小学奥数时钟问题-主要题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数时钟问题
钟表是我们生活中重要的计时工具.钟面上的分针,时针都在连续不断的按规律转动着.时钟问题是研究钟面上时针和分针关系的问题.是特殊的、在圆周上的行程问题;如求分针与时针重合、成角等有趣的问题.研究此类问题对提高思维能力很有益处。
为解好这类问题应掌握以下基础知识.即常用关系式.
1.钟面的一周分为60格,每格为6°.每个数字间隔为5个格为30°.分针每分钟走一格,为6°.时针每分钟走格.为0.5°.分针速度是时针速度的12倍,时针是分针速度的.
2.时针和分针在重合状态时,分针每再走60÷(1-)=65(分),再与时针重合一次.
3. 若在初始时刻两针相差的格数为a,分针在后,则后者赶上前者的时间
为: a÷(1-)(分)
4. 两针垂直,表示它们所成最小角是90°.
5. 两针在一直线上,它们成的角是180或0
显示标准时间: 就是时针和分针重合,每隔12小时.它的整数倍.
快或慢多少
距一处左右相等
时钟问题的公式解法-角度
怎样计算某一时刻时针与分针所夹角的度数问题呢?下面介绍一个非常简易的公式,供参考。
根据钟表的构造我们知道,一个圆周被分为12个大格,每一个大格代表1小时;同时每一个大格又分为5个小格,即一个圆周被分为60个小格,每一个小格代表1分钟。
这样对应到角度问题上即为一个大格对应360°/ 12=30 °;一个小格对应360°/60=6°。
现在我们把12点方向作为角的始边,把两指针在某一时刻时针所指方向作为角的终边,则m时n分这个时刻时针所成的角为30(m+n/60)度,分针所成的角为6n度,而这两个角度的差即为两指针的夹角。
若用α表示此时两指针夹的度数,则α=30(m+n/60)-6n。
考虑到两针的相对位置有前有后,为保证所求的角恒为正且不失解,我们给出下面的关系式:
α=|30(m+n/60)-6n|=|30m-11n/2|。
这就是计算某一时刻两指针所夹角的公式,例如:求5时40分两指针所夹的角。
把m =5,n =4代入上式,得α=|150-220|=70(度)
利用这个公式还可计算何时两指针重合问题和两指针成任意角问题。
因为两指针重合时,他们所夹的角为0,即公式中的α为0,再把时数代入就可求出n。
例如:求3时多少分两指针重合。
解:把α=0,m=3代入公式得:0=|30*3-11n/2|,解得n=180/11,即3时180/11分两指针重合。
又如:求1点多少分两指针成直角。
解:把α=90°,m=1代入公式得:90=|30*1-11n/2|解得n=240/11。
(另一解为n=600/11)
现举几例阐述解题方法与思路.
例1、现在是4时,什么时候,时针和分针第一次相遇?
解:由20÷(1-)=21(分),在4点21分.
例2、在10时与11时之间,钟面上时针和分针在什么时刻垂直?
解:第一次垂直需走5÷(1-)=5(分),在10点5分.
第二次垂直需走5×7÷(1-)=38(分),在10点38.
例3、在10时和11时之间的什么时刻,分针与时针在一条直线上?
解:若两针反向需走5×4÷(1-)=21(分),在10点21分.
若两针重合时需走5×10÷(1-)=54(分),在10点54.
例4. 在7时到8时之间(包括7时与8时)的什么时刻分针与时针之间的夹角为120度?
解:按顺时针方向,时针在前,分针在后成120度,此时分针要多走15小格,所以要走15÷(1-)=16分。
此时是7时16分
若按顺时针方向,分针在前,时针在后成120度,此时分针要多走55小格,
所以要走55÷(1-)=60(分)此时是8时。
例5. 一只钟的时针与分针均指在2与4之间,且距钟面上数字3的距离相等.这时是什么时刻?
解:第一种情况时针在3上面。
设时针在3上面与3距离为x,分针在3下面与3距离为x。
列方程5×3+x=12×(5-x)
解得x=3。
所以此时是2点18分
第二种情况时针在3下面,与3距离为x;分针在3上面与3距离为x。
因为从3点到此时,时针走了x,分针走了15-x。
列方程得
12x=15-x解出 x=1,15-x=13。
所以此时是3点13分
例6. 有一个闹钟每天快1.5分种,现在将它的时间对准,这个钟下次显示准确的时间需要多少天?
解:此钟下次显示准确的时间,是在快了12小时的时候。
所以需要经过的天数60×12÷1.5=480(天)
例7. 有一台老钟,比走时准确的钟每小时快12分钟.如果这台老钟走过2小时,那么准确的钟走了多少小时?
解:由(60+12):60=6:5
则准确的钟走了2×=1小时
例8. 小丽家的钟比标准时间每小时慢2分钟.小丽早上7点上学把钟对准,中午回家时钟正好指着12点.此时的标准时间是多少?
解:7点到12点,小丽家的钟走了 12-7=5小时
小丽家的钟走的时间:标准钟走的时间=58:60。
所以标准钟走的时间为5×=5=5小时10分
则此时标准时间是12时10分
例9. 小张的手表是走时准确的,小李的表比小张的表每小时慢2分钟;小赵的表比小张的表每小时快2分钟.8点时三只表对准,那么当小李的表12点时,小赵的表指示几点几分?
解:因为,小张的手表走时:小李的表走时:小赵的表走时=60:58:62。
当小李的表指示12点时,小李的表走了4小时,
小赵的表走了4×=4小时。
由小时=16(分) 小赵的表指示的是12点16(分)
例10. 小明家有一个老时钟,它的时针与分针每隔66分钟重合一次.如果早晨8点将钟对准,到第二天早晨时钟再次指示8点时,实际时间是几点几分?
解:标准钟的时针与分针重合一次需60÷(1-)=65(分)。
设此老时钟实际走了x小时,则
65:66=24:x
解出x=24(时)=24时12分。
实际时间是8点12分。