14 稳恒电流的磁场习题详解

合集下载

高考物理电磁学知识点之稳恒电流解析含答案

高考物理电磁学知识点之稳恒电流解析含答案

高考物理电磁学知识点之稳恒电流解析含答案一、选择题1.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。

半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。

若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =2.某些肿瘤可以用“质子疗法”进行治疗。

在这种疗法中,为了能让质子进入癌细胞,首先要实现质子的高速运动,该过程需要一种被称作“粒子加速器”的装置来实现。

质子先被加速到较高的速度,然后轰击肿瘤并杀死癌细胞。

如图所示,来自质子源的质子(初速度为零),经加速电压为U 的加速器加速后,形成细柱形的质子流。

已知细柱形的质子流横截面积为S ,其等效电流为I ;质子的质量为m ,其电量为e .那么这束质子流内单位体积的质子数n 是A 2I U eS mB I m eS eUC 2I eU eS mD 2Im eS eU3.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S 与1 端相连,电源向电容器充电,待电路稳定后把开关S 掷向2 端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i ﹣t 曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流。

仅由这个i﹣t曲线所提供的信息可以估算出A.电容器的电容B.一段时间内电容器放电的电荷量C.某时刻电容器两极板间的电压D.一段时间内电阻产生的热量4.在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理量的控制.如图所示,R1为电阻箱,R2为半导体热敏电阻,C为电容器.已知热敏电阻的阻值随温度的升高而减小,则有()A.若R1固定,当环境温度降低时电压表的示数减小B.若R1固定,当环境温度降低时R1消耗的功率增大C.若R1固定,当环境温度降低时,电容器C的电荷量减少D.若R1固定,环境温度不变,当电容器C两极板间的距离增大时极板之间的电场强度减小5.物理学中常用两个物理量的比值定义一个新的物理量,如速度是用位移与时间的比值来定义的,即xvt=.下面四个物理量的表达式不属于...比值定义的是A.电流qIt=B.电势PEqϕ=C.电容QCU=D.电阻lRSρ=6.如图所示,电路中A灯与B灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P向上滑动时,两灯亮度的变化情况是()A.A灯变亮,B灯变亮B.A灯变暗,B灯变亮C.A灯变暗,B灯变暗D.A灯变亮,B灯变暗7.如图是某款能一件自动上水的全自动智能电热壶,当壶内水位过低时能自动加满水,加热之后的水,时间长了冷却,机器又可以自动加热到设定温度。

14章磁场例题习题

14章磁场例题习题

第十四章 稳恒磁场例题例14-1 在真空中,电流由长直导线1沿垂直于底边bc 方向经a 点流入一由电阻均匀的导线构成的正三角形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁感强度B.解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O点产生的磁感强度.则 ab acb B B B B B21 1B :由于O 点在导线1的延长线上,所以1B= 0.2B :由毕-萨定律)60sin 90(sin 402 d I B 式中 6/330tan 21l l Oe d)231(34602 lI B )332(40 l I 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 acb acb ab ab R I R I又由于电阻在三角框上均匀分布,有21cb ac ab R R acb ab ∴ acb ab I I 2 由毕奥-萨伐尔定律,有ab acb B B 且方向相反. ∴ )332(402lIB B ,B的方向垂直纸面向里.例14-2 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为 ,求与平板共面并且距离平板一边为b 的任意点 P 的磁感强度. 解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d(2) 这载流长条在P 点产生的磁感应强度 xiB2d d 0 xx2d 0方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.abIIO1 2 e例14-1图ObxaP例14-2图例14-3 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度 转动,求轴线上任一点的B的大小及其方向.解: R I 2/32230)(2y R R B B yB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R IB同理, 2024R IB∵ 21R R ∴ 21B B 故磁感强度 12B B B 204R I104R I206R I∴ 213R R例14-5 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:[ ] (A)1d L l B2d L l B,21P P B B(B)1d L l B 2d L l B ,21P P B B .(C)1d L l B2d L l B,21P P B B .(D)1d L l B 2d L l B,21P P B B .例14-6 在安培环路定理 i LI l B 0d 中, i I 是指 ;B是指 .例14-3图例14-4图1 2I 3(a) (b)⊙例14-5图例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.证明:由安培定律 B l I f d d ,ab 整曲线所受安培力为 b aB l I f fd d因整条导线中I 是一定的量,磁场又是均匀的,可以把I 和B提到积分号之外,即 b aB l I f d B l I ba)d (B ab I载流相同、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-8 判断下列说法是否正确,并说明理由:(1) 若所取围绕长直载流导线的积分路径是闭合的,但不是圆,安培环路定理也成立.(2) 若围绕长直载流导线的积分路径是闭合的,但不在一个平面内,则安培环路定理不成立.例14-9 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为 .该筒以角速度 绕其轴线匀速旋转.试求圆筒内部的磁感强度.解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , R R i )2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B 的大小和方向均相同,而且B的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直,在de , cd fe ,上各点0 B.应用安培环路定理 I l B 0d可得 ab i ab B 0 R i B 00 圆筒内部为均匀磁场,磁感强度的大小为 R B 0 ,方向平行于轴线朝右. 例14-10 如右图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是 [ ](A) ab 边转入纸内,cd 边转出纸外.(B) ab 边转出纸外,cd 边转入纸内.(C) ad 边转入纸内,bc 边转出纸外.(D) ad 边转出纸外,bc 边转入纸内.例14-11 如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将[ ] (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .例14-7图例14-9图例14-10图例14-11图(C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab .例14-12 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为[ ](A)R r I I 22210 . (B)Rr I I 22210 .(C) rR I I 22210 . (D) 0.例14-13 载流平面线圈在均匀磁场中所受的力矩大小与线圈所围面积 ;在面积一定时,与线圈的形状 .(填: 有关、无关)习题14-1 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为[ ](A) 01 B ,02 B .(B) 01 B ,lIB 0222.(C) l I B0122 ,02 B . (D) l I B 0122 ,lIB 0222 . 14-2 在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小为 ;磁感强度的方向为 。

