第1讲 概率论与随机过程1
北邮概率论与随机过程笔记
![北邮概率论与随机过程笔记](https://img.taocdn.com/s3/m/17065577a22d7375a417866fb84ae45c3b35c238.png)
北邮概率论与随机过程笔记北邮概率论与随机过程笔记第一章绪论1.1 概率论的起源与发展1.2 概率的基本概念1.3 概率论的应用领域1.4 随机过程的起源与发展1.5 随机过程的基本概念1.6 随机过程的应用领域第二章概率论的基本概念2.1 随机试验与随机事件2.2 频率与概率2.3 古典概型2.4 贝叶斯概型2.5 随机变量2.6 随机变量的函数及其分布2.7 条件概率与条件分布2.8 独立性第三章随机变量及其分布3.1 离散型随机变量及其分布3.2 连续型随机变量及其分布3.3 随机变量的数学期望3.4 随机变量的方差与标准差3.5 随机变量的矩与生成函数3.6 概率母函数与特征函数3.7 大数定律与中心极限定理第四章多维随机变量及其分布4.1 多维随机变量及其分布函数4.2 联合分布函数与边缘分布函数4.3 多维离散型随机变量的分布4.4 多维连续型随机变量的密度4.5 条件分布与独立性4.6 随机变量的矩与协方差矩阵4.7 多维随机变量的生成函数与特征函数第五章数理统计基本概念5.1 数理统计的概念与作用5.2 参数估计与假设检验5.3 点估计与区间估计5.4 最大似然估计5.5 矩估计5.6 假设检验5.7 重要的假设检验第六章随机过程基本概念6.1 随机过程的概念与分类6.2 随机过程的样本函数与轨道6.3 随机过程的数学描述6.4 平稳性与各态平衡性6.5 随机过程的独立增量性与平稳增量性第七章随机过程的数学描述7.1 随机过程的数学描述7.2 随机过程的分布函数、密度函数与生成函数7.3 平稳随机过程的均值序列与相关函数7.4 广义平稳随机过程7.5 随机过程的协方差函数与自相关函数7.6 平稳随机过程的功率谱第八章马尔可夫链8.1 马尔可夫链的概念8.2 马尔可夫链的数学描述8.3 长期行为与不可约性8.4 平稳分布与转移概率矩阵8.5 极限分布与转移概率8.6 马尔可夫链的细致平衡方程第九章扩散过程9.1 扩散过程的概念与分类9.2 布朗运动与维纳过程9.3 平稳扩散过程与布朗桥9.4 非平稳扩散过程9.5 随机微分方程及其应用第十章随机过程的数值计算10.1 随机过程的模拟方法10.2 马尔可夫链模拟10.3 扩散过程的数值模拟第十一章随机过程的应用11.1 队列论与排队模型11.2 信道容量与信息论11.3 金融工程与随机过程11.4 生物与生态系统中的随机过程11.5 电力系统中的随机过程第十二章最优控制问题12.1 动态规划问题与最优控制12.2 马尔可夫控制问题12.3 黑塞矩阵与二次型控制问题第十三章随机过程的其他扩展13.1 小波分析与随机过程13.2 分数阶随机过程13.3 非高斯与非马尔可夫随机过程总结:北邮的概率论与随机过程课程涵盖了概率论和随机过程的基础知识和应用,对于理解随机现象和建立数学模型具有重要的意义。
概率论与随机过程考点总结
![概率论与随机过程考点总结](https://img.taocdn.com/s3/m/76d909206bec0975f565e254.png)
概率论与随机过程考点总结Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(母函数:∑∞===0)()(k kk kz p z E z g !)0()(k g p k k = )1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k nq p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
概率论与随机过程考点总结
![概率论与随机过程考点总结](https://img.taocdn.com/s3/m/6eb1f27b9a6648d7c1c708a1284ac850ad0204d0.png)
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。
概率论与随机过程第1章45节PPT课件
![概率论与随机过程第1章45节PPT课件](https://img.taocdn.com/s3/m/cacae70a011ca300a7c3905e.png)
上
海 大
解: 设A:第一次取到次品;
AB
学
B:第二次取到次品。
通 第一次取走一只次品后,
信 盒中还剩下9只产品,其中
A
___
AB
学 院
只有2个次品,故
PB/ A 2.
