所以定义域x>0,易知f x =ax2−bx−2cx3,令ax2−bx−2c=0,则题目等价于有两个不相等的正解x1,x2,故Δ>0x1+x2>0x1x2>0⇒b2+8ac>0ba>0−2ca>0⇒b2+8ac>0ab>0ac<0bc<0,故选BCD12.在信道内传输0,1信号,信号的传输相互独立。
高考史上最难数学题目
高考史上最难数学题目
高考史上最难的数学题目很难确定,因为每年的高考数学题目都是根据当年教学大纲和考试要求进行设计的,而且难度也会因地区而异。
然而,以下是一些近年来被认为是较难的高考数学题目:
1.2013年北京卷高考数学第22题:给定函数f(x)=x^3-3x+1,求证函数f(x)在区间[-1,1]上至少有两个零点。
2.2014年湖南卷高考数学第18题:已知函数f(x)=a^x+ b^x(a>0,b>0,a≠b),若f(2)=3f(1),求证a=b。
3.2016年江苏卷高考数学第19题:已知函数f(x)=
sin^2(x)-2cos(x)-1,求证f(x)在区间[0,2π]上存在两个不同的根。
4.2017年上海卷高考数学第23题:若函数f(x)=a^x+
b^x(a>0,b>0,a≠b)满足f(1)=1,f(2)=3,求证当x>2时,f(x)的值大于3。
这些题目都具有一定的难度,需要考生充分理解数学概念和运算规则,并能够灵活运用解题技巧。
考生在备考过程中应注重对基础知识的理解和掌握,同时进行大量的练习和解题训练,以提高解题能力和应对复杂题目的能力。
史上最难高考题大全
史上最难高考题大全高考是众多学生人生中的一个重要节点,也是决定他们未来道路的一个关键考试。
而历年高考试题也因其难度屡屡引起各方的关注和热议。
下面就为大家盘点史上最难高考题大全,并提供相关参考内容。
1. 1999年北京市高考数学试题这道数学试题被评为高考历史上最难的试题之一。
试题要求考生在一个平行四边形中找出最大的圆和最小的正方形,同时还要求算出正方形的面积。
这道题难度极大,不仅考察了考生的数学知识,还要求考生有一定的几何思维能力。
参考内容:平行四边形中最大圆和最小正方形的面积可分别为(a+\sqrt{3} )^2 , \frac{(a+b)^2}{8},正方形的面积可用底边边长为a的三角形的高h来计算,S=\frac{a^2}{2}h。
2. 2004年陕西高考语文试题这道试题被评为语文高考历史上最难的试题之一。
试题要求考生阅读一篇古文文章,并回答两个问题,其中一个问题要求考生对文章做出推测和猜测。
这种对阅读理解和推理能力的考察难度较高,因此被认为是有史以来最难的语文高考试题之一。
参考内容:这种试题需要考生花更多时间在文章的结构、情感、语言等方面进行深入剖析和理解。
在回答问题时,要准确理解问题的意义,注意对文章的分析和推理。
3. 2015年江苏高考数学试题这道数学试题被认为是近年来的数学高考难题之一。
试题要求考生在一个三角形中找出一个点,使其到三个角的余角的正弦值之和最小。
这种题目需要考生掌握求极值和函数极值的知识,同时也要求考生有一定的思维能力和数学逻辑推理能力。
参考内容:这种数学题目需要考生掌握极值的概念,使用导数或者就地求解的方法来解题。
同时也要注意数学逻辑推理,分类讨论等方法。
4. 2017年山东高考英语试题这道英语试题也被认为是近年来高考难题之一,试题要求考生在一个英语文章中识别并纠正文章中的语法错误。
这种题目需要考生在语法、词汇、逻辑思维等方面具有一定的能力和认知水平。
参考内容:这种英语试题需要考生在平时的学习过程中多进行语法练习,并对英语文章的结构、语言和逻辑进行深入理解和掌握。
重难点专题13 导数与三角函数结合的解答题(原卷版) 备战2024年高考数学重难点突破
【变式 2-1】3. (2021 秋·河北邯郸·高三统考开学考试)已知函数() =
e
― 2( ∈ )
(其中 ≈ 2.71828为自然对数的底数).
