机械原理复习重点
(完整版)机械原理知识点归纳总结

第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。
第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。
1. 机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点。
为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。
2. 运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。
运动链成为机构的条件是:原动件数目等于运动链的自由度数目。
机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。
机构自由度计算是本章学习的重点。
准确识别复合铰链、局部自由度和虚约束,并做出正确处理。
(1) 复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。
正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。
(2) 局部自由度局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。
局部自由度常发生在为减小高副磨损而增加的滚子处。
正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。
(3) 虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束。
正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。
虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。
对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。
3. 机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。
机械原理复习重点

•The composition of principle and structure analysis
2.1 The composition of a mechanism Links
Fixed links
Links 构件 Kinematic pairs 运动副
固定构件 ------- Frames 机架
从动件运动规律的设计 凸轮机构基本尺寸的设计 凸轮机构轮廓曲线的设计 绘制凸轮机构工作图
(4)Making Cam Mechanism Drawing
复习重点 1、常用运动规律的特点,刚性冲击,柔性冲击,S-δ曲 线绘制 2、凸轮轮廓设计原理—反转法,自锁、压力角与基 圆半径的概念
例题.如图所示,偏置直动滚子从动件盘形凸轮机构,已知凸轮实际轮廓 线为一圆心在O点的偏心圆,其半径为R. 从动件的偏距为e。 1).分析凸轮顺时针转动时,图示从动件偏置方向是否合理? 2).标出当从动件从图示位置升到位移s时,对应凸轮的转角及凸轮 机构的压力角。 解:1)图示偏置方向为正偏置,偏置方向合理。
Driving links 主动件
Moving links 活动构件
Driving links have their own indepen-dent motion characteristics the other moving links are called as Driven links 从动件
If all lower pairs in a four-bar linkage are revolute pairs, as shown in the following Fig, the linkage is called a revolute four-bar linkage, which is the basic form of four-bar linkages.
机械原理考研复习笔记

机械原理考研复习笔记一、机械的结构分析1.绪论(机械原理的研究对象1)机器●作用:传递改变物料(车床)能量(内燃机)信息(计算机)的装置2)机构●作用:传递运动和力的装置3)(若干)机器+机构=机械2.概念性知识1)零件构件●零件:min制造单元●构件:最小运动单元2)组成关系●机械机器机构构件零件3)运动副●定义:由两个构件直接接触形成的可动链接●分类●按照引入的约束●引入几个约束,就为几级副●平面三个自由度-形成1~2级副●空间六个自由度形成1~5级副●按照接触方式●低副(面)(两个约束,一个自由度)●转动●移动●高副(点,线)(一个约束,两个自由度)●本质●两个构件形成的连接方式,一旦存在就形成约束4)运动链●若干运动副+若干构件=运动链●定义:构件+运动副组成的可相对运动的构件系●分类●开链●闭链5)机构●机架+运动链=机构●即在运动链中选定一个做为机架●平面机构●空间机构3.平面机构的自由度1)定义●机构具有确定运动时,所必须给定的独立广义坐标的数目●目的●判断机构能不能动●判断是否有固定的运动2)计算公式●3)计算前的预处理●局部自由度●复合铰链●虚约束●4)计算步骤●1:预处理●焊接局部自由度●找虚约束●标记复合铰链●2:从主动件开始找5)利用自由度判断机构运动情况●自由度=原动件●有确定运动●自由度大●阻力最小定律●原动件大●机构最薄弱处破坏●自由度为0●有自锁或者四点●修改4.机构运动简图1)前提:确定比例尺2)步骤●1按照比例尺●2沿运动顺序分析●两两之间的运动方式●运动副类型●移动:谁充当滑块●转动:转动中心位置●高副:●接触点位置●用构件(合适即可)依次连接各运动副二、平面机构的运动分析1.基础知识1)绝对速度:构件自身的实际速度2)相对速度:做相对运动的两个构件的速度差2.瞬心1)定义:两个相对运动的构件的等速重合点●表现形式:点,在这一点时两构件具有相等速度,即传递性●同时为两个构件的外拓点●将两个构件速度连系起来的点●由一个的速度或角速度算另一方●数量问题●2)瞬心处两构件相对速度为0 绝对速度相等3)构件上一点的速度计算公式V=ωr●构件上任何一点都能看作绕其旋转中心转动●也可以看作绕绝对瞬心转动4)确定瞬心的位置●直接接触●转动副●转动副中心●移动副●导路垂线的无穷远●高副●纯滚动●接触点(齿轮啮合时的节点处)●滚动+相对滑动●接触点的公法线上,需要其他条件来确定●不直接接触●三心定理●定义:三个做平面运动的构件的三个瞬心位于同一直线上●3 三个构件●3 三个瞬心●1 两两确定一条直线,任意两条确定交点●瞬心多边形(求解方式)5)瞬心的具体应用(求速度与角速度)●三、平面机构的力分析1.平面力系的分类1)平面汇交力系●定义:平面力系中各力作用点汇交与一点处的力系●如何平衡●几何法(常用):绘制首位相连的封闭力多边形●解析法:建立直角坐标系,将力作为向量分别投影到两个坐标轴进行计算●计算原理●x轴(分矢量)和为0●y轴(分矢量)和为02)平面力偶系●定义:作用在同一物体,等大反向的一对平行不共线的力●特性:力偶只能用力偶来平衡●力偶对任何一点取矩都是力偶矩,跟矩心没有关系,在构件任何一点都可以取●对比力矩:一个力对一对的矩●平衡●条件:合力偶矩平衡即主矩=03)平面任意力系●由以上两种组合而成,含有力和力偶。
机械原理知识点归纳总结考研