B S
9
又 BAB AB,且 (AB)(AB)故
P (B ) P (A ) B P (_ A _ B )_ 32 733 19 019 010
P B /A P (B )
上 海 大 学
❖ 从样本空间分析: 第一次抽取时的样本空间
S e 1,次 e2品 , e3,e 4,正 ... e品 10,
通
信
学 院 当A发生后,S缩减为
SA e i次 1 ,e 品 i2, ,e 4,正 ... e品 10,
信 概率是多少?
学
院
类型 W(白)
R(红) 共计
N(新)
40
30
70
O(旧)
20
共计
60
10
30
40
100
解: 按题意,即求P(W/N)=? 1) 在缩减样本空间N中考虑计算:P(W/N)=40/70=4/7。
2) 用公式求解:P(W/N)= P(WN)/ P(N)= 40/100 4 70/100 7
上
海 有关条件概率的三定理
大
学 1. 概率的乘法定理:
通 信
设A、B∈S,P(A)>0,则
学 院
P(AB)=P(A)P(B|A)。
可推广到三个事件的情形:
A、B、C∈S,P(AB)>0,则有
P(ABC)=P(A)P(B|A)P(C|AB).
《概率论与随机过程》第1章习题答案
![《概率论与随机过程》第1章习题答案](https://img.taocdn.com/s3/m/3fb97c360b4c2e3f572763a2.png)
《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
解:{}18,,4,3 =S 。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
解: {}10,,4,3 =S 。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
解: {} ,11,10=S 。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB表示A 为正组长,B 为副组长,余类推。
(6) 甲乙二人下棋一局,观察棋赛的结果。
解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
概率统计及随机过程课件 第一章第一节
![概率统计及随机过程课件 第一章第一节](https://img.taocdn.com/s3/m/dece2f3d9e3143323868938f.png)
本课程学习, 只学习基本的问题,基本的思想方法, 基本的知识,基本的技巧.
基本要求:
(1)要求我每次上课至少提前五分钟到达教室,准备好上课;
(2)要求同学们按时来上课、听课, 遵守课堂纪律, 保持安静,不影响大家听讲;
(3)课前适当预习,上课时认真听课,课后及时复习,必要 时,要经常复习用到的高等数学有关知识原理;
变量非线性生灭过程; 8. 许多服务系统,如电话通信、船舶装卸、
机器维修、病人候诊、存货控制、水库调度、购
物排队、红绿灯转换等,都可用一类概率模型 来描述,其涉及到 的知识就是 排队论.
目前,概率统计理论 进入其他科学领域的 趋势还在不断发展. 在社会科学领域 ,特别是 经济学中研究最优决策和经济的稳定增长等问 题,都大量采用 概率统计方法. 正如 拉普拉斯 所说 : “ 生活中最重要的问题 ,其中绝大多数 在实质上只是概率的问题.”
例1 给出一组随机试验及相应的样本空间
投一枚硬币,观察正面反面出现的情况
投一枚硬币3次,观察正面反面出现的 情况
投一枚硬币3次,观察正面反面出现的 次数
投一颗骰子,观察向上一面出现的点数 有限样本空间
观察电话总机每天9:00~10:00接到的电话 次数
观察某地区每天的最高温度与最低温度 无限样本空间
1. 气象、水文、地震预报、人口控制及预 测都与 概率论 紧密相关;
2. 产品的抽样验收,新研制的药品能否在 临床中应用,均需要用到 假设检验;
3. 寻求最佳生产方案要进行 实验设计 和 数据处理;
4. 电子系统的设计离不开 可靠性估计; 5. 探讨太阳黑子的规律时,时间序列分析 方法非常有用; 6. 研究化学反应的时变率,要以 马尔可夫 过程 来描述; 7. 在生物学中研究群体的增长问题时 提出 了生灭型随机模型,传染病流行问题要用到多
第1讲 概率论与随机过程1
![第1讲 概率论与随机过程1](https://img.taocdn.com/s3/m/52407f72f242336c1eb95e6c.png)
老 大 徒 伤 悲
人生与品牌
少 壮 不 努 力
20岁——奔腾 30岁——日立 40岁——方正 50岁——微软 60岁——松下 70岁——联想
概率论与随机事件
主讲教师:李昌兴 联系电话:88166087,85383773 辅导教师: 联系电话: 工作单位:应用数理系工程数学教研室
电子信件: shuxueshiyanshi@163. com 辅导时间:待定
1. 在相同条件下 可以重复进行. 2. 试验的结果是 不明确的,也是不 唯一. 3. 每次试验只能 出现这些结果中的 一个,但试验之前 不能确定会出现那 个结果.
