最大公因数教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公因数教学设计
教学内容
人教版第十册第79页的例1,课本第81页的例题及课本第81页的做一做教学目标
1、使学生理解和掌握公因数和最大公因数的概念。
2、能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3、经历活动过程,训练学生思维的有序性和条理性。
教学重点
最大公因数的求法
教学准备电脑课件
教学方法
探究法自主法
教程
一、创设情境
1、课件出示“六一”儿童节情景图
师:“六一”儿童节到了,小朋友们为了庆祝准备36朵红花和48朵白花做花束,两种花都没有剩余,如果每个花束里的红花朵数相同,白花朵数相同,有几种扎法,最多可以扎几束?同学们,你们能帮小朋友们解决这个问题了吗?
(让学生独立思考一分钟)
师:你们找到方法了吗?
师:看来要知道有几种扎法,还得讲究方法,我们可以用红色的小棒表示红花的朵数,用白色的小棒表示白花的朵数,分小组合作找一找红花可以扎几束,白花可以扎几束。
师生:通过合作学习,你们想说什么?
生:36朵红花可以扎成的束数:1、2、3、4、6、36、18、12、9
48朵白花可以扎成的束数:1、2、3、4、6、48、24、12、8、16
师:两种花做花束可能有几种扎法:1、2、3、4、6、12。最多可以扎几束:12。
评析:“最大公因数”是一个抽象的数学概念。学生难以理解,老师通过联系学生“六一”儿童节做花束这个生活情境提出问题,为学生提供了一个“最大公因数”的现实情境,在小组合作中,让学生初步感知公因数、最大公因数的特点,体会求最大公因数的方法,为理解公因数、最大公因数的含义奠定了基础。
二、归纳概念
师:我们一起来观察每一组数。先来看看红花这一组,这些数与36有什么联系?
生:都是36的因数。
师:接下来看白花这一组,这些数有什么特点?
生:都是48的因数。
师:两种花做花束的束数与36和48有什么关系?
生:这些数既是36的因数,又是48的因数。
师:我们可以把这些数称为36和48的公因数。
师:12和36和48的公因数中最大的一个,我们可以把它称为它们的最大公因数。
师:今天我们一起研究两个数的最大公因数。
师:现在谁能用自己的话说一说什么叫公因数?什么叫最大公因数?
评析:这一环节,让学生在解决实际生活问题的基础上逐步抽象出36和48的公因数和最大公因数,从而使学生经历一个从具体事物到抽象概念的数学化提炼过程,这样让学生利用日常生活经验,既理解了数学概念,而且又深深体会到数学与生活的密切联系。
三、两个数最大公因数的求法
师:刚才我们认识了公因数和最大公因数,那怎样求两个数的最大公因数?
师:下面我们就以18和30为例,先请大家独立探索一下,求两个数的最大公因数的方法
1.(小组交流)
师:分小组讨论,求两个数的最大公因数有几种求法?
2.(全班交流)
各组代表发言,师板书
生1:我们这组先分别找出18和30的因数,再找它们的公因数,最后从它们的公因数中找最大的一个。
18的因数有1、18、2、9、36
30的因数有:1、30、2、15、3、10、5、6
18和30的公因数是:1、2、3、6
18和30的最大公因数是:6
师:我们把他们组的方法叫列举法。
生2:我们这组用分解质因数的方法,先找18的质因数,再找30的质因数,然后找出18和30公有质因数,最后把它们公有的质因数相乘
18=2×3×3
30=2×3×5
18和30的最大公因数是2×3=6
生3:我们这组是这样算的:
6 18 30
3 5
18和30的最大公因数是6
3、优化算法
师:刚才大家想到了求最大公因数的方法有三种,在实际应用中,同学们可以自己“当家作主”灵活选用各种方法。
评析:在这一环节中,为学生提供了探索的空间,放手让学生自主探究。通过讨论交流得出了求两个数的最大公因数三种不同的方法,充分体现了学生的自主性,避免了学生在老师的牵引下被动的学习。
四、巩固练习
1、课件出示:
①找出20和30的最大公因数
②先分别找出下面各数的最大公因数,再仔细观察,你发现了什么?
18和36 8和9 8和16 1和7
2、写出下列各分数分子、分母的最大公因数
4 10 12
5() 12() 16()
12 18 21
18() 24() 49()
3、课件出示:
王叔叔家贮藏室长16dm,宽限12dm,如果用边长是束分米的正方形地砖把贮藏室的地面铺满,(使用的地砖都是整块)边长最大是几分米?
评析:此环节设计了三个层次的练习,使学生经历了从“纯数学”的应用到实际问题的解决过程,在这个环节中不仅巩固了已学知识,而为以后约分教学作了铺垫,形成了新旧知识链。
总评:加强了数学与生活的联系,创设生活情境,以学生解决生活问题为引入,既激发了学生的学习兴趣,同时让学生感到“数学原来就在我身边”。在探究求两个数的最大公因数的方法时,充分发挥学生的独立自主,打破了传统教法中,学生在老师的牵引下被动地学习,思维狭窄,在本课教学中,老师在学生独立探究,给了学生一个较大的探究空间,学生的思维就象脱缰的野马,自由驰骋着,他们有的从最大公因数定义出发,按照因数→公因数→