(1)当 = 2时,判断函数()的单调性;
(2)若 > 1,证明() > cos对于任意的 ∈ [0, + ∞)恒成立.
∈ 0, π .
2
(1)当 = 1时,讨论()的单调性;
(2)若() + sin < 0,求的取值范围.
4.
(2023·全国·统考高考真题)(1)证明:当0 < < 1时, ― 2 < sin < ;
(2)已知函数() = cos ― ln(1 ― 2),若 = 0是()的极大值点,求 a 的取值范围.
证明:
(1)()在区间(0,)存在唯一极大值点;
(2)()有且仅有 2 个零点.
1
【变式 1-1】2. (2019 秋·安徽·高三校联考开学考试)已知函数() = cos + 42 ―1.
2 2
(1)证明:() ≤ 0, ∈ ― ,
;
(2)判断 = ()的零点个数,并给出证明过程.
题型 2 放缩法 ..................................................................................................................................2
题型 1 分段分析法
sin
2.
(2023·全国·统考高考真题)已知函数() = ― cos3, ∈ 0, π
史上最难高考数学压轴题
史上最难高考数学压轴题
在高考数学中,压轴题往往是最具挑战性和难度的问题,需要考生具备扎实的数学基础和灵活的思维。
以下是一道可能被认为是史上最难的高考数学压轴题:
题目:请证明对于任意实数x,y,z 和正整数n,都有(x^n + y^n) / z^n <= (x + y) / z - n + 1。
这道题目要求考生对数学归纳法、不等式性质、幂的性质等知识点有深入的理解和应用。
证明这个命题需要对数学归纳法和放缩法有深刻的理解和应用,同时也需要考生具备非常强的推理和逻辑分析能力。
因此,这道题目被许多人认为是史上最难的高考数学压轴题。
然而,这样的题目往往是为了选拔出最优秀的数学人才而设计的,因此并不是每位考生都需要掌握这种难度的题目。
对于大多数考生来说,掌握基础知识和方法仍然是最重要的。
高考数学压轴专题《平面向量及其应用》难题汇编
一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=3.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为26.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +7.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .3OA OB OC ++=D .ED 在BC 方向上的投影为768.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形10.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量11.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =13.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形14.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3B a c π=+=,则ac=( ) A .2B .3C .12 D .1315.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量二、平面向量及其应用选择题16.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B .833C .-4D .417.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m18.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)219.在ABC ∆中,6013ABC A b S ∆∠=︒=,,,则2sin 2sin sin a b cA B C-+-+的值等于( ) A 239B 2633C 833D .2320.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .25921.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 1922.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7223.已知向量(22cos m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 24.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形 D .以上均有可能 25.在ABC 中,若 cos a b C =,则ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形26.题目文件丢失!27.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n+的最大值为 A BC .4D .528.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8329.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( )A .()8bc b c +>B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤30.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅= 31.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式ac bd T -+-≥恒成立,则实数T 的取值范围为( ) A .