试验1
代表
确定性现象
每次试验之前,根据现有条 件能够判定它有一个明确结 果的现象称为确定性现象.
太阳每天早晨从东方升起 水从高处流向低处 同性电荷必然互斥
一幅图片是否漂亮?这依赖于每个人的主观意愿,不同人 的出发点不同,所看到的意境不同,就会得到不近相同的 结论. 其结论往往只可意会,不可言传. 换句话说:结论有 时说不太清楚,因为没有一个统一的标准能够度量.
高等数学、线性代数、 复变函数、大学物理等
确定性现象
气象预报 水文预报 地震预报 产品检验 数据处理 信号分析 可靠性理论 排队轮等 模糊控制 模糊逻辑 信息理论 图像融合 信号处理
一、绪论
概率论与数理统计是研究随机现象统计规律的 一门学科
每次试验之前,根据现有条件能够判定它有一个明确 结果的现象称为确定性现象. 在一次试验中其结果呈现出不确定性,而在大量重复 试验中其结果又具有统计规律的现象称为随机现象. 在一定条件下可能出现也可能不出现的现象,其结果是 不明确的,称为模糊现象.
试验1
1. 从中任取一个小球观察其颜色 以后,再放回,第二次从中在任期一 个小球,那么第一次所取小球与第二 次所取小球的条件相同. 即在相同的 条件下,试验可以重复进行. 2. 从中任取一个小球,其颜色都是 黑色,即在取出之前已经可以知道所 取小球的颜色为黑色. 换句话说:从 试验的已知条件可以推知试验的结果. 而且结果只能是一个. 也就是试验的 结果是唯一的,而且是明确的.
概率论与数理统计经典课件随机过程
![概率论与数理统计经典课件随机过程](https://img.taocdn.com/s3/m/4571b09f77a20029bd64783e0912a21615797f6c.png)
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
鲜思东重庆邮电学院400065概率论与随机过程讲义
![鲜思东重庆邮电学院400065概率论与随机过程讲义](https://img.taocdn.com/s3/m/640f3bd580eb6294dd886c26.png)
2.
3.
随 机 试 验
1、可以在相同的条件下重复地进行;
2、每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果; 3、进行一次试验之前不能确定那一个结果会现。 在概率论中,我们将具有上述三个特点的验 称为随机试验。 本书中以后提到的试验都是指随机试验。
样 本 空 间
对于随机试验,尽管在每次试验之前不能预 知试验的结果,但试验的所有可能结果组成的 集合是已知的,我们将随机试验E的所有可能 结果组成的集合称为E的样本空间,记为S。样 本空间的元素,即E的每个结果,称为样本点。
古典概型的计算公式
设试验的样本空间为
包含 k 个基本事件,即
S = {e1 , e 2 , L , e n }, 事件 A
A=
∑ A ,且有
j =1
j
k
1 ≤ i1 < i 2 < L i k ≤ n ,则有
P(A = ∑P( ej )
j= 1 k
{ }
k A包 的 本 件 含 基 事 数 )= = n S中 本 件 总 基 事 的 数
例1·2·3 设A、B、C是S中的随机事件
事件“A与B发生,C不发生”可以表示成 “A、B、C中至少有二个发生”可以表示成 A、B、C中恰好发生二个”可以表示成 “A、B、C中有不多于一个事件发生”可以表示成
事件的运算
A 1、交换律: U B = B U A, AB = BA 、交换律:
2、结合律:A( BC ) 、结合律:
A= A
A U A = S, AA = Φ A ⊂ B ⇔ A − B = AB
8、子集的等价表示 A U B = B ⇔ AB = A 、 9、反演律(德·摩根律) 、反演律( 摩根律 摩根律)
概率论与随机过程第1章7-10节
![概率论与随机过程第1章7-10节](https://img.taocdn.com/s3/m/74db6dd528ea81c758f57865.png)