稳恒电流的磁场习题解答

稳恒电流的磁场习题解答

第十四章 稳恒电流的磁场习题解答(仅作参考)14.1 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B 。

[解答] 电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律: 002d d 4I r μπ⨯=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I lB aμπ=, 由于 d l = a d φ, 积分得11d L B B =⎰3/200d 4I aπμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于 l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ,可得 02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B bππμθθπ==⎰⎰3/400/2(cos )48IIbbππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为00123384I IB B B B a bμπ=++=+. 14.6 在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?[解答] 取导体面的横截面,电流方向垂直纸面向外. 半圆的周长为 C = πR , 电流线密度为 i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为图14.1d I = i d l = I d φ/π,在轴线上产生的磁感应强度为002d d d 22I I B R Rμμϕππ==,方向与径向垂直.d B 的两个分量为 d B x = d B cos φ,d B y = d B sin φ. 积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,02sin d 2y IB R πμϕϕπ=⎰00220(cos )2II RRπμμϕππ=-=. 由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.8 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝数为N ,求球心O 处的磁感应强度B = ?[解答]四分之一圆的弧长为 C = πR /2, 单位弧长上线圈匝数为 n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ,线圈匝数为 d N = n d l = nR d θ,环电流大小为 d I = I d N = nIR d θ.环电流的半径为 y = R sin θ,离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为 22003d d sin d 22y I nI B R μμθθ== 20sin d NI Rμθθπ=, 方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NIR Rπμμθθπ=-=⎰.图14.814.11 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B 。

高考物理稳恒电流技巧(很有用)及练习题含解析

高考物理稳恒电流技巧(很有用)及练习题含解析

高考物理稳恒电流技巧(很有用)及练习题含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.3.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。

《稳恒电流的磁场》选择题解答与分析

《稳恒电流的磁场》选择题解答与分析
答案:(B) 参考解答:
由毕奥-萨伐尔定律 d B 0 I d l r /(4r 3 ) ,知答案(B)正确。
a d
b I dl
c
选择(A)给出下面的分析:
dq ˆ r 4 0 r 2 0 I d l r 电流元磁场公式: d B 4r 3
点电荷电场公式: d E
比较 d B d B x iˆ d B y ˆ j, d B x