(32-∞B .)32,⎡+∞⎣C .(32-∞D .)32,⎡+∞⎣32.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B 33C .33D 333.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形34.题目文件丢失!35.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a b a b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.3.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解. 【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.4.ABC 【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确.选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题. 5.CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用()∥判断;对于D,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量(解析:CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用(a b-)∥c判断;对于D,利用C的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量a=(2,1),b=(1,﹣1),则2110a b⋅=-=>,则,a b的夹角为锐角,错误;对于B,向量a=(2,1),b=(1,﹣1),则向量a在b方向上的投影为2a bb⋅=,错误;对于C,向量a=(2,1),b=(1,﹣1),则a b-=(1,2),若(a b-)∥c,则(﹣n)=2(m ﹣2),变形可得2m+n=4,正确;对于D,由C的结论,2m+n=4,而m,n均为正数,则有mn12= (2m•n)12≤(22m n+)2=2,即mn的最大值为2,正确;故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.6.AC【分析】利用向量线性的坐标运算可判断A;利用向量模的坐标求法可判断B;利用向量数量积的坐标运算可判断C;利用向量共线的坐标表示即可求解.【详解】由向量,,则,故A正确;,故B错误;解析:AC【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222222b =+=,故B 错误;22222cos ,1022a b a b a b⋅<>===⋅+⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.7.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,1(0,0),(1,0),(1,0),(,)33E A B C D -,设1(0,),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO ,所以133y y -=-,解得:2y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;32OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;1(,33ED =,(1,BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.8.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°9.AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒= 所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确;对D ,因为2220a b c +->,所以222cos 02a b c A ab+-=>,A 为锐角.但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题. 10.AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.11.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B结论正确,A结论错误;因为,,且,所以,即C结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.12.ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,解析:ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】本小题主要考查向量数乘运算,属于基础题.13.BD 【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在中,对于A ,若,则或, 当A =解析:BD【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=, 当A =B 时,△ABC 为等腰三角形; 当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B=,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确;综上,正确的判断为选项B 和D . 故选:BD . 【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.14.AC 【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】 ∵, ∴①,由余弦定理可得,②, 联立①②,可得, 即, 解得或. 