高中数学 第三讲 本讲高考热点解读与高频考点例析课件 新人教A版选修4-5

合集下载

高中数学第三讲三排序不等式学案含解析新人教A版选修4_5

高中数学第三讲三排序不等式学案含解析新人教A版选修4_5

三排序不等式考纲定位重难突破1.了解排序不等式的数学思想和背景.2.了解排序不等式的结构与基本原理.3.理解排序不等式的简单应用.重点:排序不等式的结构与基本原理.难点:排序不等式的简单应用.授课提示:对应学生用书第32页[自主梳理]一、顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和a1b1+a2b2+…a n b n为顺序和,和a1c1+a2c2+…+a n c n为乱序和,相反顺序相乘所得积的和a1b n+a2b n-1+…+a n b1为反序和.二、排序不等式(排序原理)设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为反序和≤乱序和≤顺序和.[双基自测]1.已知a,b,c∈R+,则a5+b5+c5与a3b2+b3c2+c3a2的大小关系是()A.a5+b5+c5>a3b2+b3c2+c3a2B.a5+b5+c5≥a3b2+b3c2+c3a2C.a5+b5+c5<a3b2+b3c2+c3a2D.a5+b5+c5≤a3b2+b3c2+c3a2解析:取两组数a3,b3,c3和a2,b2,c2,由排序不等式,得a5+b5+c5≥a3b2+b3c2+c3a2.答案:B2.设两组数1,2,3,4和4,5,6,7的顺序和为A,反序和为B,则A=________,B=________.解析:A=1×4+2×5+3×6+4×7=4+10+18+28=60.B=1×7+2×6+3×5+4×4=7+12+15+16=50.答案:60503.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s,4 s,3 s,7 s ,每个人接完水后就离开,则他们等候的总时间最短为________ s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:41授课提示:对应学生用书第32页探究一 利用排序不等式证明不等式[例1] 设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .[证明] 由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知 ab ×1c +ac ×1b +bc ×1a≥ab ×1b +ac ×1a +bc ×1c,即所证不等式bc a +ca b +abc ≥a +b +c 成立.1.利用排序不等式证明不等式时,若已知条件中已给出两组量的大小关系,则需要分析清楚顺序和、乱序和及反序和.利用排序不等式证明即可.2.若在解答数学问题时,涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序.那么在解答问题时,我们可以利用排序原理将它们按一定顺序排列起来,继而用不等关系来解题.1.设a ,b ,c 为正数,求证:a 12bc +b 12ac +c 12ab ≥a 10+b 10+c 10.证明:不妨设a ≥b ≥c >0,则a 12≥b 12≥c 12, 1bc ≥1ac ≥1ab>0, ∴由顺序和≥乱序和,得a 12bc +b 12ac +c 12ab ≥a 12ab +b 12bc +c 12ac =a 11b +b 11c +c 11a .①又∵a 11≥b 11≥c 11,1c ≥1b ≥1a ,∴由乱序和≥反序和,得a 11b +b 11c +c 11a ≥a 11a +b 11b +c 11c =a 10+b 10+c 10,②由①②两式得:a 12bc +b 12ac +c 12ab≥a 10+b 10+c 10.探究二 利用排序不等式求最值[例2] 设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.[解析] 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b 上述两式相加得: 2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.利用排序不等式求最值的方法利用排序不等式求最值时,先要对待证不等式及已知条件仔细分析,观察不等式的结构,明确两个数组的大小顺序,分清顺序和、乱序和及反序和,由于乱序和是不确定的,根据需要写出其中的一个即可.一般最值是顺序和或反序和.2.设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解析:令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .∴S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+a c (a +b ),两式相加得:2S ≥1a +1b +1c ≥3·31abc=3.∴S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.探究三 利用排序不等式解决实际问题[例3] 若某网吧的3台电脑同时出现了故障,对其维修分别需要45 min,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元.在只能逐台维修的条件下,按怎么样的顺序维修,才能使经济损失降到最小?[解析] 设t 1,t 2,t 3为25,30,45的任一排列,由排序原理知3t 1+2t 2+t 3≥3×25+2×30+45=180(min),所以按照维修时间由小到大的顺序维修,可使经济损失降到最小.利用排序不等式解决实际问题的关键是将实际问题转化为数学问题,构造排序不等式的模型.3.某座大楼共有n 层,在每层有一个办公室,每个办公室的人员步行上下楼,他们的速度分别为v 1,v 2,…,v n (他们各不相同),为了能使得办公室的人员上下楼梯所用的时间总和最小,应该如何安排?(假设每两层楼的楼梯长都一样)解析:设两层楼间的楼梯长为s ,则第一层需要走的路程为s ,第二层需要走的路程为2s ,…,第n 层需要走的路程为ns .不妨设v ′1>v ′2>…>v ′n 为v 1,v 2,…,v n 从大到小的排列,显然1v ′1<1v ′2<…<1v ′n ,由排序不等式,可得ns 1v ′1+(n -1)s 1v ′2+…+s 1v ′n的和最小,所以将速度快的放在高层,速度慢的放在低层,可使上下楼的时间最短.在运用排序不等式时不能准确找到相应有序数组致误[典例] 一般地,对于n 个正数a 1,a 2,…,a n ,几何平均数G n =na 1a 2…a n ,算术平均数A n =a 1+a 2+…+a nn,利用排序不等式可以判断G n ,A n 的大小关系为________.[解析] 令b i =a iG n (i =1,2,…,n ),则b 1b 2…b n =1,故可取x 1≥x 2≥…≥x n >0,使得b 1=x 1x 2,b 2=x 2x 3,…,b n -1=x n -1x n ,b n =x nx 1.由排序不等式有:b 1+b 2+…+b n =x 1x 2+x 2x 3+…+x n x 1≥x 1·1x 1+x 2·1x 2+…+x n ·1x n=n ,当且仅当x 1=x 2=…=x n 时取等号,所以a 1G n +a 2G n +…+a nG n ≥n ,即a 1+a 2+…+a n n ≥G n ,即A n ≥G n . [答案] A n ≥G n[规律探究] (1)利用排序不等式的关键是正确地寻找两组有序实数组,构造的恰当是正确解题的前提,如本例中构造的两组数,恰好能够解决反序和为n ,使得问题得以解决.(2)利用排序不等式求解完成后,一定要说明等号成立的条件,若取不到等号也应该说明原因,使得解题更加清晰和准确.(3)运用排序不等式的解题步骤是①构造两组有序数组使之满足排序不等式的条件;②运用排序不等式得到不等关系;③找出等号成立的条件并以此得出证明的结论.[随堂训练] 对应学生用书第34页1.设正实数a 1,a 2,a 3的任一排列为a ′1,a ′2,a ′3,则a 1a ′1+a 2a ′2+a 3a ′3的最小值为( )A .3B .6C .9D .12解析:设a 1≥a 2≥a 3>0,则1a 3≥1a 2≥1a 1>0,由排列不等式可知a 1a ′1+a 2a ′2+a 3a ′3≥a 1a 1+a 2a 2+a 3a 3=3. 当且仅当a ′1=a 1,a ′2=a 2,a ′3=a 3时等号成立. 答案:A2.设a 1,a 2,a 3为正数,E =a 1a 2a 3+a 2a 3a 1+a 3a 1a 2,F =a 1+a 2+a 3,则E ,F 的大小关系是( ) A .E <F B .E ≥F C .E =FD .E ≤F解析:不妨设a 1≥a 2≥a 3>0,于是1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2.由排序不等式:顺序和≥乱序和,得a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2=a 3+a 1+a 2,即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. ∴E ≥F . 答案:B3.已知a ,b ,x ,y ∈R +,且1a >1b ,x >y ,则x x +a ________yy +b (填“>”或“<”).解析:∵1a >1b ,a >0,b >0,∴b >a >0,又x >y >0,∵bx >ay , ∴bx -ay >0, 又x +a >0,y +b >0,∴x x +a -yy +b =bx -ay (x +a )(y +b )>0, 即xx +a >y y +b . 答案:>。

