1-1_约束和广义坐标解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v F主动力
v R约束力
其显式的得到一般很困难! 用约束方程表示约束情况!
约束方程
约束越多,列出的方程越多!方程越不好解!
牛顿力学 局限二: 力学现象 内在联系 非力学现象(如电磁学等)
牛顿方程 表述方法不同 麦克斯韦方程组
不易找到内在联系
综上,很自然地促使人们探究力学的其他表述形式 —— 分析力学
x2 y2 l2 0 z 0
今后仅讨论完整、不可解约束力学体系的运动问题.
三、广义坐标
体系 受到(完整)约束数目
一个自由质点
0
n个自由质点
0
n个非自由质点
k
自由度 3 3n 3n-k
独立坐标数目
3
3n 3n-k
=swenku.baidu.com
因此,我们完全可以用s个独立坐标确切的描述力学体系的位 置,这些独立量不一定是质点的笛卡儿坐标,有时选择某一种 其他坐标会更加方便,于是,人们提出了广义坐标的概念.
二、约束及分类
对于质点组,或称为力学体系:
n个自由质点
独立坐标数目=3n
若受到约束
独立坐标数目<3n
约束:对力学体系中质点的位置和速度所施加的限制条件 约束方程:对限制条件的数学表达式
根据限制条件的性质将约束进行分类:
1、完整约束和非完整约束
与速度无关
(1)完整(几何)约束-仅限制体系在空间的几何位置的约束
2、给出在均匀重力场中平面双摆的广义坐标。两个绳长不变。
解:两个质点m1,m2只分别需要1个独立 坐标即可确定其位置,即整个体系只需 2个广义坐标。
对于一个给定的系统, 广义坐标的数目 是一定的, 而广义坐标的选择不是唯一的.
1,2
x1,2
1, x2
x1, x2
v
v
F主动力 R约束力
难点约束力不能事先就给出确切的表达式,而是取决于约束
本身的性质、主动力和物体的运动状态。
牛顿力学 局限一:
m
d 2rv dt 2
v F合力
实际工程技术中迫 切需要解决的问题
必须知道作用在物体上的所有的力——合力
联立 求解
对于非自由质点,即约束运动,运动方程为:
m
d 2rv dt 2
(1)定常(稳定)约束:约束方程中不显含时间
f x, y, z 0 f x, y, z; x&, y&, z& 0
(2)不定常(不稳定)约束:约束方程中显含时间
f x, y, z,t 0 f x, y, z; x&, y&, z&;t 0
Example:单摆
x2
y2
为l 2定常0 约束
v 特点:注重力 和F 加速度
av运动微分方程
求解质点(质点组)的运动
规律
优点:直观性强。缺点:处理质点组问题,特别是受约束问题特别复杂
分析力学用严格的数学分析方法研究力学问题
特点:注重具有广泛意义的“能量”,扩大坐标概念,引入“广义坐标” 便于研究受约束质点组的力学问题
优点::(1)巧妙的消去“理想约束”,减少了方程组中未知量的个数; (2)观点高,理论完整,涉及范围广,内容丰富 形成许多专门分支 (3)“能量”,“广义坐标” 用于场的研究 量子力学,相对论,统 计物理
广义坐标:足以描述(具有s个自由度的)系统位置的任意量
q1, q2,L称, q为s 该体系的广义坐标.常记作
qi i.1, 2,L , s
广义速度 q,i 广义加速度 .qi
说明
1. 广义坐标中的”坐标”的含义已超出几何学的范畴,它的真正含义 就是”独立参量”;
2. 广义坐标可以是线坐标,也可以是角坐标或其他物理量,如面积、 体积、电极化强度、磁化强度等;
分析力学 优势一:
约束越多
自由度越少
独立坐标越少 (引入广义坐标) 广义坐标越少
满足的动力学方程越少
方程越好解
拉格朗日方程
问题越好解决
分析力学 优势二: 加速度、力等矢量 力学特色 牛顿主义 动能、势能等能量 分析力学
电动力学 量子力学 统计物理 相对论
牛顿力学以牛顿定律为基础,借助矢量和几何图形研究力学问题
约束方程: f x, y, z 0或f x, y, z,t 0
常见的完整约束:质点被约束在某一曲线或曲面上运动,则约束方程就是 该曲线或曲面的方程。
x
Example:单摆
x2 y2 l2 0
z 0
l
y
几何约束 位置约束
完整约束 完整系
(2)非完整(运动)约束-对体系的位置和速度都进行限制的约束
z 0
x vt 2 y2 l2 0
若悬点以匀速v沿x轴运动
为不定常约束
z 0
3、双侧约束和单侧约束
(1)双侧(不可解)约束:体系始终不可脱离的约束(等式)
Example:单摆
x2 y2 l2 0
z 0
(2)单侧(可解)约束:体系可在某个方向脱离的约束(不等式)
Example:单摆中用柔绳代替刚性杆:
约束方程: f x, y, z; x&, y&, z& 0或f x, y, z; x&, y&, z&,t 0
Example:圆盘在竖直平面内沿水平直线的纯滚动
x&c R&
运动约束 速度约束
微分约束
运动约束
经积分可以消去坐标导数 几何约束(完整约束) 不能经积分消去坐标导数 非完整约束
2、定常约束和不定常约束
3. 相应的,广义速度 q既i 可以是线速度,也可以是角速度,或者其
他物理量对时间的变化;
4. 为描述同一系统,广义坐标的选择并不是唯一的,一般地,有许 多组广义坐标都可以完全确定一个给定系统的状态.如何选择最合适 的一组广义坐标——多做练习积累经验。
5. n个质点形成的力学体系的3n个非独立坐标(一般是笛卡儿坐标) 可以用s个独立的广义坐标表示出来:
牛顿力学
分析力学
代表人物 运动方程
计算方法 描述系统运动状
态的量 研究约束运动时
牛顿 牛顿方程
矢量计算 坐标、动量
给出约束力及约束方程
拉格朗日、哈密顿 拉格朗日方程 哈密顿方程 数学分析
广义坐标、广义动量
无需给出约束力及约束 方程
基本物理量
加速度、力
能量或功
与非力学系统的 联系
不易看出
易于推广
那么, 分析力学到底是什么样子地? 从一个个新的概念入手,慢慢接近了解它!
xi xi q1, q2,L , qs ,t , yi yi q1, q2,L , qs ,t , i 1, 2L , n s 3n zi zi q1, q2,L , qs ,t ,
或:
rvi rvi q1, q2,L , qs ,t
例题 1、给出单摆的广义坐标。 l
解:广义坐标个数为: s 3n k
这里: n 质 1点个数
另外有约束方程:
x2 y2 l2 0 z 0
故有: k 约2束个数
故广义坐标个数为: s 3n k 3 2 1
广义坐标可取为: 或 x 或 y 等
注意:在确定广义坐标时,首先要确定广义坐标的个数s,s的确定 不一定非得使用:
s 3n k
还可以判断该质点需要几个独立坐标即可确定其位置,则广义坐标 的个数s即等于几。如下一例题。
第一章 拉格朗日(Lagrange)方程
§1-1 约束和广义坐标
一、牛顿力学的局限性和分析力学的建立:回顾几个概念
主动力: 促使物体运动或有运动趋势的力,如:
(1)物体受力
重力、风力等
约束力: 限制物体运动或有运动趋势的力,如:
示 例 (1)
W
FRA
FRB
示 例 (2)
(2)牛顿运动方程
d 2rv v m dt 2 F合力
相关文档
最新文档