0 I d ly 4r 3
0 I d l
4 ( x y
2 2 3 z2 ) 2
y.
对于所有错误选择,给出下面的资料:
0 I d l r 毕奥-萨伐尔定律: d B ,涉及矢量的叉乘,其基本运算公式: 4r 3 ˆ ˆ ˆa ˆ ˆ ˆ 设: a a1i 2 j a 3 k , b b1i b2 j b3k
对所有错误的选择,进入下一题: 1.1 在阴极射线管的上方放置一根载流直导线,导线平行于射 线管轴线,电流方向如图所示,阴极射线向什么方向偏转?当 电流 I 反向后,结果又将如何?
I
参考解答: 电流产生的磁场在射线管内是指向纸面内的,由 F ev B 知,阴极射线(即电 子束)将向下偏转.当电流反方向时,阴极射线将向上偏转. 进入下一题:
3. 关于磁感应强度方向的定义,以下说法,正确的是 (A) 能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. (B) 不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. 答案:(B) 参考解答: 因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受 力的方向是不确定的.
6
B
3. 如图,一条任意形状的载流导线位于均匀磁场中,试证明 导线 a 到 b 之间的一段上所受的安培力等于载同一电流的直 导线 ab 所受的安培力. 参考解答: 证:由安培定律

高考物理稳恒电流解题技巧及练习题及解析

高考物理稳恒电流解题技巧及练习题及解析

高考物理稳恒电流解题技巧及练习题及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.3.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.4.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻0R 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表μA (量程200μA ,内阻约200Ω); 电压表V (量程3V ,内阻约10Ω); 电阻0R (阻值约20 kΩ);滑动变阻器R (最大阻值50Ω,额定电流1 A ); 电池组E (电动势3V ,内阻不计);开关S 及导线若干.【答案】(1)1.880(1.878~1.882均正确) (2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0VA 0100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.5.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

14稳恒磁场习题思考题

14稳恒磁场习题思考题

习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。

解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:垂直纸面向外; 直导线在O点的磁感应强度:000020[cos30cos(150)]4cos602II B R Rμππ=-=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。

14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。

(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。

解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。

(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B a R x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向左,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。

对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。

对B 求二阶导数:22()d d B d B d x d x d x==222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d B d x==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。

高中物理稳恒电流技巧(很有用)及练习题及解析

高中物理稳恒电流技巧(很有用)及练习题及解析

高中物理稳恒电流技巧(很有用)及练习题及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。

14章磁场例题习题

14章磁场例题习题

第十四章 稳恒磁场例题例14-1 在真空中,电流由长直导线1沿垂直于底边bc 方向经a 点流入一由电阻均匀的导线构成的正三角形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁感强度B.解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O点产生的磁感强度.则 ab acb B B B B B21 1B :由于O 点在导线1的延长线上,所以1B= 0.2B :由毕-萨定律)60sin 90(sin 402 d I B 式中 6/330tan 21l l Oe d)231(34602 lI B )332(40 l I 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 acb acb ab ab R I R I又由于电阻在三角框上均匀分布,有21cb ac ab R R acb ab ∴ acb ab I I 2 由毕奥-萨伐尔定律,有ab acb B B 且方向相反. ∴ )332(402lIB B ,B的方向垂直纸面向里.例14-2 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为 ,求与平板共面并且距离平板一边为b 的任意点 P 的磁感强度. 解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d(2) 这载流长条在P 点产生的磁感应强度 xiB2d d 0 xx2d 0方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.abIIO1 2 e例14-1图ObxaP例14-2图例14-3 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度 转动,求轴线上任一点的B的大小及其方向.解: R I 2/32230)(2y R R B B yB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R IB同理, 2024R IB∵ 21R R ∴ 21B B 故磁感强度 12B B B 204R I104R I206R I∴ 213R R例14-5 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:[ ] (A)1d L l B2d L l B,21P P B B(B)1d L l B 2d L l B ,21P P B B .(C)1d L l B2d L l B,21P P B B .(D)1d L l B 2d L l B,21P P B B .例14-6 在安培环路定理 i LI l B 0d 中, i I 是指 ;B是指 .例14-3图例14-4图1 2I 3(a) (b)⊙例14-5图例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.证明:由安培定律 B l I f d d ,ab 整曲线所受安培力为 b aB l I f fd d因整条导线中I 是一定的量,磁场又是均匀的,可以把I 和B提到积分号之外,即 b aB l I f d B l I ba)d (B ab I载流相同、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-8 判断下列说法是否正确,并说明理由:(1) 若所取围绕长直载流导线的积分路径是闭合的,但不是圆,安培环路定理也成立.(2) 若围绕长直载流导线的积分路径是闭合的,但不在一个平面内,则安培环路定理不成立.例14-9 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为 .该筒以角速度 绕其轴线匀速旋转.试求圆筒内部的磁感强度.解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , R R i )2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B 的大小和方向均相同,而且B的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直,在de , cd fe ,上各点0 B.应用安培环路定理 I l B 0d可得 ab i ab B 0 R i B 00 圆筒内部为均匀磁场,磁感强度的大小为 R B 0 ,方向平行于轴线朝右. 例14-10 如右图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是 [ ](A) ab 边转入纸内,cd 边转出纸外.(B) ab 边转出纸外,cd 边转入纸内.(C) ad 边转入纸内,bc 边转出纸外.(D) ad 边转出纸外,bc 边转入纸内.例14-11 如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将[ ] (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .例14-7图例14-9图例14-10图例14-11图(C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab .例14-12 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为[ ](A)R r I I 22210 . (B)Rr I I 22210 .(C) rR I I 22210 . (D) 0.例14-13 载流平面线圈在均匀磁场中所受的力矩大小与线圈所围面积 ;在面积一定时,与线圈的形状 .(填: 有关、无关)习题14-1 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为[ ](A) 01 B ,02 B .(B) 01 B ,lIB 0222.(C) l I B0122 ,02 B . (D) l I B 0122 ,lIB 0222 . 14-2 在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小为 ;磁感强度的方向为 。

