(完整版)分数指数幂练习题

合集下载

专题12.4 分数指数幂(解析版)

专题12.4 分数指数幂(解析版)

第十二章实数专题12.4 分数指数幂基础巩固一、单选题(共6小题)1.下列运算错误的是()A.=4B.=C.=﹣3D.=2【答案】B【分析】分别计算算术平方根、负指数幂、立方根即可判断.【解答】解:A.=4,故A正确B.===,故B错误;C.=﹣3,故C正确;D.,故D正确.故选:B.【知识点】算术平方根、分数指数幂、立方根2.下列计算中正确的是()A.=﹣2B.=±5C.=3﹣πD.【答案】D【分析】由二次根式的性质,=|a|,可以分别判断每个选项.【解答】解:=2,所以A错误;=5所以B错误;=π﹣3,所以C错误;故选:D.【知识点】分数指数幂、实数的运算3.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.a=D.(﹣a﹣2)3=﹣【答案】D【分析】根据合并同类项,同底数幂的除法,分数指数幂,积的乘方,可得答案【解答】解:A、2a+3a=5a,故A不符合题意;B、x8÷x2=x6,故B不符合题意;C、a=,故C不符合题意;D、(﹣a﹣2)3=﹣a﹣6=﹣,故D符合题意;故选:D.【知识点】同底数幂的除法、负整数指数幂、幂的乘方与积的乘方、合并同类项、分数指数幂4.下列计算中,错误的是()A.20180=1B.﹣22=4C.=2D.3﹣1=【答案】B【分析】根据零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算即可.【解答】解:A、20180=1,故原题计算正确;B、﹣22=﹣4,故原题计算错误;C、=2,故原题计算正确;D、3﹣1=,故原题计算正确;故选:B.【知识点】分数指数幂、零指数幂、负整数指数幂、实数的运算5.下列计算中正确的是()A.B.C.D.【答案】D【分析】A、B根据合并同类二次根式的法则计算,C根据同底数幂的乘法法则计算,D根据二次根式的除法法则计算.【解答】解:A、+=+,此选项错误;B、2﹣=,此选项错误;C、计算错误,指数应该相加,不是相乘,此选项错误;D、=,此选项正确.故选:D.【知识点】分数指数幂、二次根式的混合运算6.2等于()A.B.﹣C.D.﹣【答案】C【分析】根据分数指数幂和负整数指数幂的意义即可求出答案.【解答】解:原式===,故选:C.【知识点】分数指数幂二、填空题(共6小题)7.用幂的形式表示:=.【分析】根据分数指数幂,即可解答.【解答】解:=,故答案为:.【知识点】分数指数幂8.计算:=.【答案】2【分析】根据幂的意义解答即可.【解答】解:∵.故答案为:2【知识点】分数指数幂9.的四次方根是.【分析】因为,所以的四次方根是.【解答】解:∵,∴的四次方根是.故答案为:.【知识点】分数指数幂10.1的四次方根是.【答案】±1【分析】根据四次方根的意义得出±,求出即可.【解答】解:1的四次方根是:±=±1.故答案为:±1.【知识点】分数指数幂11.计算:=.【答案】3【分析】利用=(a≥0)进行计算即可.【解答】解:==3,故答案是3.【知识点】分数指数幂12.把表示成幂的形式是.【答案】723【分析】根据分数指数幂的意义直接解答即可.【解答】解:根据分数指数幂的意义可知,=.故答案为.【知识点】分数指数幂拓展提升三、解答题(共6小题)13.计算:()﹣1+﹣+|1﹣|.【分析】直接利用二次根式的性质和绝对值的性质、分数指数幂的性质分别化简得出答案.【解答】解:原式==2+3+3﹣2+﹣1=.【知识点】负整数指数幂、实数的运算、分数指数幂14.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.【解答】解:原式==﹣1﹣2﹣++4=.【知识点】负整数指数幂、分数指数幂15.计算:.【分析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式==﹣2++1=﹣1.【知识点】实数的运算、零指数幂、负整数指数幂、分数指数幂16.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.【解答】解:原式==3﹣2+4+﹣1﹣2=.【知识点】分数指数幂、负整数指数幂17.比较,,的大小,并用“<”连接.【分析】先利用幂的乘方得到()6=8,()6=9,所以<,再利用同样方法得到>,从而得到,,的大小关系.【解答】解:∵()6=23=8,()6=32=9,∴<,∵()10=25=32,()10=52=25,∴>,∴<<.【知识点】分数指数幂、实数大小比较18.计算:(﹣1)0+|1﹣|+()﹣1+8.【分析】直接利用绝对值的性质、负整数指数幂的性质、分数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣1+3+2=5.【知识点】零指数幂、实数的运算、分数指数幂、负整数指数幂。