的定义: (一)分布函数 F(x,y)的定义: 的定义
x
上 海 大 学 通 信 学 院
2° 0≤F(x,y) ≤1,且 °
(1)给定 y,F( -∞,y)=0 ) , (2)给定 x,F(x, -∞)=0 ) (3)F(-∞, -∞)=0 ) (4)F(+∞,+ ∞)=1 ) 3° F(x,y)=F( x+0,y), ° F(x,y)=F( x,y+0)。 关于x 均为右连续。 即F(x,y) 关于 或 y 均为右连续。
−∞ −∞
f(x, y)dxdy = F( + ∞ , + ∞ ) = 1 ;
3. 若 f(x,y) 在点(x, y)处连续,则有 在点( )处连续,
∂ 2 F(x,y) = f(x,y) ; ∂x∂y
4. 点(X, Y)落x0y平面上某一区域 内的概率为 平面上某一区域G内的概率为 落 平面上某一区域 P{( x , y ) ∈ G } = ∫∫ f(x, y)dxdy 。
j =1
∞
ij
]
离散型
F 同理, (+∞, y) = Fy ( y) = ∫ 同理, =
y
−∞
[ ∫ f (u, v )du ] dv 连续型
−∞ ∞ i =1 ij
+∞
yi ≤ y
∑ [∑ p
]
离散型
上 海 大 学 通 信 学 院 由 F ( x) =
∫
x
−∞
f ( u )du =
边缘概率密度函数和边缘概率质量函数(分布律): 的边缘概率密度函数和边缘概率质量函数(分布律):
∂ 2 F(x,y) f(x,y) = , − ∞ < x < +∞ , − ∞ < y < +∞ ∂ x∂ y 离散型的概率密度函数: 离散型的概率密度函数:
《概率论与数理统计》课件-随机过程
![《概率论与数理统计》课件-随机过程](https://img.taocdn.com/s3/m/24bbea2b0a1c59eef8c75fbfc77da26925c5968f.png)
目录
• 随机过程基础 • 随机过程的基本类型 • 随机过程的分析与变换 • 随机过程的应用 • 随机过程的计算机模拟 • 随机过程的未来发展与挑战
01
随机过程基础
随机过程的定义与分类
定义
随机过程是由随机变量构成的数 学结构,每个随机变量对应一个 时间点或位置。
分类
根据不同的特性,随机过程可以 分为离散随机过程和连续随机过 程,平稳随机过程和非平稳随机 过程等。
随机过程的统计特性
均值函数
方差函数
自相关函数
谱密度函数
描述随机过程的平均行 为。
描述随机过程的波动程 度。
描述随机过程在不同时 间点的相关性。
描述随机过程的频率特 性。
随机过程的概率模型
01
02
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,通过模 拟离散事件的发生和影响来逼 近真实系统。
离散事件模拟方法适用于描述 离散状态变化的过程,如交通 流模拟、排队系统模拟等。
离散事件模拟方法的关键在于 事件的时间点和顺序的确定, 以及事件影响的计算。
连续时间模拟方法
连续时间模拟方法是一种基于时间连 续变化的模拟方法,通过模拟时间连 续变化的过程来逼近真实系统。
连续时间模拟方法的关键在于时间步 长的选择和状态变化的计算,需要保 证模拟结果的准确性和稳定性。
连续时间模拟方法适用于描述连续状 态变化的过程,如人口增长模拟、生 态系统模拟等。
06
随机过程的未来发展与挑战
控制系统
利用随机过程理论,分析和设计 控制系统,提高系统的稳定性和
概率论与随机过程
![概率论与随机过程](https://img.taocdn.com/s3/m/1166eec5ed3a87c24028915f804d2b160b4e86fd.png)
概率论与随机过程概率论与随机过程是一门研究随机现象的数学学科,它在统计学、物理学、经济学、工程学等领域中具有广泛的应用。
本文将通过介绍概率论与随机过程的基本概念、性质与应用,带领读者深入了解这一学科的重要性和内容。
第一部分:概率论1. 概率论的起源与发展概率论起源于古代赌博中的各种游戏,随着数学的发展逐渐形成独立的学科。