机械原理知识点归纳总结考研机械原理是机械工程领域的基础学科之一,它主要研究机械系统的运动学和动力学问题。
以下是机械原理的知识点归纳总结,适用于考研复习:一、基本概念- 机械:由多个部件组合而成的,能够传递或转换能量的装置。
- 机构:由若干个基本构件通过运动副连接而成的,具有确定运动的组合体。
- 运动副:两个或两个以上的基本构件,通过接触面相互约束,实现相对运动的连接方式。
二、运动学基础- 运动学:研究物体运动的几何关系,不涉及力的作用。
- 位移:物体在运动过程中位置的变化量。
- 速度:位移对时间的导数,表示物体运动的快慢。
- 加速度:速度对时间的导数,表示速度变化的快慢。
- 角位移、角速度和角加速度:对应于转动运动的位移、速度和加速度。
三、运动链与机构分析- 运动链:由多个机构串联或并联组成的复杂机械系统。
- 机构的自由度:机构中独立参数的数量,决定了机构的复杂程度。
- 运动分析:确定机构各部分的运动规律和运动特性。
四、动力学基础- 动力学:研究力和运动之间的关系。
- 牛顿运动定律:描述物体运动的基本定律。
- 动量守恒定律和能量守恒定律:在没有外力作用下,系统的总动量和总能量保持不变。
五、平衡与稳定性- 静平衡:在没有外力作用下,机械系统保持静止或匀速直线运动的状态。
- 动平衡:在有外力作用下,通过调整系统内部力的分布,使系统保持稳定运动的状态。
- 稳定性分析:研究系统在受到扰动后能否恢复到平衡状态。
六、机械振动基础- 机械振动:机械系统在受到周期性或非周期性激励时的振动现象。
- 自由振动:没有外力作用下的振动。
- 受迫振动:在周期性外力作用下的振动。
- 阻尼:振动过程中能量的耗散。
七、机械传动- 齿轮传动:通过齿轮的啮合来传递运动和动力。
- 带传动:通过带和轮的摩擦力来传递运动。
- 链传动:通过链条和链轮的啮合来传递运动。
八、机械设计基础- 机械设计:根据使用要求,对机械系统进行设计和优化。
- 材料选择:根据机械的工作条件选择合适的材料。
机械原理基础知识点总结,复习重点