2019版数学人教A版选修4-5课件:第三讲 柯西不等式与排序不等式 本讲整合

2019版数学人教A版选修4-5课件:第三讲 柯西不等式与排序不等式 本讲整合
aA+bB+cC≥bA+cB+aC,
aA+bB+cC≥cA+aB+bC.
相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=π(a+b+c),
+ + π

≥ ,①
3
++
第八页,编辑于星期日:点 四十七分。
-8-
本讲整合
专题一
专题二
知识建构
专题三
综合应用
真题放送
专题四

当且仅当 1 = 1 = 1 时,等号成立.
1
1
故当 xP=yP= 3 时,面积 S 最小,且最小值为 6.
-15-
第十五页,编辑于星期日:点 四十七分。
本讲整合
1
知识建构
综合应用
真题放送
2
1(2018江苏,21D)若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.
解:由柯西不等式,得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2.
柯西不等式的形式进行转化.
第三页,编辑于星期日:点 四十七分。
-3-
本讲整合
专题一
专题二
知识建构
专题三
综合应用
真题放送
专题四
应用1已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,求e
的取值范围.
提示:由a2+b2+c2+d2+e2联想到应用柯西不等式.

2021人教A版高考数学(理)复习课件选修部分4-5

2021人教A版高考数学(理)复习课件选修部分4-5
真题感悟·考点整合 热点聚焦·题型突破 专题训练·对接高考
▪ 高考定位 该部分主要有三个考点,一是带 有绝对值的不等式的求解;二是与绝对值不 等式有关的参数范围问题;三是不等式的证 明与运用.对于带有绝对值不等式的求解, 主要考查形如|x|<a或|x|>a及|x-a|±|x-b|<c 或|x-a|±|x-b|>c的不等式的解法,考查绝对 值的几何意义及零点分区间去绝对值符号后 转化为不等式组的方法.试题多以填空题或 解答题的形式出现.对于与绝对值不等式有 关的参数范围问题,此类问题常与绝对值不 等式的解法、函数的值域等问题结合,试题 多以解答题为主.对于不等式的证明问题, 此类问题涉及到的知识点多,综合性强,方
4.柯西不等式 (1)设 a,b,c,d 为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当 且仅当 ad=bc 时等号成立.
(2)若 ai,bi(i∈N*)为实数,则(i=n1a2i )i=n1b2i ≥(i=n1aibi)2,当且仅
当 bi=0(i=1,2,…,n)或存在一个数 k,使得 ai=kbi(i=1,2,…, n)时,等号成立. (3)柯西不等式的向量形式:设 α,β 为平面上的两个向量, 则|α|·|.
1≤a≤12,即实数 a 的取值范围是-1,12.
答案 -1,12
真题感悟·考点整合 热点聚焦·题型突破 专题训练·对接高考
▪ [考点整合] ▪ 1.含有绝对值的不等式的解法 ▪ (1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a; ▪ (2)|f(x)|<a(a>0)⇔-a<f(x)<a; ▪ (3)对形如|x-a|+|x-b|≤c,|x-a|+|x-
b|≥c的不等式,可利用绝对值不等式的几何 意义求解.

高考数学新人教A版(理科)一轮复习课件:选修4-5

高考数学新人教A版(理科)一轮复习课件:选修4-5
答案
5.不等式证明的方法 证明不等式常用的方法有比较法、综合法、分析法等.
答案
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)对|a-b|≤|a|+|b|,当且仅当 ab≤0 时,等号成立.( ) (2)|a+b|+|a-b|≥|2a|.( ) (3)|x-a|+|x-b|的几何意义是表示数轴上的点 x 到点 a,b 的距离之 和.( ) (4)用反证法证明命题“a,b,c 全为 0”时假设为“a,b,c 全不为 0”.( ) [答案] (1)√ (2)√ (3)√ (4)×
[规律方法] 不等式证明的常用方法是:比较法、综合法与分析法.其中 运用综合法证明不等式时,主要是运用基本不等式证明,与绝对值有关 的不等式证明常用绝对值三角不等式.证明过程中一方面要注意不等式 成立的条件,另一方面要善于对式子进行恰当的转化、变形.
[证明]
已知 x>0,y>0,且 x+y=1,求证:1+1x1+1y≥9. 因为 x>0,y>0,
解析答案
[证明] (1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b) ≤2+3a+4 b2(a+b)=2+3a+4 b3, 所以(a+b)3≤8,因此 a+b≤2.
所以 1=x+y≥2 xy.
所以 xy≤14.
所以1+1x1+1y=1+1x+1y+x1y=1+x+ xyy+x1y=1+x2y≥1+8=9.
当且仅当 x=y=12时,等号成立.
解析答案
应用不等式解决最值问题 ►考法 1 利用基本不等式求最值 【例 3】 (2014·全国卷Ⅰ)若 a>0,b>0,且1a+1b= ab. (1)求 a3+b3 的最小值; (2)是否存在 a,b,使得 2a+3b=6?并说明理由.