17世纪布莱兹·帕斯卡和皮埃尔·德·费马的通信奠定了概率论的基础,18世纪朱利叶斯·雷蒙·拉普拉斯进一步发展了概率论的理论。
2. 概率论的基本概念事件、样本空间、样本点、概率、事件的运算等是概率论的基本概念。
概率的性质包括非负性、规范性、可加性和完备性。
3. 随机变量与概率分布随机变量是描述随机试验结果的数值特征,概率分布是随机变量各个取值的概率规律。
常见的离散概率分布包括伯努利分布、二项分布和泊松分布,连续概率分布包括均匀分布、正态分布和指数分布等。
4. 大数定律与中心极限定理大数定律指出,随着试验次数的增加,样本均值趋近于总体均值;中心极限定理则是指在一定条件下,独立同分布的随机变量之和的极限分布接近于正态分布。
第二部分:随机过程1. 随机过程的定义与分类随机过程是指随时间变化的一族随机变量的集合,根据时间的离散性和状态的离散性可分为离散时间马尔可夫链、连续时间马尔可夫链和连续时间马尔可夫过程。
2. 马尔可夫性质马尔可夫性质是指随机过程的未来状态只与当前状态有关,与过去状态无关。
马尔可夫过程具有无后效性和马尔可夫性。
3. 随机过程的稳定性与平稳性随机过程的稳定性包括短期稳定性和长期稳定性,平稳性指随机过程的概率分布在任意时刻保持不变。
第三部分:概率论与随机过程的应用1. 统计学中的应用概率论与随机过程是统计学的重要基础,用于建立随机模型、估计参数、检验假设等,广泛应用于调查统计、贝叶斯统计、回归分析等领域。
2. 物理学中的应用量子力学中的波函数和量子力学算符可以用概率论的语言进行描述,随机过程常用于描述粒子的运动、衰变过程等。
概率论与随机过程
![概率论与随机过程](https://img.taocdn.com/s3/m/975112c29ec3d5bbfd0a745d.png)
概率论与随机过程(工程硕士生60学时)教材及主要参考书:1.《随机过程》刘次华著,华中理工大学出版社出版。
2.《概率论与数理统计》浙江大学编,高等教育出版社出版。
3.《概率论与数理统计》同济大学编,高等教育出版社出版。
第一章 概率论第一节 预备知识一、排列与组合问题(一) 排列问题的提法:从n 个不同元素n a a a ...,21中任取r 个)(n r ≤,按先后顺序把它们排列,共有多少种不同的排列?分析:第一个位置有n 种取法,第二个位置有1-n 种取法,…第r 个位置有1+-r n 种取法,则共有:rn A r n n r n n n =-=+--)!(!)1()1((二) 组合问题的提法:从n 个不同元素n a a a ...,21中任取r 个(n r ≤),不按先后顺序得到一种组合,共有多少中不同的组合?分析:由于不按先后顺序,因此r r a a a a 121- 与121a a a a r r -是同一组合,因此一种组合对应!r 种排列,共有:!)1()1(r r n n n +-- =)!(!!r n r n -=rn C 二、集合论(不妨假设所有集合全为Ω的子集)(一)A B ⊂,A 是B 的子集,即集合A 的元素全部属于集合B 。
例:{}全体实数=R {}全体自然数=N 则:R N ⊂(二)B A =B A ⊂⇔且A B ⊂分析:定义蕴涵了证明两个集合相等的方法。
(三)B A C =或B A C +=,即集合C 包含集合A 和集合B 的全部元素,但不包含其它元素。
例:{}全体有理数=A {}全体无理数=B 则:{}R B A C ==+=全体实数 1.运算规律(1)交换律 A B B A =(2)结合律 )()(C B A C B A =特别地:若B A ⊂,则:B B A =A A =Φ Ω=Ω A A A A =2.推广情形集合的并运算可以推广到有限个、可数多个甚至到不可数情形,为了阐述清楚,下面补充可数集合的定义。
第一讲概率论与随机过程概率论与随机过程精品课件完美版
![第一讲概率论与随机过程概率论与随机过程精品课件完美版](https://img.taocdn.com/s3/m/b02af5ab69dc5022aaea00ee.png)
知识到哪里去?