机械原理知识点总结第一章平面机构的结构分析3一. 基本概念31. 机械: 机器与机构的总称。
32. 构件与零件33. 运动副34. 运动副的分类35. 运动链36. 机构3二. 基本知识和技能31. 机构运动简图的绘制与识别图32.平面机构的自由度的计算及机构运动确定性的判别33. 机构的结构分析4第二章平面机构的运动分析6一. 基本概念:6二. 基本知识和基本技能6第三章平面连杆机构7一. 基本概念7(一)平面四杆机构类型与演化7二)平面四杆机构的性质7二. 基本知识和基本技能8第四章凸轮机构8一.基本知识8(一)名词术语8(二)从动件常用运动规律的特性及选用原则8三)凸轮机构基本尺寸的确定8二. 基本技能9(一)根据反转原理作凸轮廓线的图解设计9(二)根据反转原理作凸轮廓线的解析设计10(三)其他10第五章齿轮机构10一. 基本知识10(一)啮合原理10(二)渐开线齿轮——直齿圆柱齿轮11(三)其它齿轮机构,应知道:12第六章轮系14一. 定轴轮系的传动比14二.基本周转(差动)轮系的传动比14三.复合轮系的传动比15第七章其它机构151.万向联轴节:152.螺旋机构163.棘轮机构164. 槽轮机构166. 不完全齿轮机构、凸轮式间歇运动机构177. 组合机构17第九章平面机构的力分析17一. 基本概念17(一)作用在机械上的力17(二)构件的惯性力17(三)运动副中的摩擦力(摩擦力矩)与总反力的作用线17二. 基本技能18第十章平面机构的平衡18一、基本概念18(一)刚性转子的静平衡条件18(二)刚性转子的动平衡条件18(三)许用不平衡量及平衡精度18(四)机构的平衡(机架上的平衡)18二. 基本技能18(一)刚性转子的静平衡计算18(二)刚性转子的动平衡计算18第十一章机器的机械效率18一、基本知识18(一)机械的效率18(二)机械的自锁19二. 基本技能20第十二章机械的运转及调速20一. 基本知识20(一)机器的等效动力学模型20(二)机器周期性速度波动的调节20(三)机器非周期性速度波动的调节20二. 基本技能20(一)等效量的计算20(二)飞轮转动惯量的计算20第一章平面机构的结构分析一. 基本概念1. 机械: 机器与机构的总称。
机械原理知识点汇总

机械原理知识点汇总机械原理是研究机械设备运动规律和相互作用的学科,是机械工程的基础和核心部分。
以下是机械原理的常见知识点:1. 力的作用点和载荷:力矩和力偶、力的合成与分解、静力学平衡条件、力的传递与转换等。
2. 运动学:位移、速度、加速度、平均速度与瞬时速度、匀速直线运动、变速直线运动、曲线运动、旋转运动等。
3. 动力学:运动物体的力学特性、牛顿三定律、质量与权重、动量、力对动量的作用、功、功率、能量守恒、动能与势能、机械效率等。
4. 科里奥利力:物体在旋转坐标系中受到的惯性力,与转动半径、转动角速度和线速度有关。
用于解释离心力和科里奥利力。
5. 惯性力和离心力:物体在非惯性系或旋转系中受到的假想力。
离心力是惯性力的一种,是旋转体上各质点因受到转动约束而有的离心趋向于离开该转轴的力。
6. 摩擦力:摩擦的本质是接触面内的分子间作用力产生的力。
静摩擦力和动摩擦力。
7. 力的矩和力偶:力矩是力绕某一轴产生的力力矩,力偶是力矩的特殊情况,力的两组等大的力共线并且同向或反向。
8. 杆的受力分析:使用平衡方程和受力平衡条件计算杆的受力。
9. 原动机和传动机构:涉及到动力传输和转动传递的相关原理和机械装置设计,包括各种起动器、接触传动装置、减速器和平动机构等。
10. 齿轮传动:引入齿轮传动的定义、工作原理、齿轮参数和齿轮组合的计算与选择等。
11. 制动与离合器:机械制动器的原理和分类,包括盘式制动器和钳式制动器,离合器的原理和应用等。
12. 螺旋传动:螺旋副的类型、应用和计算等。
总之,机械原理涵盖了力学、动力学、运动学以及各种机械装置的设计和应用原理。
以上是机械原理中的一些重要知识点。
机械原理复习重点