最新高考物理稳恒电流解题技巧分析及练习题

最新高考物理稳恒电流解题技巧分析及练习题

最新高考物理稳恒电流解题技巧分析及练习题一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R 1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放5.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l )超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化.实际上仪器只能检测出大于△I的电流变化,其中△I<<I,当电流的变化小于△I时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e.试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t.为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法.【答案】(1)见解析(2)(3)见解析【解析】(1)逆时针方向。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

大学物理《稳恒电流的磁场》习题答案

大学物理《稳恒电流的磁场》习题答案

第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

稳恒电流和稳恒磁场习题解答

稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. lI μπ420 B.lIμπ20 C .lI μπ20 D. 0解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lI lIB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里 lI lIB CD π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+= 所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )选择题2选择题1A.x=2的直线上B.在x>2的区域C.在x<1的区域D.不在x、y平面上解:本题选(A)3. 图中,六根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大( )A. Ⅰ区域B. Ⅱ区域 C.Ⅲ区域D.Ⅳ区域 E.最大不止一个解:本题选(B)4. 如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知:()A.∮L B·d l=0,且环路上任意一点B=0B.∮L B·d l=0,且环路上任意一点B≠0ⅠⅡ选择题3选择题4C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D.∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A.B t 、B e 均与r 成正比 B. B i 、B e 均与r成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πRI J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2RIrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下× × × ×abc落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A.E a <E b =E c B. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A.Oa B. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负电粒子要向下偏选择题7cdbaBO转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v =,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A 两侧的电势差V A V A >0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )选择题8图XA. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

14 稳恒电流的磁场习题详解

14 稳恒电流的磁场习题详解

习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r的方向与x 轴的夹角为[] (A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。

(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。

图3-12I 1I(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。

答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ](A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

大学物理习题答案稳恒电流的磁场

大学物理习题答案稳恒电流的磁场

第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。

解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。

解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。

)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。

R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。

已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。

解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。

稳恒电流的磁场习题详解

稳恒电流的磁场习题详解

r习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B 的方向与x 轴的夹角为[ ](A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H ,下列几种说法中正确的是 [ ] (A )H 仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。

(C )若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L为边缘的任意曲面的H 通量均相等。

答案:C解:若闭合曲线上各点H 均为零,则沿着闭合曲线H环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B 的大小为 []图2I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

稳恒电流的磁场习题与解答

稳恒电流的磁场习题与解答

稳恒电流的磁场1、边长为 a 的正方形线圈载有电流 I ,试求在正方形中心点的磁感应强度B分析:正方形四边产生的磁感应强度大小相等,方向相同,与电流方向符合右手螺旋定则。

每一边产生的磁感应强度为)cos (cos 24210θθπμ-a I其中41πθ=,πθ432=。

解:由分析得a I a IB πμπππμ428)43cos 4(cos 24400=-=2、如图所示的无限长载流导线,通以电流 I ,求图中圆心O 分析:根据磁感应强度的叠加原理,本题可以看作无限长直导线在O 点的磁感应强度B 1减去弦直导线在O 点的磁感应强度B 2再加上弧形导线在O 点的磁感应强度B 3。