新课标人教A版高中数学选修4-5知识点

新课标人教A版高中数学选修4-5知识点

高中数学选修4-5知识点不等式选讲1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒> ⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: 2a b a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33a b c abc ++≥()a b c R +∈、、(当且仅当微信公众号:免a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式 ①平均不等式:2211222a b a b ab a b --++≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号). (即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: 222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:22222211221212()()x y x y x x y y +++≥-+-1122(,,,).x y x y R ∈④二维形式的柯西不等式: 微信公众号:免22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理): 设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和. ⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有 12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+ 2212,21kk k k k k =⇒<++- *12(,1)1k N k k k k >∈>++等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.微信公众号:免二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法. 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集. 7、分式不等式的解法:先移项通分标准化,则 ()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理) 规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩ ⑵2()0()(0)()f x f x a a f x a ≥⎧<>⇔⎨<⎩ ⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩ ⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔> ⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法 微信公众号:免⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩ 规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: 微信公众号:免①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔< ()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔> ()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题 ⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域. 即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域.即:同号上方,异号下方.⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .微信公众号:免第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,z B 为直线的纵截距.①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值; ②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=- ③“距离”型:22z x y =+或22;z x y =+22()()z x a y b =-+-或22()().z x a y b =-+-在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.微信公众号:免。

高中数学 第三节 柯西不等式课件 新人教A版选修4-5

高中数学 第三节 柯西不等式课件 新人教A版选修4-5
等号成立.
3.一般形式的柯西不等式 设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则 (a12+a22+a32+…+an2)(b12+b22+b32+…+bn2)≥ ___(_a_1b_1_+_a_2_b_2+_a_3_b_3_+_…__+_a_nb_n_)_2__,当且仅当_b_i=_0_(_i_=_1_,_ _2_,_3_,_…__,_n_)_或_存__在__一__个__数__k_,_使__得__a_i=_k_b_i_(_i_=_1_,_2_,_3_,_…__,_n_)_ 时,等号成立.
【解析】(1)错误.当b,d=0时,柯西不等式成立,但
a 不c 成立.
bd
(2)错误.当b1,b2,b3都为零时,
柯西不等式成立.
a1 a不2 成a立3 ,但此时
b1 b2 b3
(3)错误.当 =0时, || .
答案:(1)× (2)× (3)×
考向 1 二维柯西不等式代数形式的应用
【典例1】设a,b∈R+且a+b=2.求证: a2 b2 2.
【互动探究】本例条件不变,试求4a+8b+27c的最小值.
【解析】 (123)4a8b27c
a bc
[ (1 )2 (2 )2 (3 )2 ] [ 4 a2 8 b2 2 7 c2 ] a bc
( 1 4a2 8b3 27c)2
a
b
c
=(2+4+9)2=225,
又∵ 1 2 ∴34a2+, 8b+27c≥
第三节 柯西不等式
1.二维形式的柯西不等式