故选:AC. 【点睛】本题考查余弦定理的应解析:AC 【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①, 由余弦定理可得,2222cos3a c acb π+-=②,联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2ac =或12a c =. 故选:AC. 【点睛】本题考查余弦定理的应用,考查计算能力,是基础题.15.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.二、平面向量及其应用选择题16.C 【分析】先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,AB AF2232,3cos 1133BE EC BE BC AF DF α=⇒==→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则()()230,3,3,1,,33B FE ⎛⎫⎪ ⎪⎝⎭,因此()BFAEBF233,2,3232643→=-→→=⨯-⨯=-=-,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 17.D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD302sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题. 18.A 【分析】由条件求得∠BCD =150°,∠CBE =15°,故∠ABE =30°,可得∠AEB =105°.计算sin105°,代入正弦定理sin30sin105AE AB=︒︒,化简求得AE =-. 【详解】由题意可得,AC =BC =CD =DA =BAC =45°,∠BCD =∠ACB +∠ACD =90°+60°=150°.又△BCD 为等腰三角形,∴∠CBE =15°,故∠ABE =45°﹣15°=30°,故∠BEC =75°,∠AEB =105°.再由 sin105°=sin (60°+45°)=sin60°cos45°+cos60°sin45°=, △ABE 中,由正弦定理可得sin30sin105AE AB=︒︒,∴124AE=,∴AE =), 故选:A . 【点睛】本题考查勾股定理、正弦定理的应用,两角和的正弦公式,属于中档题. 19.A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中, 利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 20.C 【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BCR A=求解. 【详解】在ABC 中,5AB AC ==,6BC =,由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =, 此三角形的外接圆半径是258故选:C 【点睛】本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题. 21.A 【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解. 【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=. 故选:A. 【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 22.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 23.D 【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f (x )不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项. 24.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)
2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。
高考数学难题书
高考数学难题书篇一:高考数学综合训练(难题)综合训练(1)篇二:高中数学经典高考难题集锦(解析版) (5)2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014?江北区校级模拟)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C. D.2.(2004?广东)如图,定圆半径为a,圆心坐标为(b,c),则直线ax+by+c=0,与直线x+y﹣1=0的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2003?天津)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB 夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=()A.4.(2009?北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x于A,B两点,且|PA|=|AB|,则称点P为“A.直线l上的所有点都是“B.直线l上仅有有限个点是“C.直线l上的所有点都不是“点”,那么下列结论中正确的是()点” 点” 点”点” 2B. C. D.1 D.直线l上有无穷多个点(点不是所有的点)是“5.(2014?崇明县一模)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么A.的最小值为() B. C. D.6.(2013?上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若A.