分数指数幂复习练习题

分数指数幂复习练习题

分数指数幂1.以下命题中,正确命题的个数是.①n n= a20= 1 a②假设 a∈R,那么(a-a+ 1)③3x + y = x + y④3-5=6- 52 43432.以下根式、分数指数幂的互化中,正确的序号是.1(x≠ 0) ②x x= x 3③ x-1=-3341x)-3=① - x= (- x)43x④x· x= x12⑤ (42y4y 3⑥ 621(xy≠ 0)y=y (y<0)x3c b3.假设 a= 2, b= 3, c=- 2,那么 (a ) =__________.4.根式 a a的分数指数幂形式为.425.- 25 = __________.-(2k +1)-(2k-1)-2k6.2-2+ 2的化简结果是.7. (1)设α,β是方程2x 21++3x + 1= 0的两个根,那么 ( )α β= __________.4x y1(2)假设 10 =3,10= 4,那么 10x-2y=__________.8. (1)求以下各式的值:21 143①27 ;②(6);③()-.34 292-311 (2)解方程:① x=8;② x= 94.9.求以下各式的值:2125 17 (1)(0.027) 3+ (27 )3- (29) ;1 117 13- 133 1-1(2)(3)2+ 3·( 3- 2) - (164)4- ( 3 )4- (3) .11- 110. a 2+a - 2= 4,求 a + a的值.11.化简以下各式:2 15x - 3y 2(1)1-11511;- 4x y 2 -6 x 3y - 6 m + m -1+ 2(2) 1 1 . m - 2+m 22112. [(- 2) ]-2的值是.36313.化简 ( 6949 4.a ) ·(a ) 的结果是14.以下各式,化简正确的个数是.211①a5a-3 a-15= 16- 92-46②(a b)-= a b3111212③(- x y- )(x- y )(- x y )= y4323431 13-15a 2b3c-43④ 1 1 5=-5ac25a -2b 3c4a101 n15. (2021 模拟, 4 改编 )若是 a3= 3, a10=384 ,那么a3[( a3)7] 等于.16.化简3a- b3a- 2b2.+的结果是17.以下结论中,正确的序号是.233①当 a<0 时, (a ) = a2②na n= |a|(n>1 且 n∈ N * )10③函数 y= (x-2) - (3x- 7) 的定义域是 (2,+∞ )2④假设 100a=5,10b= 2,那么 2a+ b=1- 1, b = (2--1- 2- 2.18. (1) 假设 a= (2+ 3)3),那么 (a+ 1) + (b+ 1) 的值是(2)假设 x> 0, y> 0,且x( x+ y)= 3y( x+ 5y),那么2x+ 2xy+ 3y.的值是x- xy+ y112 009 n- 2 009 -n*2+1 +a)n.19. a=2(n∈ N ),那么 ( a的值是1111120.假设 S= (1+2-32 )(1+ 2-16)(1+ 2-8)(1+ 2-4)(1+ 2-2),那么 S 等于.21.先化简,再求值:2535a·a(1),其中 a=8 -;1073a · a3x- 3xa + a2x(2) a+a,其中 a = 5.x- x22.(易错题 )计算:3 0- 2 1 1(1)(25) + 2 ·(24)-2- (0.01);7 - 210 2037 (2)(29) ++ (227)-3-3π+48;17 0-1[81-3111(3)(0.008 1) --[3× ( ) ]×+ (3 )- ]-- 10×0.027 .4883233311x2+ x-2+ 223. x2+x-2= 3,求x2+x-2+3的值.24.化简以下各式:x- 2- 2 - 2- 2+ yx - y(1)22-22;x - 3+ y - 3 x - 3- y - 341a 3-8a 3b 3 b3(2)÷(1- 2a )× a.232a + 2 ab + 4b33答案与剖析基础坚固1. 1 ∵na = a ,当 n 为奇数时,n|a|,当 n 为偶数时,∴① 不正确;21 2 3∵a ∈ R ,且 a - a + 1= (a - ) + ≠0 ,∴② 正确;4 3∵ x + y 为多项式, ∴③ 不正确; ④中左边为负,右边为正显然不正确.∴只有 ② 正确.12.②⑤① - x =- x 2, ∴① 错;② x x = (x 1 1 1 3 1 3x) = (x ·x ) = (x ) = x , ∴② 对;2 2 2 2 2 4 1 1 1③x - = = ,∴③ 错;3 1 3x 3 x④34 1 1 1 1 7·x 4= x 3+ 4= x 12,x · x = x 3∴④ 错;x3y 3 = 4 y 3,⑤( )-=()xy 4 x 4 ∴⑤ 对;⑥6211y = |y|3 =- y 3(y<0) , ∴⑥ 错.∴②⑤ 正确.1c bbc3×(-2) - 61 13.(a ) = a =2 = 2 = 6=.6426431134. a 2 a a = a ·a 2= a1+2= a 2.5. 54-25 2= 4252= 454=5.- (2k + 1)- (2k + 1)- (2k - 1)-2k -2k -1- 2k1-2k1 - 2k1 - 2k6.- 2∵ 2- 2 +2= 2 ·2 - 2·2 + 2=(2- 2+ 1)·2 =- 2·2=- 2-(2k + 1).337. (1)8(2)2 (1)由根与系数的关系,得 α+ β=- 2 ,1 +1 3 -23 3∴( ) α β= (2 )- =2 =8.=( )-2442xy1 x1 xy11 3(2)∵ 10 = 3,10 = 4, ∴ 10x - 2y = 10 ÷102y =10 ÷(10 )2= 3÷42= 2.2 3 2 2 2 8.解: (1)① 273= (3 )3= 33×3= 3 = 9.1 1 25 1② (64)2=( 4 )2521 5 1 5 = [()]=()2×=.2 2 2 224 3 2 3③ (9)- 2= (3)2× (- 2)2-333 27= (3) =(2) = 8 .- 31- 3(2)①∵ x = 8= 2 , ∴x = 2.②∵ 1 ,x = 94 ∴( 21 2 1 x) = (9 )=9 .4 221∴x =(3)2= 3.32 125 1 25 1 9 5 5 99.解: (1)原式= (0.3 )3+ ( 27 )3- ( 9 )2=100 + 3- 3= 100 .1 3 81 12 31(2)原式= 3-2 + 3- 2 - (64)4-(3- 3)4- 333 4 1 1= 3 +3( 3+ 2)- [4(4) ]4-3-2- 33 3 3- 3=3+3+ 6- 2·- 3 46 32.= -41 110.解: ∵a 2+ a - 2= 4.∴两边平方,得 a + a -1 + 2= 16. ∴a + a -1 = 14.11.解: (1)原式=24 2 1 1 1 1 01 1 × 5× x - + 1- × y - + = 24xy = 24y ;53322 666(2)原式1 2111 2m 2 + 2m 2·m - 2+ m - 2=11m - 2+ m 2112m 2+ m - 21 1=11 = m 2+ m - 2.m +m -22能力提升21 1 212. 2原式= 2- 2= 2 = 2 .439 46 9 43 14 1 4 1 4 1 4 2 2 413. a 原式= ( a ) ·( a )=(a × ) ·(a3× )= (a ) ·(a )=a ·a = a .6 32362214. 3由分数指数幂的运算法那么知①②③ 正确;3 11 113 53 1 0 - 23- 2≠ 右边, ∴④ 错误.对④ , ∵ 左边=- 5a 2+ 2b 3 -3 c - 4-4 =- 5 a b c =- 5 acn384 1 n1 n1 nn15. 3·2原式= 3·[( 3 )7] = 3·[(128) 7] =3 ·(27× 7)=3·2 .16. b 或 2a - 3b原式= a - b + |a - 2b| =a -b + 2b - a , a < 2b b , a <2b ,a -b + a - 2b , a ≥ 2b=2a - 3b , a ≥ 2b.23 21 33 3 317. ④ ①中,当 a < 0 时, (a )2 =[(a )2] =(|a|) = (- a) =- a , ∴① 不正确;nn当 a < 0, n 为奇数时, a = a ,∴② 不正确;x - 2≥ 0, ③中,有3x - 7≠ 0,7即 x ≥ 2 且 x ≠ 3,77故定义域为 [2, 3)∪ (3,+ ∞ ),∴③ 不正确;④中, ∵ 100a = 5,10b =2 ,∴ 102a =5,10 b = 2,102a × 10b = 10.∴ 2a + b =1.∴④ 正确.21118. (1)3 (2)3 (1)a = 2 + 3 =2 - 3, b = 2- 3 = 2+ 3 ,∴(a + 1) -2 + (b + 1) -2 = (3 - 3 ) -2 + (3 + 3 ) -2 =1 2 + 1 2=3 - 3 3+ 33 + 3 22+3- 33- 32·3+ 3222- 2·3· 3+ 33 +2·3 · 3+3+3= 2[3- 3 3+ 3]2×9+624 2 =9- 3 2=36=3.(2)由条件,可得 ( x)2- 2 xy -15(y)2= 0,∴ x + 3 y = 0 或 x -5 y = 0.∵ x >0, y > 0,∴ x = 5 y , x =25y.50y + 2 25y 2+ 3y∴原式=25y - 25y 2+ y50y + 10y + 3y 63y =25y - 5y + y =21y =3.1 119. 2 009 ∵ a = 2 009 n - 2 009- n2 ,22∴a 2+ 1= 1+ 2 009 n + 2 009 - n - 241 21 22 009n +2+ 2 009 - n=4112 009 +2 009-nn 2=(2) .∴ a 2+ 1+ a11112 009 n + 2 009- n2 009 n - 2 009 - n=2+21=2 009 n .∴( a 2n1 n= 2 009.+ 1+ a) = (2 009 n )11-120. 2(1- 2- 32)原式=11 11 1 11- 2- 32 1+ 2-32 1+ 2-16 1+ 2- 8 1+ 2-4 1+ 2-21-2-132111111-2-16 1+2- 16 1+2-81+2-4 1+2-2=11- 2- 3211111-2-81+2-81+2-4 1+2-2=11- 2- 321111-2-41+2-4 1+2-2 =11-2-32111-2-2 1+2-2=11- 2- 32- 11 - 21 1 - 1=1 = 2(1- 2- 32) .1- 2- 3237 121.解: (1)原式= a2 +5-10 - 27 5 7= a =(8- )5 3 5737- 71 =8-3=(2 )-3=2 =128.(2)原式=a x 3 + a -x3x- xa + ax - x2xx -x- 2xa + aa - a ·a +a=x- xa + a2x-2x1 1= a - 1+ a = 5- 1 +5= 45 .1 4 1 1 1 12 1 1 1 1 122.解: (1)原式= 1 + ·( ) -( ) = 1+ × - ( )2× =1+ - 10 = 1 .4 9 2 100 2 4 3 10 2 6 15 2511 - 2 64 2 37(2)原式= ( 9 )2+ (10) +(27)- 3- 3× 1+ 485 4 - 2 37= 3+100+(3) -3+485937= 3+ 100+ 16- 3+48= 100.41- 14127 1 131(3)原式= [(0.3) ]- - 3× [(3)- +(8)- ]- - 10× [(0.3) ]34432-11-1 3 -11= 0.3 - 3[3 +(2) ]- 2- 10×10 11 21 10 1 =- ( + )- -3=- -3=0.3333 2331123.解: ∵x 2 +x - 2= 3,∴ (x 1+ x - 1)2= 9.2 2∴ x +x -1= 7.1 3 1 3x 2 + x -2 + 2∴原式=x 2+ x -2+ 3分数指数幂复习练习题11-1=x 2+ x - 2 x - 1+ x + 2- 1 2x + x -2+3= 3× 7-1 +2 2 7 -2+3= 5.2拓展研究2 3 2 3 2 3 2 3x - 3 + y - 3 x - 3 - y - 32 2 2 2 2 224.解: (1)原式=22 -22 =(x - 3) - x -3 ·y - 3+ (y - 3) - (x -x -3 + y - 3x -3 -y - 32 2222 22 3) - x - 3·y -3 - (y - 3) =- 2(xy)-3 .11 31 31(2)原式= a 3[ a 3 - 2b 3 ]b 3)× a 121 11 2÷(1-2 1 3a 3 +2a 3b 3+ 2b 3 a 31 1 12 1 1 1 2 1 11 1 11a 3 a 3 -2b 3 [a 3+ 2a 3b 3+ 2b 3 ] a 3- 2b 3 a 3 a 3- 2b 3 ·1 a 3 1=2 1 1 1 2 ÷×a 1= 1 × × a =1 3 1 1 3a 3+ 2a 3b 3+ 2b 3a 3a 3- 2b 311 1a 3·a 3 ·a 3= a.。