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

二 一般形式的柯西不等式与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.[例1] 设x 1,x 2,…,x n 都是正数,求证:x 1+x 2+…+x n ≥x 1+x 2+…+x n.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n=[(x 1)2+(x 2)2+…+(x n )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1x 12+⎝ ⎛⎭⎪⎫1x 22+…+⎝ ⎛⎭⎪⎫1x n 2≥ ⎝⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴1x 1+1x 2+…+1x n ≥n 2x 1+x 2+…+x n.柯西不等式的结构特征可以记为:(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2.其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. 证明:构造两组数a +b ,b +c ,c +a ;1a +b,1b +c,1c +a,则由柯西不等式得(a +b +b +c +c +a )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c. 由柯西不等式知,①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c .因为a ,b ,c 不全相等,故①中等号不成立, 于是2a +b +2b +c +2c +a >9a +b +c.[例2] (1)+求 1x + 4y + 9z的最小值;(2)设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值. [思路点拨] (1)利用1x +4y +9z=⎝ ⎛⎭⎪⎫1x +4y +98(x +y +z ). (2)利用(2x +1+3y +4+5z +6)2= (1×2x +1+1×3y +4+1×5z +6)2. [解] (1)∵x +y +z =1, ∴1x +4y +9z =⎝ ⎛⎭⎪⎫1x +4y +9z (x +y +z );≥⎝⎛⎭⎪⎫1x·x +2y·y +3z·z 2=(1+2+3)2=36. 当且仅当x =y 2=z3,即x =16,y =13,z =12时取等号.所以1x +4y +9z的最小值为36.(2)根据柯西不等式,有(2x +1×1+3y +4×1+5z +6×1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40=120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.已知x ,y ,z ∈R ,且x -2y +2z =5,则(x +5)2+(y -1)2+(z +3)2的最小值是( ) A .20 B .25 C .36D .47解析:选C ∵[(x +5)2+(y -1)2+(z +3)2][12+(-2)2+22]≥[(x +5)+(-2)(y -1)+2(z +3)]2=324,当且仅当x +51=y -1-2=z +32,即x =-3,y =-3,z =1时取等号.故(x +5)2+(y -1)2+(z +3)2的最小值是36.3.若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________. 解析:∵2x +3y +4z =11,∴由柯西不等式,得 (x 2+y 2+z 2)(4+9+16)≥(2x +3y +4z )2, 故x 2+y 2+z 2≥12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时取等号.答案:121294.把一根长为12 m 的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S 最小,并求此最小值.解:设三段绳子的长分别为x ,y ,z ,则x +y +z =12,三个正方形的边长分别为x 4,y4,z4均为正数,三个正方形面积之和:S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 42+⎝ ⎛⎭⎪⎫z 42=116(x 2+y 2+z 2). ∵(12+12+12)(x 2+y 2+z 2)≥(x +y +z )2=122, 即x 2+y 2+z 2≥48.从而S ≥116×48=3. 当且仅当x 1=y 1=z1时取等号,又x +y +z =12, ∴x =y =z =4时,S min =3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3 m 2.1.已知a 2+b 2+c 2+d 2=5,则ab +bc +cd +ad 的最小值为( ) A .5 B .-5 C .25D .-25解析:选B (ab +bc +cd +ad )2≤(a 2+b 2+c 2+d 2)·(b 2+c 2+d 2+a 2)=25,当且仅当a =b =c =d =±52时,等号成立. ∴ab +bc +cd +bd 的最小值为-5.2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( ) A .1 B .2 C .3D .4解析:选A (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1,当且仅当x 1a 1=x 2a 2=…=x n a n=1时取等号.∴a 1x 1+a 2x 2+…+a n x n 的最大值是1.3.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值是( )A .5B .6C .8D .9解析:选 D x +y 2+z 3=1x +2y +3z ·⎝ ⎛⎭⎪⎫x +y 2+z 3≥1x·x +2y·y2+3z·z 32=9,当且仅当1x =2y =3z =13时等号成立.4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.5.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥327. 当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8, 解得x =87,y =127,z =47,故所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 6.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c 的最小值是________.解析:(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=(2+3+6)2=121.当且仅当a 2=b 3=c6=k (k 为正实数)时,等号成立.答案:1217.已知实数x ,y ,z 满足3x +2y +z =1,则x 2+2y 2+3z 2的最小值为________. 解析:由柯西不等式,得[x 2+(2y )2+(3z )2]·⎣⎢⎡⎦⎥⎤32+(2)2+⎝ ⎛⎭⎪⎫132≥(3x +2y +z )2=1,所以x 2+2y 2+3z 2≥334,当且仅当x 3=2y 2=3z 13,即x =934,y =334,z =134时,等号成立,所以x 2+2y 2+3z 2的最小值为334.答案:3348.在△ABC 中,设其各边长为a ,b ,c ,外接圆半径为R ,求证:(a 2+b 2+c 2)⎝⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明:∵a sin A =b sin B =csin C =2R ,∴(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C≥⎝⎛⎭⎪⎫a sin A +b sin B +c sin C 2=36R 2.9.在直线5x +3y =2上求一点,使(x +2y -1)2+(3x -y +3)2取得最小值. 解:由柯西不等式得(22+12)[(x +2y -1)2+(3x -y +3)2]≥[2(x +2y -1)+(3x -y +3)]2=(5x +3y +1)2=9.∴(x +2y -1)2+(3x -y +3)2≥95.当且仅当x +2y -1=2(3x -y +3) 即5x -4y +7=0时取等号.解方程组⎩⎪⎨⎪⎧5x +3y =2,5x -4y =-7,得⎩⎪⎨⎪⎧x =-1335,y =97.故所求点的坐标为⎝ ⎛⎭⎪⎫-1335,97.10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 为正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }, 又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明:由(1)知1a +12b +13c=1,所以a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。