如何运用概率论与随机过程的理论知识解决通信 中的实际问题?
举例说明
..\2005\应用举例.ppt
2017/11/2 北京邮电大学电子工程学院 3
第一章 概率空间
首先,回顾初等概率论的一些基本概念:
随机试验 E ,满足如下条件: 在相同条件下可重复进行; 一次试验结果的随机性——不可预知性; 全体可能结果的可知性。 样本空间Ω——随机试验所有可能的结果组成的集合。 样本点 ——Ω中的元素。 随机事件——样本空间Ω的子集合,称为事件。 基本事件——Ω中每个样本点所构成的单点集。 必然事件——Ω本身。 不可能事件——不包含任何元素的空集合Φ。
2017/11/2 北京邮电大学电子工程学院 10
第一节 集合代数和σ -代数
二、包含某一集合类的最小σ -代数
C是由Ω的一些子集组成的非空集合类,那么至 少存在一个σ -代数包含C。为什么?
。 由于 F 是一个σ -代数,且C F
是否存在最小的σ -代数?若存在,是否唯一?
2017/11/2
F的结构?在F上的概率如何构造?这是本章将要讨论的主 要问题,为此我们必须引入测度论的概念。
2017/11/2 6
北京邮电大学电子工程学院
第一节 集合代数和σ -代数
一、集合代数和σ -代数
定义1.1.1 设Ω是任一非空集合, A是由Ω的一些子集组成 的非空集合类,若A满足:
1. Ω A ;
2. 若AA ,有 A A (余运算封闭); 3. 若 A, B ∈ A ,有 A B A (有限并运算封闭); 则称A是Ω上的一个集合代数,简称集代数。 容易证明集代数对有限交运算也封闭,即:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验2
代表
随机现象
在一次试验中其结果呈现出 不确定性,而在大量重复试 验中其结果又具有统计规律 的现象称为随机现象.
例1 在相同条件下掷一枚 均匀的硬币,观察其出现正 反两面的情况. 结果:可能出现正面,也可 能出现反面. 例2 抛掷一枚骰子,观察 出现的点数. 结果有可能为: “1”,“2”,“3”,“4”,“5”或“6”.
说明
1.随机试验简称为试验, 是一个广泛的术语.它包括各 种各样的科学实验, 也包括对客观事物进行的 “调查”、 “观察”、或 “测量” 等. 2.随机试验通常用 E 来表示. 例1 在相同条件下掷一枚均匀 的硬币,观察其出现正反两面的情况. 分析 (1)试验可以在相同的条件下重复 地进行; (2)试验的所有可能结果:正面或 反面; 随机试验 (3)进行一次试验之前能确定哪一 个结果会出现.
自然现象 非确定性现象
随机现象 模糊现象 其它现象
本学科历史ABC
16世纪意大利学者开始研究掷骰子等赌博中的一些 问题;17世纪中叶,法国数学家B.帕斯卡、荷兰数学家 C. 惠更斯基于排列组合的方法,研究了较复杂的赌博 问题,解决了“合理分配赌注问题”(即得分问题). 对客观世界中随机现象的分析产生了概率论;使概 率论成为数学的一个分支的真正奠基人是瑞士数学家J. 伯努利;而概率论的飞速发展则在17世纪微积分学说建 立以后. 第二次世界大战军事上的需要以及大工业与管理的 复杂化产生了运筹学、系统论、信息论、控制论与数理 统计学等学科.
3. 每次从中任取一球,其颜色既不是黑色,也不是红 色. 即每次试验只能出现这些的结果中的一个.
试验1
试验2
试验3
1. 在相同条件 下可以重复进行. 2. 试验的结果 是明确的,而且是 唯一的. 3. 每次试验只 能出现这个结果.
1. 在相同条件下可 以重复进行. 2. 每次试验的可能 结果不至一个,并且 能事先能明确试验的 所有可能的结果. 3. 每次试验只能出 现这些结果中的一 个,但试验之前不能 确定会出现那个结果.