初中数学分数指数幂练习题(含解析)

初中数学分数指数幂练习题(含解析)

分数指数幂1.下列命题中,正确命题的个数是__________. ①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________. ①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b =__________.4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723②(614)12③(49)-32(2)解方程:①x -3=18②x =914.(1)(0.027)23+(12527)13-(279)0.5(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.(1)5x -23y 12(-14x -1y 12)(-56x 13y -16)(2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1②(a 6b -9)-23=a -4b 6 ③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c 54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值: (1)a 2·5a 310a 7·a ,其中a =8-53;(2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5(2)(279)0.5+0.1-2+(21027)-23-3π0+3748(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x-12=3,求x32+x-32+2x2+x-2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确; ∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确; ∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错; ②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对; ③x -13=1x 13=13x ,∴③错; ④3x·4x =x 13·x 14=x 13+14=x 712, ∴④错;⑤(x y )-34=(y x )34=4(y x)3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错. ∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1). 7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32)=(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342. 10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14. 11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16; (2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升12.22 原式=2-12=12=22. 13.a 4 原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误. 15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3, ∴①不正确;当a <0,n 为奇数时,n a n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧ x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞), ∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得(x)2-2xy -15(y)2=0,∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y =50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2)2.∴a 2+1+a =2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n. ∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7. ∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25.- 11 -拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。

分数指数幂习题

分数指数幂习题

[解析]
规律总结:在将根式化分数指数幂的形式时,关键是 分清指数中分子、分母的位置.
[解析]
2
(1)a3
=3
a2.
2 根式运算
学法指导:既含有分数指数幂,又有根式,应该把根 式统一化成分数指数幂的形式,便于运算,如果根式中根指 数不同,也应化为分数指数幂的形式,但最后结果还应以根 式为最终形式.
[例 5] 计算:[(- 2)-2] -12 . [错解] [(- 2)-2] -12 =(- 2)(-2)×(-12) =- 2.
[思路分析] 在应用有理数指数幂的运算性质进行运算 时,一定要注意底数必须大于 0 的数.
[正解] [(- 2)-2] -12 =(12)-12 = 2.
2.利用有理数指数幂的运算性质进行运算时,忽略了底 数需相同
应用,如条件中的隐含条件,整体代入等,可以简化解题过
1
1
程.本题若通过 a2 +a-2 =3 解出 a 的值代入求值,则非常复
杂.
1
1
[分析] 解答本题可从整体上寻求各式与条件 a2 +a-2 的
联系,进而整体代入求值.
1
1
[解析] (1)将 a2 +a-2 =3 两边平方,
得 a+a-1+2=9,即 a+a-1=7.
[例 6]
化简:3
6 a·
-a.
[错因分析] 该解法中在利用有理数指数幂的运算性质进 行运算时,忽视了底数必须相同的条件.
[思路分析] 很显然6 -a有意义,则-a≥0,即 a≤0,所 以在进行偶次方根的化简时,要特别注意被开方数的符号.
[正解]
结束语
谢谢大家聆听!!!
47
根式运算分析既含有分数指数幂又有根式应该把根式统一化成分数指数幂的形式便于运算如果根式中根指数不同也应化为分数指数幂的形式但最后结果还应以根式为最终形式

高中数学分数指数幂练习题(带答案)

高中数学分数指数幂练习题(带答案)

高中数学分数指数幂练习题(带答案)数学必修1(苏教版)2.2 指数函数2.2.1 分数指数幂在初中我们已经知道:若x2=a,则x叫做a的平方根,同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2,负数没有平方根,一个数的立方根只有一个,如-8的立方根为-2;零的平方根、立方根均为零,那么类比平方根、立方根的概念,n次方根的概念是什么呢?基础巩固1.下列各式中,对xR,nN*恒成立的是()A.nxn=xB.n|x|n=xC.(nx)n=x D.2nx2n=|x|解析:nxn=x,n为奇数|x|,n为偶数.答案:D2.设a=424,b=312,c=6,则a,b,c的大小关系是() A.ac B.baC.ba D.ac解析:将根指数化为相同,再比较被开方数.答案:D3.式子3+5+3-5的化简结果为()A.1 B.10 C.100 D.10解析:3+5+3-5=6+252+6-252=5+122+5-122=10.答案:D4.614-3338+40.0625-(3+)0的值是()A.0 B.12 C.1 D.32解析:原式=52-32+0.5-1=12.答案:B5.已知x2+x-2=22且x1,则x2-x-2的值为()A.2或-2 B.-2 C.2 D.6解析:(x2+x-2)2=(22)2,即x4+x-4+2=8,即x4+x -4=6,而(x2-x-2)2=x4+x-4-2=4,又∵x1,x2x-2,故x2-x-2=2.解析:C6.计算:2+25-52+15-1=________.解析:5-5=-5(5-1),2+2=2(2+1).答案:-107.若4a2-4a+1=31-2a3,则a的取值范围是________.解析:∵2a-12=|2a-1|=1-2a,2a-10,即a12.答案:-,128.5+26+5-26=________.解析:原式=3+2+3-2=23.答案:239.化简:(-+1)(++1)(x-+1)=________. 解析:原式=[( +1)2-( )2](x-+1)=(x+1+ )(x-+1)=(x+1)2-( )2=x2+x+1.答案:x2+x+110.36a9463a94的结果是________.解析:[ ]4[ ]4==a2+2=a4.答案:a411.用分数指数幂表示4a3aa=________.解析:原式==答案:12.若m=(2+3)-1,n=(2-3)-1,则(m+1)-2+(n+1)-2=________.解析:∵m=2-3,n=2+3,原式=13-32+13+32=112-63+112+63==162+3+2-3=46=23.答案:2313.()(-)6(-)=________.解析:原式=-2-3 = .答案:14.计算: 33yx3x2y(x0).解析:原式=能力提升15.82+122+124+128+1+1=________.解析:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.原式=22=4.答案:416.化简:a3b23ab2a14b1243ba(a,b0)的结果是________.解析:原式====ab.答案:ab17.x12,2,则4x2-4x+1+2x2-4x+4=________.解析:原式=|2x-1|+2|x-2|=2x-1+2(2-x)=2x-1+4-2x=3.答案:318.已知a= (nN*),求(a2+1+a)n的值.解析:∵a=,a2+1=+1a2+1+a=+ .(a2+1+a)n=2019.19.已知a2x=2+1,求a3x+a-3xax+a-x的值.解析:原式==a2x+a-2x-1=2+1+12+1-1=2+2-1=22-1. xKb 1. Com20.设x=3a+a2+b3+3a-a2+b3,求x3+3bx-2a的值.解析:设u=3a+a2+b3,v=3a-a2+b3,则x=u+v,u3+v3=2a,uv=3a2-a2+b3=-b.x3=(u+v)3=u3+u3+3uv(u+v)=2a-3bx,x3+3bx-2a=0.21.化简:- .解析:原式=-=-2 =-23xyxy.22.化简:+- .解析:原式看上去比较复杂,不易发现项与项之间、分子与分母之间的关系,如令b=,式子就变得简单些了.令b=,即a=b3,原式=b3-1b2+b+1+b3+1b+1-b3-bb-1=+-=b-1+b2-b+1-b2-b=-b=- .。