【新】人教A版高考数学(文)选修部分4-5.ppt

【新】人教A版高考数学(文)选修部分4-5.ppt

热点聚焦 ·题型突破
归纳总结 ·思维升华
热点一 含绝对值不等式的解法 【例 1】 已知函数 f(x)=|x+a|+|x-2|. (1)当 a=-3 时,求不等式 f(x)≥3 的解集; (2)若 f(x)≤|x-4|的解集包含[1,2],求 a 的取值范围.
-2x+5,x≤2, 解 (1)当 a=-3 时,f(x)=1,2<x<3,
热点聚焦 ·题型突破
热点聚焦 ·题型突破
归纳总结 ·思维升华
【训练 1】 若不等式|x+1|+|x-2|<a 无实数解,则 a 的取值 范围是________.
解析 由绝对值的几何意义知|x+1|+|x-2|的最小值为 3,而|x +1|+|x-2|<a 无解,如 a≤3. 答案 (-∞,3]
热点聚焦 ·题型突破
归纳总结 ·思维升华
2x-5,x≥3.
当 x≤2 时,由 f(x)≥3 得-2x+5≥3,解得 x≤1;
当 2<x<3 时,f(x)≥3 无解;
热点聚焦 ·题型突破
归纳总结 ·思维升华
当 x≥3 时,由 f(x)≥3 得 2x-5≥3,解得 x≥4; 所以 f(x)≥3 的解集为{x|x≤1,或 x≥4}. (2)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|. 当 x∈[1,2]时,|x-4|-|x-2|≥|x+a| ⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a. 由条件得-2-a≤1 且 2-a≥2,即-3≤a≤0. 故满足条件的 a 的取值范围是[-3,0].
热点聚焦 ·题型突破
归纳总结 ·思维升华
规律方法 (1)用零点分段法解绝对值不等式的步骤: ①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不 等式;④取每个结果的并集,注意在分段时不要遗漏区间的端 点值.(2)用图象法、数形结合可以求解含有绝对值的不等式, 使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好 的方法.

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式二2.绝对值不等式的解法2

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式二2.绝对值不等式的解法2

(3)若不等式的解集为∅,m 只要不小于|x+2|-|x+3|的最 大值即可,即 m≥1,m 的取值范围为[1,+∞).
法二:由|x+2|-|x+3|≤|(x+2)-(x+3)|=1,|x+3|-|x+ 2|≤|(x+3)-(x+2)|=1,
可得-1≤|x+2|-|x+3|≤1. (1)若不等式有解,则 m∈(-∞,1). (2)若不等式解集为 R,则 m∈(-∞,-1). (3)若不等式解集为∅,则 m∈[1,+∞).
法三:原不等式的解集就是 1<(x-2)2≤9 的解集,即
x-22≤9, x-22>1,
解得-x<11≤或xx≤>35,,
∴-1≤x<1 或 3<x≤5.
∴原不等式的解集是[-1,1)∪(3,5].
(2)由不等式|2x+5|>7+x,
可得 2x+5>7+x 或 2x+5<-(7+x),
整理得 x>2 或 x<-4.
∴原不等式的解集是(-∞,-4)∪(2,+∞).
(3)①当 x2-2<0 且 x≠0,即- 2<x< 2,且 x≠0 时,原不 等式显然成立. ②当 x2-2>0 时, 原不等式可化为 x2-2≥|x|,即|x|2-|x|-2≥0, ∴|x|≥2,∴不等式的解为|x|≥2, 即 x≤-2 或 x≥2. ∴原不等式的解集为(-∞,-2]∪(- 2,0)∪(0, 2)∪[2, +∞).
法三:将原不等式转化为|x+7|-|x-2|-3≤0, 构造函数 y=|x+7|-|x-2|-3,
即 y=-2x+12,2,x-<-7≤7,x≤2, 6,x>2.
作出函数的图象,由图可知,当 x≤-1 时,有 y≤0, 即|x+7|-|x-2|-3≤0, ∴原不等式的解集为(-∞,-1].