圆,其中λ为常数,则动点M的轨迹不可能是() B.椭圆C.抛物线 D.双曲线227.(2008?山东)已知圆的方程为x+y﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 B.20 C.30 D.408.(2009?浙江)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点的个数最多为()A.3 B.4 C.5 D.69.(2004?重庆)若三棱锥A﹣BCD的侧面ABC内一动点P到底面BCD的面积与到棱AB的距离相等,则动点P的轨迹与△ABC组成图形可能是:()A. B. C.D.2210.(2008?湖北)过点A(11,2)作圆x+y+2x﹣4y﹣164=0的弦,其中弦长为整数的共有()A.16条 B.17条 C.32条 D.34条11.(2012?天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)二.填空题(共13小题)12.(2006?上海)已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB 面积的最小值为213.(2008?重庆)直线l与圆x+y+2x﹣4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为.14.(2006?福建)如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.2215.(2011?北京)曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于2常数a(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a.其中,所有正确结论的序号是.16.(2011?湖南)已知圆C:x+y=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为;(2)圆C上任意一点A到直线l的距离小于2的概率为.17.(2007?上海)已知圆的方程x+(y﹣1)=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.2222218.(2005?江西)以下四个关于圆锥曲线的命题中①设A、B为两个定点,k为非零常数,||﹣||=k,则动点P 的轨迹为双曲线;=(+),则动点P②设定圆C上一定点A作圆的动点弦AB,O 为坐标原点,若的轨迹为椭圆;③方程2x﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线﹣=1与椭圆+y=1有相同的焦点. 22其中真命题的序号为(写出所有真命题的序号)19.(2007?上海)如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是.20.(2006?江西)已知圆M:(x+cosq)+(y﹣sinq)=1,直线l:y=kx,下面四个命题:(A)对任意实数k与q,直线l和圆M相切;(B)对任意实数k与q,直线l和圆M有公共点;(C)对任意实数q,必存在实数k,使得直线l与和圆M相切(D)对任意实数k,必存在实数q,使得直线l与和圆M相切其中真命题的代号是.(写出所有真命题的代号)21.(2010?北京)(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f (x),则f(x)的最小正周期为y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x 轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.2222.(2004?北京)若直线mx+ny﹣3=0与圆x+y=3没有公共点,则m、n满足的关系式为;以(m,n)为点P的坐标,过点P的一条直线与椭圆有个.23.(2011?江苏)设集合,B={(x,+=1的公共点22y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是24.(2012?陆丰市校级模拟)如图,⊙O1与⊙O2交于M、N 两点,直线AE与这两个圆及MN依次交于A、B、C、D、E;且AD=19,BE=16,BC=4,则AE=.三.解答题(共6小题)25.(2005?江西)如图,M是抛物线上y=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.226.(2005?广东)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.27.(2004?福建)如图,P是抛物线C:y=x上一点,直线l 过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.(Ⅰ)当点P的横坐标为2时,求直线l的方程;(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.2篇三:题目818b998fcc220e52一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
最新史上最难的1984全国高考理科数学试卷