(完整版)分数指数幂练习题.docx

(完整版)分数指数幂练习题.docx

分数指数幂1.下列命题中,正确命题的个数是.① n n = a 2 0= 1 a ② 若 a ∈R ,则 (a -a + 1) ③ 3 x + y = x + y ④ 3 - 5=6- 5243432.下列根式、分数指数幂的互化中,正确的序号是.1(x ≠ 0) ②x x = x 3③ x - 1 =- 3341x )- 3 = ① - x = (- x)4 3 x④ x · x = x12 ⑤ ( 42y 4y 3⑥621(xy ≠ 0)y =y (y<0)x3c b3.若 a = 2, b = 3, c =- 2,则 (a ) = __________. 4.根式 aa 的分数指数幂形式为.4 25.- 25 = __________.- (2k +1)-(2k - 1)-2k6. 2- 2 + 2 的化简结果是. 7. (1)设 α, β是方程 2x 21 + +3x + 1= 0 的两个根,则 ( ) α β= __________.4 x y 1 (2)若 10 = 3,10 = 4,则 10x - 2y = __________. 8. (1)求下列各式的值: 2 1 14 3 ① 27 ; ②(6 ) ; ③ ( )- .3 4 29 2 -31 1 (2)解方程: ① x=8;② x = 94.9.求下列各式的值:2125 1 7 0.5(1)(0.027) 3+ ( 27 )3- (29) ;1 117 13- 1 3 3 1 -1 (2)(3)2+3·( 3-2) - (164)4- (3 )4- (3) .11-110.已知 a2+a-2= 4,求 a+ a的值.11.化简下列各式:2 15x-3y2(1)1 -1 1 5 1 1;-4x y2-6 x3y-6m+ m -1+ 2(2)1 1 . m-2+m 2.2112. [(- 2) ] -2的值是.36369494的结果是.13.化简 ( a ) ·( a )14.以下各式,化简正确的个数是.211①a5a-3 a-15= 16- 92-46②(a b)-= a b3111212③(- x4y-3)(x-2 y3)(- x4y3)= y 1 1 3-15a 2b3c-43④1 1 5=-5ac25a - b c2 3 415. (2010 山东德州模拟, 4 改编 )如果 a3= 3, a10=384 ,则 a3[(a101 n.a) ] 等于316.化简3a- b3a- 2b2.+的结果是17.下列结论中,正确的序号是.233①当 a<0 时, (a ) = a2②na n= |a|(n>1 且 n∈ N * )10③函数 y= (x-2)- (3x- 7) 的定义域是 (2,+∞ )2④若 100a= 5,10b= 2,则 2a+ b =118. (1) 若 a= (2+- 1-1- 2+ (b+ 1)- 2.3) , b = (2-3),则 (a+ 1)的值是.(2)若 x> 0, y> 0,且 x(x+y)= 3y( x+ 5y),则2x+ 2xy+ 3y的值是.x- xy+ y112 009 n- 2 009 -n*2+1 +a)n.19.已知 a=(n∈ N ),则 ( a的值是21111120.若 S= (1+2-32 )(1+ 2-16)(1+ 2-8)(1+ 2-4)(1+ 2-2),那么 S 等于.21.先化简,再求值:2535a · a(1),其中 a=8 -3;107a · a3x- 3xa + a2xx- x22.(易错题 )计算:3 0- 2 1 10.5(1)(25) + 2 ·(24)-2- (0.01);7 0.5- 210 2037 (2)(29) + 0.1+ (227)-3- 3π+48;17 0-1[81- 0.253111(3)(0.008 1) --[3× ( ) ]×+ (3 )- ]-- 10×0.027 .4883233311x2+ x-2+ 223.已知 x2+x-2= 3,求x2+x-2+3的值.24.化简下列各式:x- 2- 2- 2- 2+ yx- y(1)22-22;x - 3+ y - 3 x - 3- y - 341(2)a 3-8a 3b3 b3 a.÷(1- 2)× 23 2aa + 2 ab + 4b 33答案与解析基础巩固nna ,当 n 为奇数时, 1. 1 ∵ a =|a|,当 n 为偶数时,∴① 不正确;21 23∵a ∈ R ,且 a - a + 1= (a - ) + ≠0 ,∴② 正确;4 3∵ x + y 为多项式, ∴③ 不正确; ④中左边为负,右边为正显然不正确. ∴只有 ② 正确.12.②⑤ ① - x =- x 2, ∴① 错;1 1 1 3 1 3② x x = (x x) = (x ·x ) = (x ) = x , ∴② 对;2 2 2 2 2 41 1 1 ③ x -3= 1=, ∴③ 错;x 3 3x④ 34 1 1 1 1 7x · x = x ·x 4= x + = x ,3 3412∴④ 错;x3 y 3= 4y 3⑤( )- = ( )x ,y4 x 4∴⑤ 对;⑥ 6211y = |y|3 =- y 3(y<0) , ∴⑥ 错.∴②⑤ 正确.3. 1c bbc3×(- 2)- 61 1(a ) = a=2 = 2 = 6=.642 643 11 34. a 2 a a = a ·a 2= a1+2= a 2.5. 5 - 25 = 4 25 = 45 = 5.4 2 2 46.- 2- (2k + 1)- (2k + 1)- (2k - 1)-2k -2k -1- 2k1-2k1 - 2k1 - 2k∵ 2- 2+2= 2·2 - 2 ·2 + 2 =( - 2 + 1)·2 =-2 ·22=- 2 -(2k + 1).337. (1)8(2)2 (1)由根与系数的关系,得 α+ β=- 2 ,1 +1 3 - 23 3∴( ) α β)- = 2 =8.= ( )- = (244 22xy1x1 xy 11 3(2)∵ 10 = 3,10 = 4, ∴ 10x - 2y = 10 ÷102y =10 ÷(10 )2= 3÷42= 2.2 3 2 2 28.解: (1)① 273= (3 )3= 33×3 = 3 = 9.1 1 25 1② (64 )2 =( 4 )25 2 15 15 = [( 2) ]2 = (2)2× 2= 2.432 3③ (9)- 2= (3)2× (- 2)2 - 33 327 =(3) = (2) = 8 . - 3 1 - 3(2)①∵ x = 8= 2 , ∴x = 2.②∵ x = 9 1 , 4∴( 2 1 21 x) = (9 ) = 9 .42 2 1∴ x =(3 )2= 3.9.解:32 125 125 1 95 5 9(1)原式= (0.3 ) + (27 ) - (9 ) =+ - =.332100331001 381 12 31(2)原式= 3-2 + 3- 2 - (64)4-(3- 3)4- 333 4 1 1= 3 +3( 3+ 2)- [4(4) ]4 -3 -2- 333 3=3 + 3+ 6- 2 ·- - 34 36 32.= -41 110.解: ∵a 2+ a - 2= 4.∴两边平方,得 a + a -1+ 2= 16.∴a + a -1= 14.11.解: (1)原式=24 2 1 1 1 1 01 1 × 5× x -+ 1- × y - + = 24xy = 24y ;53322 666(2)原式1 2111 2m 2 + 2m 2·m - 2+ m - 2=11m - 2+ m 2 11 2m 2+ m - 211=1 1 = m 2+ m - 2. m 2+m - 2能力提升21 1 212. 2原式= 2- 2= 2 = 2 .439 4 69 43 1 41 4 1 4 1 42 2 4原式= ( 13. aa ) ·(a) =(a ×) ·(a3× 6 ) = (a ) ·(a ) =a ·a = a .632 32214. 3 由分数指数幂的运算法则知 ①②③ 正确;对④ , ∵ 左边=-3 1 1 1 13 53 1 0 - 2 3- 25 a + b- c - - =-a b c =- ac ≠ 右边, ∴④ 错误.2 23 344 55n384 1 n 1 n1 nn15. 3·2原式= 3·[( 3 )7] = 3·[(128) 7] =3 ·(27× 7) = 3·2 .16. b 或 2a - 3ba -b + 2b - a , a < 2bb , a <2b ,原式= a - b + |a - 2b| == 2a - 3b , a ≥ 2b.a -b + a - 2b , a ≥ 2b2321 333 317. ④ ①中,当 a < 0 时, (a )2 =[(a )2] =(|a|) = (- a) =- a ,∴① 不正确;当 a < 0, n 为奇数时, nna = a ,∴② 不正确;x - 2≥ 0, ③中,有3x - 7≠ 0,7即 x ≥ 2 且 x ≠ 3,7 7故定义域为 [2, 3)∪ (3 ,+ ∞ ),∴③ 不正确;④中, ∵ 100a = 5,10b =2 ,∴ 102a =5,10 b = 2,102a × 10b = 10.∴ 2a + b =1.∴④ 正确.21118. (1) 3 (2)3(1)a = 2 + 3 =2 - 3, b = 2- 3 = 2+ 3 ,∴(a + 1) -2 + (b + 1) -2 = (3 - 3 ) -2 + (3 + 3 ) -2=1 2 + 1 2 =3 - 3 3+ 33 + 3 2+ 3- 323- 3 22·3+ 3223 + 2·3 · 3+ 3+ 3 - 2·3· 3+ 3= [ 3 - 3 3+ 23 ]2 × 9+ 6 24 2 =9- 3 2=36 = 3.(2)由已知条件,可得( x)2- 2 xy -15(y)2= 0,∴ x + 3 y = 0 或 x -5 y = 0.∵ x >0, y > 0,∴ x = 5 y , x =25y.50y + 2 25y 2+ 3y∴原式=2+ y25y - 25y 50y + 10y + 3y 63y= = = 3.25y - 5y + y 21y1 12 009 n - 2 009- n19. 2 009 ∵ a =2,22∴ a 2+ 1= 1+2 009n +2 009 - n -241 21 22 009n +2+ 2 009 - n=411 2 009n+ 2 009 -n2=() .2∴2a + 1+ a1111 2 009 n+ 2 009-n 2 009 n- 2 009 -n=2+21=2 009 n .2n 1 n∴( a+ 1+ a) = (2 009n) = 2 009.11 -120.2(1- 2-32)原式=111111 1- 2-32 1+ 2-32 1+ 2 -16 1+ 2-81+ 2-41+ 2-211 - 2-32111111- 2-16 1+ 2-16 1+ 2-8 1+ 2-4 1+ 2-2=11- 2-3211111- 2-81+ 2-8 1 +2 -4 1 +2 -2=11- 2-321111- 2-41+ 2-4 1 +2 -2=11 -2 -32111- 2-21+ 2-2=11- 2-32-11 - 21 1 -1=1=2(1- 2-32) .1- 2-323 7121.解: (1)原式= a2 +5-10-27 5 7=a5=(8-3)5737- 71=8 -3= (2 )-3= 2=128.x 3-x 3a + a(2)原式= x - xa + ax - x2x x -x- 2xa + aa - a ·a+a=x- xa + a2x-2x1 1=a - 1+ a = 5- 1 + = 4 .5 51 4 1 -( 1 1 12 1 1 1 1 122.解: (1)原式= 1 + ·( ) 100 ) = 1+ × - ( )2× = 1+ - 10 = 1 .4 9 2 2 4 3 10 2 6 15 25 1 1 - 2 64 2 37(2)原式= ( 9 )2+ (10) +(27)- 3- 3× 1+ 485 4 - 2 37= 3 + 100+ (3 ) - 3+ 4859 37 = 3 + 100+ 16- 3+48= 100.(3)原式= [(0.3)41- 1 41 27 1 1 31]- - 3 × [(3 )- + (8)- ]- - 10× [(0.3) ]44323- 11 - 13 -11=0.3 - 3[3 +(2) ]- 2- 10× 0.310 1 1 2 1 10 1= 3 - 3(3+3 )-2 -3 = 3 - 3- 3= 0.1123.解: ∵x 2 +x - 2= 3, ∴ (x 1+ x - 1)2= 9.22 ∴ x +x -1= 7.1 31 3∴原式= x 2 + x -2 + 22- 2x + x + 31 1 -1 + x - x - 1+ x + 2x 2 2 =- 1 2x + x - 2+ 3 3 × 7- 1 + 2 2 =72- 2+ 3 = 5.拓展探究2 32 32 3 2 3x - 3+ y - 3x - 3 - y - 32 22 2 2 224.解: (1)原式=2 2 -22=(x - 3) - x -3 ·y - 3+ (y - 3) - (x -x -3 + y - 3 x -3 -y - 32 22 22 22 3) - x - 3·y -3- (y - 3) =- 2(xy)-3 .11 3 131a 3[ a 3 - 2b 3 ]b 31(2)原式= 21 11 2÷(1-2 1 )× a 3a 3 +2a 3b 3+ 2b 3 a 31 1 12 1 1a 3 a 3 -2b 3 [a 3+ 2a 3b 3+= 2 1 11 2a 3+ 2a 3b 3+ 2b 31 1 1a 3·a 3 ·a 3= a.1 2 1 1 1 1 1 12b 3 ] a 3- 2b 3 1 a 3 a 3- 2b 3 ·1a 31÷ 1 ×a = 1 × 1× a =313a 3a 3- 2b 3。