解:由分析得 B = B 1 - B 2 + B 3=r I r Ir I231)65cos 6(cos 2422000μπππμπμ+--rI021.0μ=3、如图所示,两条无限长载流直导线垂直而不相交,其间最近距离为d=,电流分别为I 1=,I 2 = ,一点P 到两导线距离都是 d ,求点P 的磁感应强度的大小分析:电流I 1在P 点产生的磁感应强度B 1大小为dI πμ210,方向垂直纸面向里,电流I 2在P 点产生的磁感应强度B 2大小为dI πμ220,方向向右。

两矢量求和即可。

解:T d I B 57101100.402.020.41042--⨯=⨯⨯⨯==πππμ T d I B 57202100.602.020.61042--⨯=⨯⨯⨯==πππμ T B B B 522211021.7-⨯=+=4、一边长为 b=的立方体如图放置,有一均匀磁场 B =(6i +3j +T 通过立方体所在区域,试计算:(1)通过立方体上阴影面积的磁通量(2)通过立方体六面的总磁通量分析:磁感应线是闭合曲线,故通过任一闭合曲面的磁通量为零。

对于闭合曲面,通常规定外表面的法线方向为正,所以阴影面的正法线方向沿x 轴正向。

解:(1)Wb i k j iS B 135.0ˆ)15.0()ˆ5.1ˆ3ˆ6(2=⋅++=⋅=ϖϖφ (2)0=⋅=⎰⎰S B sϖϖφ5、一密绕的圆形线圈,直径为,线圈中通有电流时,在线圈中心处的B=×10 -4T ,问线圈有多少匝o rI题2图..ddP题3图I题1图分析:N 匝密绕圆形线圈在圆心处的磁感应强度为单匝密绕圆形线圈在圆心处的磁感应强度的N 倍。

高考物理电磁学知识点之稳恒电流技巧及练习题附答案解析

高考物理电磁学知识点之稳恒电流技巧及练习题附答案解析

高考物理电磁学知识点之稳恒电流技巧及练习题附答案解析一、选择题1.如图所示,平行金属板中带电质点P原处于静止状态,电流表和电压表为理想电表,当滑动变阻器4R的滑片向b端移动时,则()A.电压表读数增大B.电流表读数增大C.质点P将向上运动D.3R上消耗的功率逐渐增大2.如图所示的电路中,E为电源,其内阻为r,L为小灯泡(其灯丝电阻可视为不变),R1、R2为定值电阻,R3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V为理想电压表.若将照射R3的光的强度减弱,则()A.电压表的示数变大B.小灯泡消耗的功率变小C.通过R2的电流变小D.电源内阻消耗的电压变大3.图中小灯泡的规格都相同,两个电路中的电池也相同。