史上最难的1984全国高考理科数学试卷创难度之最的1984年普通高等学校招生全国统一考试理科数学试题(这份试题共八道大题,满分120分 第九题是附加题,满分10分,不计入总分)一.(本题满分15分)本题共有5小题,每小题选对的得3分;不选,选错或多选得负1分1.数集X = {(2n +1)π,n 是整数}与数集Y = {(4k ±1)π,k 是整数}之间的关系是 ( C ) (A )X ⊂Y (B )X ⊃Y (C )X =Y (D )X ≠Y2.如果圆x 2+y 2+Gx +Ey +F =0与x 轴相切于原点,那么( C ) (A )F =0,G ≠0,E ≠0. (B )E =0,F =0,G ≠0. (C )G =0,F =0,E ≠0. (D )G =0,E =0,F ≠0.3.如果n 是正整数,那么)1]()1(1[812---n n 的值 ( B )(A )一定是零 (B )一定是偶数(C )是整数但不一定是偶数 (D )不一定是整数4.)arccos(x -大于x arccos 的充分条件是 ( A ) (A )]1,0(∈x (B ))0,1(-∈x(C )]1,0[∈x (D )]2,0[π∈x5.如果θ是第二象限角,且满足,sin 12sin 2cos θ-=θ-θ那么2θ( B )(A )是第一象限角 (B )是第三象限角(C )可能是第一象限角,也可能是第三象限角 (D )是第二象限角二.(本题满分24分)本题共6小题,每一个小题满分4分1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积答:.84ππ或2.函数)44(log 25.0++x x 在什么区间上是增函数? 答:x <-2.3.求方程21)cos (sin 2=+x x 的解集 答:},12|{},127|{Z n n x x Z n n x x ∈π+π-=⋃∈π+π= 4.求3)2||1|(|-+x x 的展开式中的常数项 答:-205.求1321lim +-∞→n nn 的值答:06.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算)答:!647⋅P编者说明1984年的第三大题,是1983年第二大题的发展。
高考数学难点:轨迹方程的求法
高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
1984年高考数学试题(全国理)及答案(历年最难)
1984年普通高等学校招生全国统一考试理科数学试题(这份试题共八道大题,满分120分第九题是附加题,满分10分,不计入总分)一.(本题满分15分)本题共有5小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的把正确结论的代号写在题后的圆括号内每一个小题:选对的得3分;不选,选错或者选出的代号超过一个的(不论是否都写在圆括号内),一律得负1分 1.数集X={(2n+1)π,n 是整数}与数集Y={(4k ±1)π,k 是整数}之间的关系是 ( C ) (A )X ⊂Y (B )X ⊃Y (C )X=Y (D )X ≠Y2.如果圆x 2+y 2+Gx+Ey+F=0与x 轴相切于原点,那么( C )(A )F=0,G ≠0,E ≠0. (B )E=0,F=0,G ≠0. (C )G=0,F=0,E ≠0. (D )G=0,E=0,F ≠0.3.如果n 是正整数,那么)1]()1(1[812---n n 的值 ( B )(A )一定是零 (B )一定是偶数 (C )是整数但不一定是偶数 (D )不一定是整数4.)arccos(x -大于x arccos 的充分条件是 ( A )(A )]1,0(∈x (B ))0,1(-∈x (C )]1,0[∈x (D )2,0[π∈x5.如果θ是第二象限角,且满足,sin 12sin2cosθ-=θ-θ那么2θ( B )(A )是第一象限角(B )是第三象限角(C )可能是第一象限角,也可能是第三象限角(D )是第二象限角 二.(本题满分24分)本题共6小题,每一个小题满分4分只要求直接写出结果)1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积 答:.84ππ或2.函数)44(log25.0++x x 在什么区间上是增函数? 答:x <-2. 3.求方程21)cos (sin 2=+x x 的解集 答:},12|{},127|{Z n n x x Z n n x x ∈π+π-=⋃∈π+π=4.求3)2||1|(|-+x x 的展开式中的常数项答:-205.求1321lim+-∞→nnn 的值答:06.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算) 答:!647⋅P三.(本题满分12分)本题只要求画出图形1.设⎩⎨⎧>≤=,0,1,0,0)(x x x H 当当画出函数y=H(x-1)的图象 2.画出极坐标方程)0(0)4)(2(>ρ=π-θ-ρ的曲线解:四.(本题满分12分)已知三个平面两两相交,有三条交线求证这三条交线交于一点或互相 1.平行证:设三个平面为α,β,γ,且.,,a b c =γ⋂β=γ⋂α=β⋂α.,,,α⊂α⊂∴=γ⋂α=β⋂αb c b c从而c 与b 或交于一点或互相平行1.若c 与b 交于一点,设;,,.β∈β⊂∈=⋂P c c P P b c 有且由 a P P b b P =γ⋂β∈γ∈γ⊂∈于是有又由.,,∴所以a ,b,c 交于一点(即P 点)2.若c ∥b,则由a c a c c b //,,.//,可知且又由有=γ⋂ββ⊂γγ⊂所以a ,b,c 互相平行五.(本题满分14分)设c,d,x 为实数,c ≠0,x 为未知数讨论方程1log(-=+x xd cx 在什么情况下有解有解时求出它的解解:原方程有解的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+≠+>+>-(4))((3) ,0(2) ,0(1) ,01x x d cx x d cx x d cx x 由条件(4)知1)(=+x d cx x ,所以12=+d cx 再由c ≠0,可得.12c d x -= 又由1)(=+xd cx x 及x >0,知0>+xd cx ,即条件(2)包含在条件(1)及(4)中再由条件(3)及1(=+xd cx x ,知.1≠x 因此,原条件可简化为以下的等价条件组:⎪⎪⎩⎪⎪⎨⎧-=≠>(6) .1x (5) 1,x (1),02c dx 由条件(1)(6)知.01>-c d 这个不等式仅在以下两种情形下成立: ①c >0,1-d >0,即c >0,d <1;②c <0,1-d <0,即c <0,d >1.再由条件(1)(5)及(6)可知d c -≠1 从而,当c >0,d <1且d c -≠1时,或者当c <0,d >1且d c -≠1时,原方程有解,它的解是x =六.(本题满分16分)1.