(完整版)分数指数幂练习题

(完整版)分数指数幂练习题

分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x+a -x)(a 2x-a x·a -x+a -2x)a x +a -x=a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3.. =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。

分数指数幂练习题

分数指数幂练习题

=a2x-1+a-2x=5-1+15=415.
22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.
(2)原式=(295)12+(110)-2+(2674)-23-3×1+3478
=53+100+(43)-2-3+3478
=53+100+196-3+3478=100.
∴ x=5 y,x=25y. 50y+2 25y2+3y
∴原式= 25y- 25y2+y =502y5+y-105yy++3yy=6231yy=3.
19.2 009
2 0091n-2 009-1n
∵a=
2

2
2
2 009n+2 009-n-2
∴a2+1=1+
4
1 2 009n
2+2+
1 2 009-n
3- 3 2
1 =
3+ 3 2
3+ 3 2+ 3- 3 2 3- 3 2· 3+ 3 2
=32+2·3· 3+3+32-2·3· 3+3 [ 3- 3 3+ 3 ]2

2×9+6 9-3
24 2 2=36=3.
(2)由条件,可得
( x)2-2 xy-15( y)2=0,
∴ x+3 y=0 或 x-5 y=0. ∵x>0,y>0,
19.a=
2
(n∈N*),那么(
a2+1+a)n 的值是__________.
1
1
1
1
1
20.假设 S=(1+2-32)(1+2-16)(1+2-8)(1+2-4)(1+2-2),那么 S 等于__________.
21.先化简,再求值:
(1)

分数指数幂练习 (1)

分数指数幂练习 (1)