实验发现多个并联的小灯泡的亮度明显比单独一个小灯泡暗。

对这一现象的分析正确的是()A.灯泡两端电压不变,由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗B.电源电动势不变,外电路电压变大,但由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗C.电源电动势不变,外电路电压变小,因此灯泡亮度变暗D.并联导致电源电动势变小,因此灯泡亮度变暗4.如图电路中,电源电动势为E、内阻为r,R0为定值电阻,电容器的电容为C.闭合开关S,增大可变电阻R的阻值,电压表示数的变化量为ΔU,电流表示数的变化量为ΔI,则下列说法错误的是A.变化过程中ΔU和ΔI的比值保持不变B.电压表示数变大,电流表示数变小C.电阻R0两端电压减小,减小量为ΔUD.电容器的带电量增大,增加量为CΔU5.如图所示,电路中A灯与B灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P向上滑动时,两灯亮度的变化情况是()A.A灯变亮,B灯变亮B.A灯变暗,B灯变亮C.A灯变暗,B灯变暗D.A灯变亮,B灯变暗6.某同学将一直流电源的总功率P E、输出功率P和电源内部的发热功率P r随路端电压U 变化的图线画在了同一坐标上,如图中的a、b、c所示,下面说法不正确的是()A.反映P r变化的图线是bB.电源电动势为8VC.电源内阻为2ΩD.当电压为2V时,外电路的电阻为2Ω7.如图所示,电源电动势为E,内阻为r.电路中的2R、3R分别为总阻值一定的滑动变阻器,0R为定值电阻,1R为光敏电阻(其电阻随光照强度增大而减小).当开关S闭合时,电容器中一带电微粒恰好处于静止状态.下列说法中正确的是()A .只逐渐增大1R 的光照强度,电阻0R 消耗的电功率变大,电阻3R 中有向上的电流B .只调节电阻3R 的滑动端2P 向上端移动时,电源消耗的功率变大,电阻3R 中有向上的电流C .只调节电阻2R 的滑动端1P 向下端移动时,电压表示数变大,带电微粒向下运动D .若断开开关S ,电容器所带电荷量变大,带电微粒向上运动8.如图所示,R 4是半导体材料制成的热敏电阻,电阻率随温度的升高而减小,这就是一个火警报警器的电路,电流表是安放在值班室的显示器,电源两极之间接一个报警器,当R 4所在处出现火情时,显示器的电流I 和报警器两端的电压U 的变化情况是( )A .I 变大,U 变小B .I 变大,U 变大C .I 变小,U 变大D .I 变小,U 变小9.图甲为某电源的U I -图线,图乙为某小灯泡的U I -图线,则下列说法中正确的是( )A .电源的内阻为5ΩB .小灯泡的电阻随着功率的增大而减小C .把电源和小灯泡组成闭合回路,小灯泡的功率约为0.3WD .把电源和小灯泡组成闭合回路,电路的总功率约为0.4W10.竖直放置的一对平行金属板的左极板上用绝缘线悬挂了一个带正电的小球,将平行金属板按图所示的电路图连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r 的方向与x 轴的夹角为[ ] (A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。

(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。

答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ]图3-12I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

答案:B解:圆筒转动时形成电流,单位长度圆筒的电流强度为 ωσπωπσR R I =⋅⋅=22 在t 时刻圆筒转动的角速度为 t ωα=所以,t 时刻单位长度圆筒的电流强度为 I R t σα=则,圆筒转动形成圆电流在内部的磁感应强度为 0B R t μσα=5.能否用安培环路定律,直接求出下列各种截面的长直载流导线各自所产生的磁感应强度B r 。

(1)圆形截面;(2)半圆形截面;(3)正方形截面 [ ] (A )第(1)种可以,第(2)(3)种不行; (B )第(1)(2)种可以,第(3)种不行; (C )第(1)(3)种可以,第(2)种不行; (D )第(1)(2)(3)种都可以。

答案:A解:利用安培环路定理时,必须要求所选环路上磁感应强度具有对称性,B 可作为常数提出积分号外,否则就无法利用该定律来计算B 。

二、填空题1.如图3-3所示,一无限长扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布。

求铜片外与铜片共面、离铜片右边缘为b 处的P 点的磁感应强度B r的大小 。

答案:0ln2I a bb aμπ+。

解:如图所示,建立水平的坐标x 轴,平片电流分割成无限个宽度为dx ,电流强度为Idx a的无限长直线电流,在P 点处的磁感应强度为 ()0 2IdB dx a a b x μπ=+- 所以,平片电流在P 点的磁感应强度为()000ln 22aII a bB dx a a b x a bμμππ+==+-⎰2.在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源,如图3-4所示。

三角图3-3P图3-3形框每边长为l ,则在该正三角框中心O 点处磁感应强度的大小B =______________。

答案:πμ43 0IB =。

解:长直线电流1a 在O 点的磁感应强度为0; 长直线电流b 2在O 点的磁感应强度为014I B Obμπ==方向垂直平面向里; 电流ab 边和acb 边的电流强度分别为23I 和13I ;电流ab 边在O 点的磁感应强度为()()002sin 60sin 6046ab I IB d dμππ=︒--︒= 方向垂直平面向里; 电流acb 边在O 点的磁感应强度为()()0c 032sin 60sin 6046a I IB d dμππ=⋅︒--︒= 方向垂直平面向外。

所以,三角形线框在中心O 点的合磁感应强度为0。

则,总电流在O 点的磁感应强度为0 4IB π=,方向垂直平面向里。

3.在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图3-5所示。

在此情形中,线框内的磁通量Φ=______________。

答案:2ln 20πIaμ。

解:如图所示,建立竖直向下的坐标轴OX ,在矩形线框内取平行于长直导线的微元面积dS ,磁通量为d Φ,则00 22I Id B dS dS adx x xμμππΦ=⋅=⋅=⋅r r所以,线框内总的磁通量为200 ln 222b bI Iad adx x μμππΦ=Φ=⋅=⎰⎰4.电子在磁感应强度为 B ϖ的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流I =______________;等效圆电流的磁矩m P =______________。