设0≠p ,实系数一元二次方程022=+-q pz z 有两个虚数根z 1,z 2.再设z 1,z 2在复平面内的对应点是Z 1,Z 2求以Z 1,Z 2为焦点且经过原点的椭圆的长轴的长7分)2.求经过定点M (1,2),以y 轴为准线,离心率为21的椭圆的左顶点的轨迹方程(9分)解:1.因为p,q 为实数,0≠p ,z 1,z 2为虚数,所以0,04)2(22>><--pq q p 由z 1,z 2为共轭复数,知Z 1,Z 2关于x 轴对称,所以椭圆短轴在x 轴上 P b αβ a γ ca经过原点,可知原点为椭圆短轴的一端点根据椭圆的性质,复数加、减法几何意义及一元二次方程根与系数的关系,可得椭圆的短轴长=2b=|z 1+z 2|=2|p|,焦距离=2c=|z 1-z 2|=2212212|4)(|p q z z z z -=-+,长轴长=2a=.2222q cb =+2.因为椭圆经过点M (1,2),且以y 轴为准线,所以椭圆在y 轴右侧,长轴平行于x 轴设椭圆左顶点为A (x,y ),因为椭圆的离心率为21,所以左顶点A 到左焦点F 的距离为A 到y 轴的距离的21,从而左焦点F 的坐标为),23(y x 设d 为点M 到y 轴的距离,则d=1根据21||=dMF 及两点间距离公式,可得22222312(1)(2)(,9()4(2)1223xy x y -+-=-+-=即 这就是所求的轨迹方程七.(本题满分15分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b,c ,且c=10,34cos cos ==a b BA ,P 为△ABC 的内切圆上的动点求点P 到顶点A ,B ,C 的距离的平方和的最大值与最小值解:由a b B A =cos cos ,运用正弦定理,有.2sin 2sin cos sin cos sin ,sin sin cos cos B A B B A A ABB A =∴=∴= 因为A ≠B ,所以2A=π-2B ,即由此可知△ABC 是直角三角形由c=10,.8,60,0,34222==>>=+=b a b ac ba ab 可得以及如图,设△ABC 的内切圆圆心为O ',切点分别为D ,E ,F ,则 AD+DB+EC=.12)6810(21=++但上式中AD+DB=c=10,所以内切圆半径r=EC=2. 如图建立坐标系, 则内切圆方程为:(x-2)2+(y-2)2=4设圆上动点P 的坐标为(x,y),则22222222222||||||(8)(6)3[(2)(2)]47634476884.S P A P B P C x y x y x y x y x x x =++=-+++-++==-+--+=⨯-+=-因为P 点在内切圆上,所以40≤≤x , S 最大值=88-0=88, S 最小值=88-16=72解二:同解一,设内切圆的参数方程为),20(sin 22cos 22π<α≤⎩⎨⎧α+=α+=y x从而222||||||PC PB PA S ++=222222(2cos 6)(22sin )(22cos )(2sin 4)(22cos )(22sin )808cos ααααααα=-+++++-++++=- Y X )因为πα20<≤,所以 S 最大值=80+8=88,S 最小值=80-8=72 八.(本题满分12分)设a >2,给定数列{x n },其中x 1=a ,)2,1()1(221 =-=+n x x x n nn 求证:1.);2,1(1,21 =<>+n x x x nn n 且2.);2,1(212,31=+≤≤-n x a n n 那么如果3..3,34lg3lg,31<≥>+n x an a 必有时那么当如果 1.证:先证明x n >2(n=1,2,…)用数学归纳法由条件a >2及x 1=a 知不等式当n=1时成立假设不等式当n=k(k ≥1)时成立当n=k+1时,因为由条件及归纳假设知,0)2(0442221>-⇔>+-⇔>+k k k k x x x x再由归纳假设知不等式0)2(2>-k x 成立,所以不等式21>+k x 也成立从而不等式x n >2对于所有的正整数n 成立(归纳法的第二步也可这样)证:2)22(21]211)1[(211=+>+-+-=+k k k x x x所以不等式x n >2(n=1,2,…)成立).2,1(11 =<+n x x nn 由条件及x n >2(n=1,2,…)知,21)1(211>⇔<-⇔<+n n n nn x x x x x 因此不等式).2,1(11 =<+n x x nn 也成立(也可这样证:对所有正整数n 有.1)1211(21)111(211=-+<-+=+n nn x x x 还可这样证:对所有正整数n 有,0)1(2)2(1>--=-+n n n n n x x x x x 所以).2,1(11 =<+n x x nn )2.证一:用数学归纳法件x 1=a ≤3知不等式当n=1时成立 假设不等式当n=k(k ≥1)时成立当n=k+1时,由条件及2>k x 知22111111112(1)(2)2(2)2(2)0(2)[(2)]0,22222k k k k k k k kkkkk x x x x x x x +-≤+⇔≤-+⇔-+++≤⇔--+≤再由2>k x 及归纳假设知,上面最后一个不等式一定成立,所以不等式kk x 2121+≤+也成立,从而不等式1212-+≤n n x 对所有的正整数n 成立证二:用数学归纳法证不等式当n=k+1时成立用以下证法:由条件知)111(211-++=+k k k x x x 再由2>k x 及归纳假设可得k k k x 21211)212(2111+=⎥⎦⎤⎢⎣⎡+++≤-+ 3.证:先证明若.43,31<>+kk k x x x 则这是因为.43)1311(21)111(211=-+<-+=+k kk x x x 然后用反证法若当34lg3lgan >时,有,31≥+k x 则由第1小题知.3121≥>>>>+n n x x x x 因此,由上面证明的结论及x 1=a 可得,)43(31231211nnn n a x x x x x x x x <⋅⋅⋅⋅=≤++ 即34lg3lg an <,这与假设矛盾所以本小题的结论成立九.