分数指数幂练习一、填空1、5.749保留两个有效数字的结果是 ;19.973保留三个有效数字的结果是 。

2、近似数5.3万精确到 位,有 个有效数字。

3、用科学计数法表示459600,保留两个有效数字的结果为 。

4、近似数2.67×510有 个有效数字,精确到 位。

5、把234.0615四舍五入,使他精确到千分位,那么近似数是 ,它有 个有效数字。

6、用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________。

7、 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________。

8、25的平方根是 ;38的正的平方根是 。

9、2-3的倒数是 ;()()[]=+23-232 10、15的小数部分是 ;2-51的整数部分为 ;11、使代数式3x 2-有意义的x 的取值范围是 。

12、正方形A 的面积是正方形B 面积的2倍,则正方形A 的边长是B 的二、计算1、67636-+2、3623⨯+ 3、2135213÷÷⨯4、()255-5、()()3222⨯ 6、()2725+7、221719- 8、()225- 9、()225+10、()()223131+-- 11、()02332-+-12、()()222323-⨯+13、7273⨯⎪⎪⎭⎫⎝⎛ 14、2030⨯ 15、464÷16、332333552101--+⨯+-- 17、()()20092010223322-⨯+(1)43555÷⋅ (2)251232)3(32)27(2-+---(3)05321)15(125)259(+--- (4)32121331001.028|48|÷⨯--(5)4141241)21()41()21(+⋅+⋅-a a a (6))4()2(3312161326561y x y x y x ⨯-÷(7)212131])27[()3()2764(8-+--⨯-- (8)22121])32()32[(--++2.利用幂的性质计算:(1)643321684⋅÷⋅ (3)1243a aa a ⋅⋅3.计算:98)21(2)2(3102--++---.4.计算:|1-2|+231++(π-2)05.计算:(13-)0+(31)-1-2)5(--|-1|6.计算:32221(4)3(--⨯+)7、.计算0211(1)124π----+三、解答题1、下列由四舍五入法得到的近似数各精确到哪一位?各有几个有效数字? ①65.7 ; ②0.0407; ③1.60; ④4000万; ⑤3.04千万; ⑥7.56×3102、按括号里的要求,用四舍五入法对下列各数取近似数:①60290(保留两个有效数字) ②0.03057(保留三个有效数字) ③2345000(精确到万位)3、已知52121=--xx ,求221x x +的值。

最新分数指数幂练习题

最新分数指数幂练习题

分数指数幂练习题分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x (x +y )=3y (x +5y ),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式: (1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a-x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a-x =a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3 =103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3, ∴(x 12+x -12)2=9. ∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。

分数指数幂练习题汇编

分数指数幂练习题汇编

分数指数幂1.下列命题中,正确命题的个数是__________. ①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________. ①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b =__________. 4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式:(1)5x -23y 12(-14x -1y 12)(-56x 13y -16); (2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________. 13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y ④-15a 12b 13c -3425a -12b 13c 54=-35ac 15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________. 16.化简3(a -b )3+(a -2b )2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞) ④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________. 19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n 的值是__________. 20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________. 21.先化简,再求值: (1)a 2·5a 310a 7·a,其中a =8-53; (2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5; (2)(279)0.5+0.1-2+(21027)-23-3π0+3748; (3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧ a ,当n 为奇数时,|a|,当n 为偶数时, ∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确; ∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错; ②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对; ③x -13=1x 13=13x ,∴③错; ④3x·4x =x 13·x 14=x 13+14=x 712, ∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对; ⑥6y 2=|y|13=-y 13(y<0),∴⑥错. ∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1) ∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32, ∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914, ∴(x)2=(914)2=912. ∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342. 10.解:∵a 12+a -12=4. ∴两边平方,得a +a -1+2=16.∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16; (2)原式 =(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升 12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误. 15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b. 17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3, ∴①不正确; 当a <0,n 为奇数时,n a n =a ,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73, 故定义域为[2,73)∪(73,+∞), ∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y=50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2, ∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2)2. ∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n.∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a-x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100.(3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3 =103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9. ∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23.学习-----好资料更多精品文档 (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13=a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。