最新人教版高三数学选修4-5全册课件【完整版】

最新人教版高三数学选修4-5全册课件【完整版】

引言
最新人教版高三ห้องสมุดไป่ตู้学选修4-5全册 课件【完整版】
第一讲 不等式和绝对值不等 式
最新人教版高三数学选修4-5全册 课件【完整版】
一 不等式
最新人教版高三数学选修4-5全册 课件【完整版】
1.不等式的基本性质
最新人教版高三数学选修4-5全 册课件【完整版】目录
0002页 0056页 0116页 0143页 0209页 0248页 0292页 0325页 0337页 0408页 0506页
引言 一 不等式 2.基本不等式 二 绝对值不等式 2.绝对值不等式的解法 一 比较法 三 反证法与放缩法 一 二维形式柯西不等式 三 排序不等式 一 数学归纳法 学习总结报告
最新人教版高三数学选修4-5全册 课件【完整版】
2.基本不等式
最新人教版高三数学选修4-5全册 课件【完整版】
3.三个正数的算术-几何平均不 等式
最新人教版高三数学选修4-5全册 课件【完整版】

人教版高中数学选修4-5课件:专题总结3 (共40张PPT)

人教版高中数学选修4-5课件:专题总结3 (共40张PPT)

∵a2+b2+c2≥ab+bc+ac,
∴(a+b+c)2≥3(ab+bc+ac),∴a+b+c≥ 3.
∴S≥3-(a+9 b+c)≥3-9
3=3(3+2
3) .
2.P 是△ABC 内一点,x,y,z 是 P 到三边 a,b,c 的距离,
R 是△ABC 外接圆半径,证明:
x+
y+
z≤
a2+b2+c2 2R .
1+ a

1+ b
c× 1 )2]2 c
=13(1+9)2=1030.
∴原不等式成立.
1.若 a,b,c∈(0,1)且满足条件 ab+bc+ac=1,则1-1 a+
1-1 b+1-1 c的最小值是(
)
3(3+ 3) A. 2
3(3- 3) B. 2
3( 3-3) C. 2
D.3
答案 A
解析 设 S=1-1 a+1-1 b+1-1 c, 则 S≥1-a+1-32b+1-c=3-(a+9 b+c).
ab+bc+ca≤
a2+b2+c2 .
2R
∴原不等式得证.
3.若 n 是不小于 2 的正整数,试证: 1-12+13-14+…+2n-1 1-21n>47.
证明 1-12+13-14+…+2n-1 1-21n =(1+12+13+…+21n)-2(12+14+…+21n) =n+1 1+n+1 2+…+21n, 所以求证式等价于 n+1 1+n+1 2+…+21n>47.
证明 (a+1a)2+(b+1b)2+(c+1c)2
=13(12+12+12)[(a+1a)2+(b+1b)2+(c+1c)2]
≥13×[1×(a+1a)+1×(b+1b)+1×(c+1c)]2

高中数学 第三讲 3.1二维形式的柯西不等式(一)教案 新人教A版选修4-5

高中数学 第三讲 3.1二维形式的柯西不等式(一)教案 新人教A版选修4-5

2=+=+2c da⋅=<>|||cos,n m n m n22=+-+++,则x a b x ac bd x c d()()2()222+≥c dc d+≥22222d ac+≥,αβ是两个向量,则|β.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

高中数学人教A版选修4-5 4.1 数学归纳法 课件 (共16张PPT)