(已知电子电量的大小为e ,电子的质量为m )。

2图3-4答案:meBqI π2 ;m eBqR P m 2 2=。

解:电子在磁感应强度为 B v的均匀磁场中沿半径为R 的圆周运动,电子所受的磁场力为电子做圆周运动的向心力,即Bqv Rmv =2,所以 BqRv m =电子运动所形成的等效圆电流为 22v eBqI e f e Rmππ=⋅=⋅=等效圆电流的磁矩为 2222m eBq eBqR P IS R m mππ==⋅=5.如图3-6所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 ;方向 。

答案:01(1)2IR μ-π;方向垂直纸面向内。

解:圆心O 处的磁场是圆电流在圆心处产生的磁场1B v 与场无限长直线电流的磁场2B v的矢量和。

由图中电流方向可知,圆电流的磁场向内,而直线电流的磁场向外,所以,O 点的总磁感应强度大小为000121(1)222IIIB B B RRR μμμ=-=-=-ππ,方向垂直纸面向内。

三、计算题1.如图3-7所示,载流圆线圈通有电流为I ,求载流圆线圈轴线上某点P 的磁感应强度。

答案: ()232222R IB R x μ=+,方向沿轴线。

解:电流元Idl r 与对应处r v的夹角均为2π,sin 12π=,则24IdldB r μπ=由对称性分析,各dB v的垂直轴线的分量全部抵消,只剩下平行于轴线的分量://sin R dB dB dBrθ== x图3-6所以22//3223/242()RIdlR R IB dB r R x πμμπ===+⎰⎰,方向沿轴线。

2.一个塑料圆盘,半径为R ,电荷q 均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω。

求圆盘中心处的磁感应强度。

答案:02qB Rμωπ=,方向沿轴线与电流成右手螺旋关系。

解:如图所示,在圆盘上取半径为r 、宽为dr 的细圆环,环上所带电荷量为2dq rdr σπ= (其中 2qR σπ=) 电流为 2dI fdq f rdr σπ== (其中 2f ωπ=) 在盘心所产生的磁感应强度的大小为dr n rdIdB πσμμ002==每一载流圆环在盘心处的dB 方向相同,故盘心处的合磁感应强度的大小为00002RqB dB f dr f R Rμωμπσμπσπ====⎰⎰ 方向沿轴线与电流成右手螺旋关系。

3.如图3-9所示,真空中一无限长圆柱形铜导体,磁导率为0μ,半径为R ,I 均匀分布,求通过S (阴影区)的磁通量。

答案:00ln 242I IμμππΦ=+。

解:取平行于无限长圆柱形铜导体轴线的面元dr dS 1=, 无限长圆柱形铜导体周围空间磁场强度分布为02022Ir r RR B I r Rrμπμπ⎧<⎪⎪=⎨⎪≥⎪⎩在导体内阴影部分的磁通量为01112024R I I B ds B ds rdr R μμππΦ=⋅===⎰⎰⎰r r 在导体外阴影部分的磁通量为200222ln 222R R I I B ds B ds dr r μμππΦ=⋅===⎰⎰⎰r r图3-8所以,通过S (阴影区)的总磁通量为0012ln 242I IμμππΦ=Φ+Φ=+4.如图3-10所示,一半径R 的非导体球面均匀带电,面密度为σ,若该球以通过球心的直径为轴用角速度ω旋转,求球心处的磁感应强度的大小和方向。

答案:023RB μσω=;方向沿轴向上。

解:利用圆形电流在轴线上产生的磁场公式2032r dIdB R μ=如图所示 dI dSf σ=,而 22sin dS rdl R Rd ππθθ==⋅又 sin r R θ=,2f ωπ=,所以 22sin 2dI dSf R d ωσσπθθπ== 2230300sin sin 22R r R d B dB d R πππμμσωσωθθθθ===⎰⎰⎰ []20000002sin cos 22sin cos 233233R R R d B πππμσωμσωμσωθθθθθ⎡⎤=-+=-=⎢⎥⎣⎦⎰。

相关文档
最新文档