分数指数幂练习题

分数指数幂练习题

实用文档分数指数幂1.下列命题中,正确命题的个数是.① nn =a 2 0 =1a ②若a ∈R ,则(a -a +1) ③ 3x +y =x +y④3-5=6-5 24 3 4 32.下列根式、分数指数幂的互化中,正确的序号是 .1(x ≠0)② xx =x3③x - 1 =- 3 3 41x )- 3 =①-x =(-x) 4 3x ④ x ·x =x 12 ⑤( 42y4y 3⑥6 2 1(xy ≠0) y =y(y<0)x 3cb3.若a =2,b =3,c =-2,则(a)=__________.4.根式a a 的分数指数幂形式为.425. -25=__________.- (2k +1)-(2k -1)-2k6.2-2 +2 的化简结果是 .7.(1)设α,β是方程2x 2 1 ++3x +1=0 的两个根,则() αβ=__________. 4x y 1 (2)若10=3,10 =4,则10x -2y =__________.8.(1)求下列各式的值: 2 11 4 3 ①27;②(6 );③()-. 3 42 9 2-31 1 (2)解方程:①x=8;②x =94.9.求下列各式的值:2 1251 70.5 (1)(0.027)3+27)3-(29);(实用文档11 171 3-1 331-1 (2)(3)2+3·(3-2)-(164)4-( 3)4-(3).1 1 -110.已知a2+a-2=4,求a+a 的值.11.化简下列各式:2 15x-3y2(1)1-11 51 1;-4xy2-6x3y-6m+m-1+2(2)11.m-2+m22 112.[(-2)]-2的值是.36 6313.化简(9 4 9 4的结果是.a)·( a)实用文档14.以下各式,化简正确的个数是.211①a 5a -3a -15=16 -9 2 =a -46 ②(ab )-b 3 1 1 1 2 1 2 ③(-x 4y -3)(x -2y 3)(-x 4y 3)=y113- 15a 2b 3c -43 ④115=-5ac25a -2b 3c 4a 1n15.(2010山东德州模拟,4改编)如果a =3,a 10)7]等于 . =384,则a[(a3 3 10 3 16.化简3a -b 3 a -2b 2.+ 的结果是 17.下列结论中,正确的序号是 .2 3 3①当a<0时,(a) 2=a② n a n=|a|(n>1且n ∈N *)1 0③函数y =(x -2) -(3x -7)的定义域是(2,+∞) 2④若100a =5,10 b=2,则2a +b =118.(1)若a =(2+ -1 -1 -2 -2的值是.3) ,b =(2-3) ,则(a +1)+(b +1) (2)若x >0,y >0,且 x(x + y)=3 y(x +5 y),则 2x +2 xy +3y的值是. x -xy +y112009n -2009-n * 2 +1+a) n .19.已知a = 2 (n ∈N),则(a 的值是20.若S =(1+2- 1 1 1 1 1. )(1+2- )(1+2-)(1+2-)(1+2-),那么S 等于32 16 8 4 221.先化简,再求值:2 5 35 a ·a (1),其中a =8-3;10 a 7·a 3x -3xa +a2x (2)a +a ,其中a =5.x -x实用文档22.(易错题)计算:30-211 0.5(1)(25)+2·(24)-2-(0.01) ; 70.5 -210 2 0 37 (2)(29)+0.1 +(227)-3 - 3π+ 48;1 70-1 [81 -0.25 3 1 11 (3)(0.0081)- -[3×( )] × +(3 )- ]- -10×0.027.4 8 8 3 2 33 311 x 2+x -2+223.已知x 2 +x -2=3,求x2+x -2+3的值.24.化简下列各式:实用文档x -2 -2 -2 -2 +y x -y(1) 2 2- 2 2;x -3+y -3 x -3-y -34 1a 3-8a 3b3 b3(2) ÷(1-2 a )× a. 2 3 2a +2 ab +4b3 3答案与解析基础巩固1.1∵na = a ,当n 为奇数时,n|a|,当n 为偶数时,∴①不正确;2 12 3∵a ∈R ,且a -a +1=(a -)+≠0,∴②正确;4 3∵x +y 为多项式,∴③不正确;④中左边为负,右边为正显然不正确. ∴只有②正确.12.②⑤①-x =-x 2,∴①错;②xx =(x 1 11 31 3x) =(x ·x)=(x)=x ,∴②对; 2 22 22 411 1 ③x -= = ,∴③错;3 1 3x3 x实用文档④34 1 11 17·x 4=x 3+4=x 12,x ·x =x 3 ∴④错;x 3 y3 = 4 y 3 ,⑤( )-=()xy 4 x4∴⑤对;⑥6 21 1y =|y|3=-y 3(y<0),∴⑥错.∴②⑤正确.1 cbbc 3×(-2) -611 3. (a)=a=2 =2= 6=. 64 2 643 1 1 34.a 2aa =a ·a 2=a1+2=a 2.5.54-252=4252=454=5.-(2k +1) -(2k +1) -(2k -1) -2k -2k -1-2k 1-2k1-2k 1-2k6.-2 ∵ 2 -2+2 =2 ·2 -2 ·2 +2=(2-2+1)·2=-2·2 =-2 -(2k+1).337.(1)8 (2)2 (1)由根与系数的关系,得α+β=-2,1+ 1 3 -2 3 3 ∴( ) αβ=(2 )-=2=8. =()- 2 4 4 2 x y 1 x 1x y11 3(2)∵10=3,10 =4,∴10x -2y =10 ÷102y =10 ÷(10)2=3÷42=2. 2 3 2 2 2 8.解:(1)①273=(3)3=33×3=3=9.11 251②(64)2=(4)2521 5 1 5 =[()]=()2×=.2 2 2 2 2 43 23③(9)-2=(3)2×(-2) 2-333 27 =(3)=(2)=8.-3 1-3(2)①∵x =8=2 ,∴x =2. ②∵ 1, x =94∴(2 12 1 x)=(9 )=9.4 2实用文档2 1∴x =(3)2=3.3 2 1251 251 9 5 5 99.解: (1)原式=(0.3)3+(27)3-(9)2=100+3-3=100.13811231 (2)原式=3-2+ 3-2 -(64)4-(3-3)4-3 334 11=3+ 3(3+2)-[4(4)]4-3-2-33 3 3 -3= 3 +3+6-2·- 3 46 32. = -41110.解:∵a 2+a -2=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14.11.解:(1)原式= 24 2 1 1 1 1 0 1 1 ×5×x - +1- ×y -+=24x y =24y ; 5 3 3 2 2 6 6 6(2)原式12 1 1 12m 2+2m 2·m -2+m -2=1 1m -2+m 211 2m 2+m -2 1 1= 11=m 2+m -2.m +m - 2 2能力提升211212.2原式=2-2= 2 =2.43 946 943 1 41 414 14 2 2 413.a 原式=( a) ·( a) =(a ×)·(a3×) =(a) ·(a) =a ·a =a. 6 3 2 3 6 2 214.3 由分数指数幂的运算法则知 ①②③正确;31 11 1 3 5 310 -2 3 -2≠右边,∴④错误. 对④,∵左边=-5a 2+2b 3-3c -4-4=-5abc =-5acn 3841n 1n 1n n·(27 15.3·2原式=3·[(3)7] =3·[(128)7]=3×7)=3·2.实用文档16.b 或2a -3b 原式=a -b +|a -2b|= a -b +2b -a ,a <2bb ,a <2b ,a -b +a -2b ,a ≥2b =2a -3b ,a ≥2b.2 3 2 13 3 3 317.④ ①中,当a <0时,(a)2=[(a)2]=(|a|)=(-a)=-a , ∴①不正确;n n当a <0,n 为奇数时, a =a , ∴②不正确;x -2≥0,③中,有3x -7≠0,7即 x ≥2且x ≠3,77故定义域为[2,3)∪(3,+∞),∴③不正确;④中,∵100a=5,10b=2, ∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.21118.(1)3 (2)3(1)a = 2+ 3 =2- 3,b = 2- 3 =2+ 3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2= 1 2+ 1 2=3-3 3+33+3 2 2+3-33-3 2·3+3 22 2-2·3·3+33+2·3 ·3+3+3 =2[3-33+3]2×9+6 24 2=9-32=36=3.(2)由已知条件,可得( x)2-2 xy -15( y)2=0, ∴ x +3y =0或x -5y =0.∵x >0,y >0, ∴ x =5y ,x =25y.50y +2 25y 2+3y∴原式=25y-25y2+y实用文档50y+10y+3y 63y=25y-5y+y=21y=3.1 1 19.2009 ∵a=2009n-2009-n2,2 2∴a2+1=1+2009n+2009-n-2412122009n+2+2009-n=41 12009+2009-n n2=(2).∴a2+1+a1 1 1 12009n+2009-n2009n-2009-n=2+21=2009n.∴(a2n1n=2009.+1+a)=(2009n)11-120.2(1-2-32)原式=1 1 1 1 1 11-2-321+2-321+2-161+2-81+2-41+2-21-2-1321 1 1 1 11-2-161+2-161+2-81+2-41+2-2=11-2-321 1 1 11-2-81+2-81+2-41+2-2=11-2-321 1 11-2-41+2-41+2-2=11-2-32实用文档1 11-2-2 1+2-2 =1 1-2-32- 1 1-2 1 1-1 = 1=2(1-2-32).1-2-323 7 121.解:(1)原式=a2+5-10-27 57 =a =(8-)5 3573 7 -71=8-3=(2)-3=2 =128.(2)原式= a x3+a -x 3 x -xa +ax -x 2xx -x -2x a +a a -a ·a +a=x -x a +a2x -2x 11=a -1+a =5-1+5=45.1 41 1 1 12 1 1 1 1 122.解:(1)原式=1+·() -( ) =1+ × -( )2× =1+- 10 =1.4 92 1002 4 3 10 2 6 15 2511 -2 64 2 37 (2)原式=(9)2+(10) +(27)-3-3×1+485 4-2 37=3+100+(3)-3+485937=3+100+16-3+48=100.4 1 -1 41 271 1 31(3)原式=[(0.3)]- -3 ×[(3 )-+( 8 )- ]- -10×[(0.3)] 34 4 3 2-11-1 3 -1 1=0.3-3[3+(2)]-2-10×0.310 11 2 1 10 1= -(+)--3= --3=0. 3 33 3 23 31123.解:∵x 2+x -2=3, ∴(x 1+x -1)2=9.2 2 ∴x +x -1=7.1 3 1 3 x2 +x -2 +2∴原式=x 2+x-2+3实用文档11-1=x2+x-2x-1+x+2-12x+x -2+3=3×7-1+2 2 7-2+3 =5. 2拓展探究2 3 2 3x-3+y-3 24.解:(1)原式=2 2-x-3+y-32 3 2 3x-3-y-32222222 2 =(x-3) -x-3·y-3+(y-3)-(x-x-3-y-322 2 2 22 23)-x-3·y-3-(y-3)=-2(xy)-3.1 1313 1(2)原式=a3[a3-2b3]2÷(1-2b3)×a1 2 1 1 1 13a3+2a3b3+2b3a31 1 12 1 1 12 1 1 1 1 1 1a3a3-2b3[a3+2a3b3+2b3]a3-2b31 a3a3-2b3·1 a31=2 1 1 12 ÷×a =×1×a =1 3 1 1 3a3+2a3b3+2b3a3a3-2b3 1 1 1a3·a3·a3=a.。

分数指数幂练习题

分数指数幂练习题

分数指数幂1.下列命题中,正确命题的个数是__________. ①na n =a ②若a ∈R ,则(a 2-a +1)0=1③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112 ⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0) 3.若a =2,b =3,c =-2,则(a c )b =__________. 4.根式a a 的分数指数幂形式为__________. 5.4(-25)2=__________. 6.2-(2k +1)-2-(2k -1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求下列各式的值: (1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________. ①当a<0时,(a 2)32=a 3②na n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a 310a 7·a,其中a =8-53;(2)a 3x +a -3xa x +a -x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确. 3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k =-12·2-2k=-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n .16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,na n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23.(2)由已知条件,可得(x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n-24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n =(2 0091n )n =2 009.20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x +a -x )(a 2x -a x ·a -x +a -2x)a x +a -x=a 2x -1+a-2x =5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3 =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3 =3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x-23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13=a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a13=a.。