“得分问题”
甲、乙两人各出同样的赌注,用掷硬币作为博奕手段. 每掷一次,若正面朝上,甲得1分乙不得分. 反之,乙得1 分,甲不得分. 谁先得到规定分数就赢得全部赌注. 当进 行到甲还差2分乙还差3分,就分别达到规定分数时,发生 了意外使赌局不能进行下去,问如何公平分配赌注?
内
第一章 第二章 第三章 第四章 第五章 第十章
3. 每次从中任取一球,其颜色始终是黑色. 即每次试验 只能出现这个结果.
试验2
1. 从中任取一个小球观察其颜色以 后,再放回,第二次从中在任期一个小 球,那么第一次所取小球与第二次所取 小球的条件相同. 即在相同的条件下, 试验可以重复进行.
2. 从中任取一个小球,其颜色可能 是黑色,也可能是红色,即在取出之前 不可能知道所取小球的颜色是黑色,还 是红色. 换句话说:从试验的已知条件 推不出试验的结果. 即试验结果不唯 一,但其结果只能是红色或黑色. 也就 是试验的结果是明确的,但结果不至一 个. 3. 每次从中任取一球,其颜色是黑色或红色. 即每次试 验只能出现这些的结果中的一个.
概率论与随机过程
Probability and Random Process
奥运百年 小概率事件 终于发生
短道高栏中国第一
刘翔领先不是一点点
自我感光
2006. 9. 4
李昌兴 任教授 上大班 是何故 对学子 真期望
属虎相 教概率 遇考试 细思量 严加爱 众后生
已知天命之年 耕耘二十余载 从无全体通过 原来概率太难 本人身体力行 出于蓝胜于蓝
本学科的应用ABC
概率统计理论与方法的应用几乎遍及所有科学技术领 域、工农业生产和国民经济的各个部门中. 例如 1. 气象、水文、地震预报、人口控制及预测都与 《概率论》紧密相关; 2. 产品的抽样验收,新研制的药品能否在临床中应 用,均要用到《假设检验》; 3. 寻求最佳生产方案要进行《实验设计》和《数据 处理》; 4. 电子系统的设计,火箭卫星的研制及其发射都离不 开《可靠性估计》;
目前,概率统计理论进入其他自然科学领域的趋势还在 不断发展. 在社会科学领领域,特别是经济学中研究最优 决策和经济的稳定增长等问题,都大量采用《概率统计方 法》. 法国数学家拉普拉斯(Laplace)说对了:“生活中最 重要的问题,其中绝大多数在实质上只是概率的问题. ”
英国的逻辑学家和经济学家杰文斯曾对概率论大加赞美: “概率论是生活真正的领路人,如果没有对概率的某种估计, 那么我们就寸步难行,无所作为.
第一讲 样本空间与随机事件
绪论 随机试验 样本空间与随机事件
三、样本空间与随机事件
1.样本空间 前面我们介绍了随机试验 定义1:如果一个试验满足下列三个条件: 1.试验在相同条件下可以重复进行; 2.每次试验的可能结过不止一个,并且能事先明确试 验的所有可能结果; 3.每次试验只能出现这些结果中的一个,但试验之前 不能确定会出现那个结果。 这样的试验称为一个随机试验,而随机试验所代表的 现象称为随机现象。
例3 用同一门炮向同一目标进 行轰炸,观察弹着点的情况. 结果:弹落点会各不相同. 例4 过马路交叉路口时,可能 遇上各种颜色的交通指示灯. 结果:信号灯允许或不允许通过. 例5 考察某医院新出生婴儿的 性别情况. 结果:男婴儿或女婴儿.
试验3
代表
模糊现象
在一次试验中其结果呈现出 不确定性,且结果又不明确 的现象,称为模糊现象.