高中数学人教A版选修4-5 4.1 数学归纳法 课件 (共16张PPT)
1 (1)当n 3时, f (3) 3 (3 3) 0.而三角形没有对角线 , 2 命题成立.
(2)假设当n k时命题成立,即凸k边形的对角线的条数 1 f (k ) k (k 3)(k 3).当n k 1时, k 1边形是在k边形的基础上 2 增加了一边, 增加了一个顶点 Ak 1 , 增加的对角线条数是顶 点Ak 1与 不相邻顶点连线再加上 原k边形的一边A1 Ak , 增加的对角线条数为 (k 2) 1 k 1
P50习题4.1第6题 : 平面上有n条直线, 其中任意两条都相 交, 任意三条不共点 , 这些直线把平面分成多 少个区域? 证明你的结论
n2 n 2 解 : 这样的n条直线把平面分成的区 域数目为f (n) 2 下面用数学归纳法证明
(1)当n 1时, 一条直线将平面分成两 部分, f (1) 2, n 1时命题成立 .
特别提示: 数学归纳法证题的关键是“一凑假设,二凑结论”,在证 题的过程中,归纳推理一定要起到条件的作用,即证明 n=k+1成立时必须用到归纳递推这一条件.
二.用数学归纳法证明几何问题
例2.平面上有n(n N , n 3)个点, 其中任何三点都不在 同一条直线上 , 过这些点中任意两点作 直线, 这样的直线 共有多少条? 证明你的结论 .
用数学归纳法证明时,要分两个步骤,两者缺一不可.
(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能 说明结论的正确性. 在这一步中,只需验证命题结论成立的最小的正整数就可以了, 没有必要验证命题对几个正整数成立. (2)证明了第二步,就获得了推理的依据.仅有第二步而没有第 一步,则失去了递推的基础;而只有第一步而没有第二步,就可 能得出不正确的结论,因为单靠第一步,我们无法递推下去,所 以我们无法判断命题对n0+1,n0+2,…,是否正确. 在第二步中,n=k命题成立,可以作为条件加以运用,而n=k+1 时的情况则有待利用命题的已知条件,公理,定理,定义加以证 明. 完成一,二步后,最后对命题做一个总的结论.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1111 等号成立⇔a1=b1=1c=d1⇔ba=bc=dc=ad⇔a=b=c=d.
bcda
又已知 a,b,c,d 不全相等,则①中等号不成立.
即a12+b12+c12+d12>a1b+b1c+c1d+d1a.
利用排序不等式证明有关的不等式问题
排序不等式具有自己独特的体现:多个变量的排列与其大 小顺序有关,特别是与多变量间的大小顺序有关的不等式问题, 利用排序不等式解决往往很简便.
[例 2] 设 a,b,c 为实数,求证:ab1c2+bc1a2+ca1b2≥a10+b10
+c10.
[证明] 由对称性,不妨设 a≥b≥c,
于是 a12≥b12≥c12,b1c≥c1a≥a1b.
由排序不等式:顺序和≥乱序和,得
ab1c2+bc1a2+ca1b2≥aa1b2+bb1c2+cc1a2=ab11+bc11+ca11.

又因为 a11≥b11≥c11,1a≤1b≤1c,
再次由排序不等式反序和≤乱序和,得
aa11+bb11+cc11≤ab11+bc11+ca11.

由①②得ab1c2+bc1a2+ca1b2≥a10+b10+c10.
利用柯西不等式或排序不等式求最值问题
有关不等式问题往往要涉及对式子或量的围的限定.其中含 有多变量限制条件的最值问题往往难以处理.在这类题目中,利 用柯西不等式或排序不等式处理往往比较容易.
(2)由(1)知1a+21b+31c=1, 又 a,b,c∈R+,由柯西不等式,得 a+2b+3c=(a+2b+3c)1a+21b+31c ≥ a·1a+ 2b·12b+ 3c·13c2=9.
利用柯西不等式证明有关不等
柯 西 不 等 式 的 一 般 形 式 为 (a12 + a 22 + … + a 2n )·(b 21 + b 22 + … + b2n)≥(a1b1+a2b2+…+anbn)2(ai,bi∈R,i=1,2,…,n),形式简 洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为 困难的不等式证明问题迎刃而解.
[例 1] 已知 a,b,c,d 为不全相等的正数,求证:a12+b12
+c12+d12>a1b+b1c+c1d+d1a. [ 证 明 ] 由 柯 西 不 等 式 a12+b12+c12+d12 b12+c12+
d12+a12
≥a1b+b1c+c1d+d1a2,于是a12+b12+c12+d12≥a1b+b1c+c1d+d1a.①
本讲高考热点解读与高频考点例析
考情分析 从近两年高考来看,对本部分内容还未单独考查,可也
不能忽视,利用柯西不等式构造“平方和的积”与“积的和 的平方”,利用排序不等式证明成“对称”形式,或两端是 “齐次式”形式的不等式问题.
真题体验
(福建高考)已知函数 f(x)=m-|x-2|,m∈R,且 f(x+ 2)≥0 的解集为[-1,1]. (1)求 m 的值; (2)若 a,b,c∈R+,且1a+21b+31c=m. 求证:a+2b+3c≥9. 解:(1)因为 f(x+2)=m-|x|, 所以 f(x+2)≥0 等价于|x|≤m. 由|x|≤m 有解,得 m≥0,且其解集为{x|-m≤x≤m}. 又 f(x+2)≥0 的解集为[-1,1],故 m=1.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
相关文档
最新文档