分数指数幂专题

分数指数幂专题

分数指数幂专题基础巩固一、选择题1. 下列各式正确的是 ( )A .a -35=13a5B.3x 2=x 32 C .a 12 a 14 a -18 =a 12 ×14 ×(-18 ) D .2x -13 (12x 13 -2x -23 )=1-4x2.(112 )0-(1-0.5-2)÷(278)23 的值为 ()A .-13 B.13 C.43 D.733.计算(12a -3b -13 )·(-3a -1b )÷(14a -4b -23 )得 ( ) A .-6b 43 B.32b 2 C .-32b 73 D.32b 734.下列根式与分数指数幂的互化正确的是 ( ) A .-x =(-x )12 (x >0) B.6y 2=y 13 (y <0)C .x -34 =41x3(x >0)D .x-13 =-3x (x ≠0)5.(-x )2·-1x等于 ( )A.x B .-x ·-x C .x ·x D .x ·-x6.如果x =1+2b,y =1+2-b,那么用x 表示y 等于 ( ) A.x +1x -1 B.x +1x C.x -1x +1 D.xx -1二、填空题7.2723 +16-12 -(12)-2-(827)-23 =________.8.设函数f 1(x )=x 12 ,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2016)))=________.三、解答题9.求下列各式的值:(1)2532 ;(2)(254)-32 ; (3)33×43×427.10.计算下列各式:(1)(279)0.5+0.1-2+(21027)-23 +3748; (2)(a -2b -3)(-4a -1b )÷(12a -4b -2c );(3)a -2-b -2a -1+b-1+(-a 12 -b -12 )(a 12 -b -12 ). 能力提升一、选择题 1.化简a 23b 12 (-3a 12 ·b 13 )÷(13a 16b 56)的结果为 ()A .9aB .-9aC .9bD .-9b 2. ⎝⎛⎭⎪⎫36a 94⎝ ⎛⎭⎪⎫63a 94等于 ( ) A .a 16B .a8C .a 4D .a 23.(112 )2-(1+0.5-2)×(278)23 的值为 ()A .-9B .-116 C.43 D.734.若a 12 +a -12 =5,则aa 2+1的值为 ( )A.15B.123C.125D.127 二、填空题5.化简733-3324-6319+4333的结果是________.6.已知a2m +n=2-2,am -n=28,a >0,且a ≠1,则a4m +n的值为________.三、解答题 7.已知a 12 +a -12 =5,求下列各式的值:(1)a +a -1; (2)a 2+a -2; (3)a 2-a -2.8.(1)已知x =12,y =23,求x +y x -y -x -yx +y的值;(2)已知a 、b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值.分数指数幂专题答案基础巩固一、选择题1. 下列各式正确的是 ( )A .a -35=13a5B.3x 2=x 32 C .a 12 a 14 a -18 =a 12 ×14 ×(-18 ) D .2x -13 (12x 13 -2x -23 )=1-4x[答案] D [解析]13a 5=1a 53=a-53 ,故A 错;3x2=x 23 ,故B错;a 12 a 14 a -18 =a 12 +14 -18,故C 错;D 正确.2.(112 )0-(1-0.5-2)÷(278)23 的值为 ()A .-13 B.13 C.43 D.73[答案] D[解析] 原式=1-(1-22)÷(32)2=1-(-3)×49=73,故选D.3.计算(12a -3b -13 )·(-3a -1b )÷(14a -4b -23 )得 ( )A .-6b 43 B.32b 2 C .-32b 73 D.32b 73[答案] A[解析] 原式=-32a -4b 23 14a -4b -23 =-6b 43 ,故选A.4.下列根式与分数指数幂的互化正确的是 ( ) A .-x =(-x )12 (x >0) B.6y 2=y 13 (y <0)C .x-34 =41x3(x >0)D .x-13 =-3x (x ≠0)[答案] C [解析] -x =-x 12 (x >0);6y 2=[(y )2]16=-y 13 (y <0);x-34 =(x -3)14 =41x3(x >0);x-13 =(1x )13 =31x (x ≠0).5.(-x )2·-1x等于 ( )A.x B .-x ·-x C .x ·x D .x ·-x [答案] B [解析] 由-1x知x <0,又当x <0时,x 2=|x |=-x ,因此(-x )2-1x =x 2·-x|x |=-x ·-x ,故选B.6.如果x =1+2b,y =1+2-b,那么用x 表示y 等于 ( ) A.x +1x -1 B.x +1x C.x -1x +1 D.xx -1[答案] D[解析] y =1+2-b=1+12b =1+1x -1=x x -1,故选D.二、填空题7.2723 +16-12 -(12)-2-(827)-23 =________. [答案] 3 [解析] 原式=(33)23 +(42)-12 -22-[(23)3]-23 =32+4-1-4-94=3.8.设函数f 1(x )=x 12 ,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2016)))=________.[答案]12 016[解析] f 1(f 2(f 3(2 016)))=f 1(f 2(2 0162))=f 1((2 0162)-1)=((2 0162)-1)12 =2 016-1=12 016. 三、解答题9.求下列各式的值:(1)2532 ;(2)(254)-32 ; (3)33×43×427.[解析](1)2532 =(52)32 =53=125.(2)(254)-32 =[(52)2]-32 =(52)-3=8125.(3)33×43×427=313 ×314 ×334 =333.10.计算下列各式:(1)(279)0.5+0.1-2+(21027)-23 +3748; (2)(a -2b -3)(-4a -1b )÷(12a -4b -2c );(3)a -2-b -2a -1+b-1+(-a 12 -b -12 )(a 12 -b -12 ).[分析] 负化正、大化小,根式化为分数指数幂,小数化为分数,是简化运算的常用技巧. [解析] (1)原式=(259)12 +10.12+(6427)-23 +3748=53+100+916+3748=103. (2)原式=-13a -2-1-(-4)b -3+1-(-2)c -1=-13ac -1=-a 3c.(3)原式=1a2-1b 21a +1b+(-b-12 )2-(a 12 )2=a -1-b -1-a +b -1=1a -a =1-a2a.能力提升一、选择题 1.化简a 23b 12 (-3a 12 ·b 13 )÷(13a 16b 56)的结果为 ()A .9aB .-9aC .9bD .-9b [答案] B [解析] 原式=(-3)×3a 23 +12 -16 b 12 +13 -56 =-9ab 0=-9a .2. ⎝⎛⎭⎪⎫36a 94⎝ ⎛⎭⎪⎫63a 94等于 ( ) A .a 16B .a 8C .a 4D .a 2[答案] C[解析] 原式=(3a 13 )4·(6a 3)4=(a 13 )4·(a 13 )4=a 2·a 2=a 4.3.(112 )2-(1+0.5-2)×(278)23 的值为 ()A .-9B .-116 C.43 D.73[答案] A[解析] 原式=94-5×94=94×(-4)=-9. 4.若a 12 +a -12 =5,则aa 2+1的值为 ( )A.15B.123C.125D.127 [答案] B [解析] ∵a 12 +a -12 =5,a >0,∴a +1a=5,(a +1a)2=25,∴a +1a =23,∴a a 2+1=1a +1a=123,故选B.二、填空题5.化简733-3324-6319+4333的结果是________.[答案] 0[解析] 733-3324-6319+4333=7×313 -3×313 ×2-6×3-23 +(3×313 )14 =313 -6×3-23+313 =2×313 -2×3×3-23 =2×313 -2×313 =0.6.已知a2m +n=2-2,am -n=28,a >0,且a ≠1,则a4m +n的值为________.[答案] 4[解析] 因为⎩⎪⎨⎪⎧a 2m +n=2-2,①a m -n =28,②所以①×②得a 3m =26,所以a m =22.将a m=22代入②得22×a -n=28,所以a n=2-6,所以a 4m +n=a 4m ×a n =(a m )4×a n =(22)4×2-6=22=4.三、解答题 7.已知a 12 +a -12 =5,求下列各式的值:(1)a +a -1; (2)a 2+a -2; (3)a 2-a -2. [解析](1)将a 12 +a -12 =5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9, 则a 2+a -2=7.(3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.8.(1)已知x =12,y =23,求x +y x -y -x -yx +y 的值;(2)已知a 、b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值. [思路点拨] 若直接代入求解较繁,可以先化简再求值.(1)要分母有理化;(2)先将要求的式子平方,化成易于将条件代入的式子,最后求得结果.[解析] (1)x +y x -y -x -yx +y=x +y2x -y-x -y 2x -y=4xy x -y. 当x =12,y =23时,原式=412×2312-23=413-16=-2413=-8 3. (2)∵a ,b 是方程x2-6x +4=0的两根,∴⎩⎪⎨⎪⎧a +b =6,ab =4.∵a >b >0,∴a >b , (a -b a +b )2=a +b -2ab a +b +2ab =6-246+24=15, ∴a -ba +b=15=55.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x+a -x)(a 2x-a x·a -x+a -2x)a x +a -x=a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3.. =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。

相关文档
最新文档