如何根据随机试验来研究随机现象? 尽管,我们从试验开始的条 件不确定试验的结果,即硬币出 现正面还是反面.即一次试验的结 果,硬币出现正面还是反面,在 试验之前无法确定。 但是,实践经验告诉我们,如果反复多次掷币,那么 总可以观察到这样的事实:当试验次数n相当大时,出现 正面的次数n正和出现反面的次数n反是很接近的,比值 n反 n正 1 (或 )会逐渐稳定于 2 . 这也就是我们所谓的统 n n 计规律。
绪论 随机试验
二、随机试验
定义1:如果一个试验满足下列三个条件: 1.试验在相同条件下可以重复进行; 2.每次试验的可能结过不止一个,并且能事先明确试 验的所有可能结果; 3.每次试验只能出现这些结果中的一个,但试验之前 不能确定会出现那个结果。 这样的试验称为一个随机试验,而随机试验所代表的 现象称为随机现象。
5. 处理通信问题,需要研究《信息论》; 6. 探讨太阳黑子的变化规律时,《时间序列分析》方 法非常有用; 7. 研究化学反应的时变率,要以《马尔可夫过程》 来描述; 8. 生物学中研究群体的增长问题时,提出了生灭型 《随机模型》,传染病流行问题要用到多变量非线性 《生灭过程》; 9. 许多服务系统,如电话通信、船舶装卸、机器维 修、病人候诊、存货控制、水库调度、购物排队、红绿 灯转换等,都可用一类概率模型来描述,其涉及到的知 识就是《排队论》.
一、绪论
概率论与数理统计是研究随机现象统计规律的 一门学科
每次试验之前,根据现有条件能够判定它有一个明确 结果的现象称为确定性现象. 在一次试验中其结果呈现出不确定性,而在大量重复 试验中其结果又具有统计规律的现象称为随机现象. 在一定条件下可能出现也可能不出现的现象,其结果是 不明确的,称为模糊现象.
容
概率论的基本概念 随机变量及其分布 多维随机变量及其分布 随机变量的数字特征 大数定理与中心极限定理 随机过程的基本知识
第十一章 马尔可夫链 第十二章 平稳随机过程
教 材
参 考 书
参考书目
1.李昌兴等. 概率论与数理统计辅导. 陕西:陕西教育出版社,2009. 2.盛骤等. 概率论与数理统计(第二版),北京:高等教育出版社,2001. 3.肖筱南编. 新编概率论与数理统计,北京:北京大学出版社,2002. 4.章昕等. 概率统计双博士课堂,北京:机械工业出版社,2003年8月. 5. 毛用才. 随机过程,西安:西安电子科技大学出版社,1999年3月. 6. 李欲奇. 随机过程,北京:国防科技大学出版社,2003年8月. 7. 何迎晖等. 随机过程简明教程,上海:同济大学出版,2004年1月. 8. 张卓奎等. 随机过程,西安:西安电子科技大学出版社,2003年9月. 9. 汪荣鑫. 随机过程,西安:西安交通大学出版社,2003. 10. 刘嘉焜. 应用随机过程,北京:科学出版社,2000. 11.赵衡秀. 概率论与数理统计全程学练考,沈阳:东北大学出版社,2003年3月.
随机现象说明
1. 随机现象揭示了条件和结果之间的非确定性联系, 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然性, 但在大量试验或观察中,这种结果的出现具有一定的统计 规律性. 如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
第一讲 样本空间与随机事件
老 大 徒 伤 悲
人生与品牌
少 壮 不 努 力
20岁——奔腾 30岁——日立 40岁——方正 50岁——微软 60岁——松下 70岁——联想
概率论与随机事件
主讲教师:李昌兴 联系电话:88166087,85383773 辅导教师: 联系电话: 工作单位:应用数理系工程数学教研室
电子信件: shuxueshiyanshi@163. com 辅导时间:待定
同理可知下列试验也是随机试验 E1:抛掷一枚骰子,观察出现的点数. E2 :从一批产品中,依次任选三件,记 录出现正品与次品的件数. E3 : 记录某公共汽车站某日上午某 时刻的等车人数. E4:记录电话交换机一分钟内接 到用户的呼叫次数。
E5: 考察某地区10月份的平均气温.
E6 : 从一批灯泡中任取一只,测试其 寿命. E7 :抛一枚硬币,观察正面H、反 面T出现的情况. E8:将一枚硬币抛三次,观察正面 H、反面T 出现的情况. E9:将一枚硬币抛三次,观察出现正面的次数.
第一讲
样本空间与随机事件