(附加题,本题满分10分,不计入总分)如图,已知圆心为O 、半径为1的圆与直线L 相切于点P 自切点A 沿直线L 向右移动时,取弧AC 的长为AP 32,直线PC 与直线AO 交于点M 又知当4P 的速度为V 求这时点M 的速度 解:作CD ⊥AM ,并设AP=x ,AM=y ,∠COD=θ由假设,x AP 3232=, 半径OC=1,可知θx 32=考虑),0(π∈x ∵△APM ∽△DCM ,DCDM APAM =∴而.)43()843(2,,43)32sin()32cos321)(32cos 1()32sin3232cos1)(32sin([/.32sin)32cos1(.32sin)32cos 1(,32sin),32cos1(222v dtdy M v dtdx x dtdx x x x x x x x x x x dt dy x x x x y x x y xy x DC x y DM -π-π-π==π=----+--=∴--=--=∴=--=点的速度代入上式得时当解得A P L。
史上高考最难数学题
史上高考最难数学题一、在三维空间中,给定一个不规则多面体,其各面均为不等边三角形,且所有顶点均不共面。
现从该多面体的一顶点出发,沿表面行走至最远顶点,问此路径最多可能穿越几个面?A. 5个B. 6个C. 7个D. 依赖于多面体的具体形状,无法确定最大值(答案)D二、设函数f(x)为定义在实数集R上的连续函数,且满足f(x+2)=f(x)+f(1),若f(1)=3,则f(2023)的值为?A. 3033B. 3034C. 3035D. 依赖于f(x)在(0,1)区间内的具体形式(答案)B(注:根据递推关系,可推导出f(x)为周期函数,周期为2,进而求解)三、考虑一个正整数n的因数分解式,若其所有因数的和等于2n,则称n为“完美数”。
现问,在1至10000之间,有多少个完美数?A. 1个B. 2个C. 3个D. 4个(答案)D(注:完美数非常稀少,目前已知的在小范围内的完美数有6, 28, 496, 8128等)四、设数列{an}满足a1=1,an+1=2an+3n,求数列{an}的通项公式。
以下哪个选项可能是正确的通项公式?A. an=2n-3nB. an=n2(n-1)+3(n-1)(n-1)C. an=(2n-1)*3(n-1)D. 无法直接求出通项公式,需借助其他数学工具(答案)D(注:该数列的递推关系复杂,不易直接求出通项公式)五、在复平面上,设z1, z2为两个非零复数,且满足|z1|=|z2|=1,|z1+z2|=1。
问z1与z2在复平面上所对应的点可能构成的几何图形是?A. 等腰三角形B. 等边三角形C. 直角三角形D. 以上都有可能,取决于z1与z2的具体取值(答案)B(注:由条件可知,z1, z2及它们的和均位于单位圆上,且构成等边三角形)六、考虑一个n×n的矩阵A,其中A的每一行、每一列的元素都是从1到n的整数的一个排列。
现要求A中任意两行(或两列)间相同位置的元素之差都不相等,问满足条件的n 的最大值是多少?A. 3B. 4C. 5D. 不存在这样的n(答案)A(注:这类矩阵称为“拉丁方”,对于n>3,难以满足所有条件)。
高考史上最难的数学题
高考史上最难的数学题一、在一个无限大的平面上,有无数个点以特定规律排列,若你站在某一点上,只能看到距离你最近的三个点,请问这种排列方式可能是什么?( )A. 正方形网格排列B. 正三角形网格排列C. 正六边形网格排列D. 随机排列答案:C解析:在正三角形网格排列中,每个点周围都有六个等距的点。
但如果你站在其中一个点上,由于视角限制,你只能看到其中三个最近的点。
正方形网格和随机排列都不满足这一条件,正六边形网格虽然每个点也有六个相邻点,但因其形状特性,从任意一点看也只能看到三个最近的点。
二、一个数列的前n项和为Sn,且满足Sn=2的n次方-1,那么数列的第五项是多少?( )A. 15B. 16C. 31D. 32答案:B解析:数列的前n项和Sn=2的n次方-1,那么数列的第n项an=Sn-Sn-1。
代入n=5,我们可以得到a5=S5-S4=(2的5次方-1)-(2的4次方-1)=32-16+1=16。
三、在一个半径为1的圆内随机取一个点,该点距离圆心的距离小于1/2的概率是多少?( )A. 1/2B. 1/3C. 1/4D. 1/5答案:C解析:圆的面积与半径的平方成正比,所以半径为1/2的圆的面积是半径为1的圆的1/4。
因此,在一个半径为1的圆内随机取一个点,该点距离圆心的距离小于1/2的概率就是1/4。
四、一个函数f(x)满足f(f(x))=x,且f(x)不等于x,这样的函数f(x)可能是什么?( )A. f(x)=x+1B. f(x)=x的平方C. f(x)=-xD. f(x)=x的三次方答案:C解析:对于选项C,f(-x)=-(-x)=x,且f(x)=-x不等于x,满足条件。
而其他选项都不满足f(f(x))=x的条件。
五、一个正方体的八个顶点被涂上红色,然后把这个正方体切成64个小正方体,问有多少个小正方体的顶点没有被涂上红色?( )A. 8B. 27C. 56D. 64答案:B解析:大正方体被切成64个小正方体,即每条边被切成了4段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考很难的数学题
高考是许多学生人生中最重要的考试,而其中的数学题更是让人头疼。
下面就来看看有哪些高考很难的数学题。
1. 函数极值问题:给定一个函数,求其在给定区间内的最大值或最小值。
这道题考查的是函数的极限和导数,需要学生掌握函数的性质和运算规则。
2. 三角函数问题:许多高考题目涉及三角函数的概念和公式,需要学生掌握三角函数的定义、性质以及相关的运算规则。
3. 数列问题:数列是高中数学的重要内容,高考中也经常出现数列的相关问题。
需要学生掌握数列的定义、公式和求解方法。
4. 空间几何问题:空间几何是高考数学中难度较大的部分,需要学生掌握空间几何的基本概念和定理,能够熟练地运用几何知识来解决实际问题。
5. 微积分问题:微积分是高考数学中比较难的内容,需要学生掌握微积分的基本理论和计算方法,能够熟练地运用微积分知识来解决实际问题。
以上就是高考很难的数学题的一些例子。
要想在高考中获得好成绩,学生需要认真学习数学知识,不断练习,掌握解题技巧。
- 1 -。