标准中心距 a cos acos
第十章 齿轮机构
•
第十章 齿轮机构
• 七、变位齿轮
• 1、标准齿轮的缺点
• 2、变位的基本原理
• 3、变位齿轮与标准齿轮的齿形比较
• 4、变位齿轮啮合传动
•
传动类型--优缺点
第十章 齿轮机构
• 八、平行轴斜齿圆柱齿轮传动 • 正确啮合条件、 尺寸计算、优缺点--与直齿轮
pb p cos( )
a
1 2
m( z1
z2
)
5/5/2020
34
第十章 齿轮机构
• 五、渐开线齿轮的啮合
• 1、正确啮合条件
•
2、标准中心距、啮合角
• 3、齿轮的啮合过程、重合度
• 六、渐开线齿轮的切制
• >>方法
• >>根切现象及危害--不根切的最少齿数
•
--根切的原因--防止根切的方法
第十章 齿轮机构
5/5/2020
13
第六章 机械的平衡
• 掌握刚性转子平衡设计的方法
– 静平衡、动平衡适用的场合、平衡原理、平衡条件
• 了解平面机构平衡设计的方法
5/5/2020
14
第七章 机械的运转及其速度波动的调节
• 1、真实运动
– 等效动力学模型的建立
• 等效构件的选取 – 常以作回转运动或移动的原动件为等效构件
第九章 凸轮机构
•
第九章 凸轮机构
•
• 三、凸轮机构设计 • 反转原理
5/5/2020
28
第九章 凸轮机构
• 四、凸轮设计中的注意事项 • 1、基圆半径和压力角的关系 • 2、滚子实际轮廓的变尖和失真问题 • 3、平底长度的选择
机械原理复习重点

1. 什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系机械是机器和机构的总称机器是一种用来变换和传递能量、物料与信息的机构的组合。
讲运动链的某一构件固定机架,当它一个或少数几个原动件独立运动时,其余从动件随之做确定的运动,这种运动链便成为机构。
零件→构件→机构→机器(后两个简称机械)2. 什么叫构件?机械中独立运动的单元体3. 运动副:这种由两个构建直接接触而组成的可动联接称为运动副。
高副:凡两构件通过单一点或线接触而构成的运动副称为高副。
低副:通过面接触而构成的运动副统称为低副。
4. 空间自由运动有6歌自由度,平面运动的构件有3个自由度。
5. 机构运动简图的绘制6. 自由度的计算7. 为了使机构具有确定的运动,则机构的原动件数目应等于机构的自由度数目,这就是机构具有确定运动的条件。
当机构不满足这一条件时,如果机构的原动件数目小于机构的自由度,则将导致机构中最薄弱的环节损坏。
要使机构具有确定的运动,则原动件的数目必须等于该机构的自由度数目。
8. 自由度计算:F=3n -(2p1+pn)n:活动构件数目 p1:低副 pn:高副9. 在计算平面机构的自由度时,应注意那些事项?1. 要正确计算运动副的数目2.要除去局部自由度3.要除去虚约束10. 由理论力学可知,互作平面相对运动的两构件上瞬时速度相等的重合点,即为此两构件的速度瞬心,简称瞬心。
11.因为机构中每两个构件间就有一个瞬心,故由N个构件(含机架)组成的机构的瞬心总数K=N(N-1)/212.三心定理即3个彼此做平面平行运动飞构件的3个瞬心必位于同一直线上。
对于不通过运动服直接相连的两构件的瞬心位置,可可借助三心定理来确定。
13.该传动比等于该两构件的绝对瞬心与相对瞬心距离的反比。
14.平面机构力分析的方法:1静力分析:在不计惯性力的情况下,对机械进行的分析称为机构的静力分析。
使用于惯性力不大的低速机械。
2动态静力分析:将惯性力视为一般外力加于产生该惯性力的构件上,就可以将该结构视为处于静力平衡状态,仍采用静力学方法对其进行受力分析。
机械原理复习要点

机械原理复习要点第一章:绪论1.机械的分类:从机械原理学科研究的内涵而言,一般认为机械包含机器和机构两个部分。
2.机器的定义:能实现预期运动并完成特定作业任务的机构系统。
特征:(1)机器是一种人造实物组合体,而非自然形成的物体(2)组成机器的各活动部分之间具有确定的相对运动关系(3)机器能够实现不同能量之间的转换或是代替人类完成特定的作业3.机构的定义:能实现预期运动并实现力传递的人为实物组合体。
特征;(1)机构是一种人造实物组合体,而非自然形成的物体(2)组成机构的各活动部分之间具有确定的相对运动关系(3)机构能够把一种运动形式转换成另外一种运动形式或者实现力的传递。
第二章:机构的结构分析1.机构的组成:构件(构成一个独立运动单元的实物组合体);运动副(两个构件直接接触而又能实现相对运动的可动连接);运动链(若干个构件经运动副连接而成的构建系统)2.机构的组成规律:机构是由一个机架与一个或几个原动件,再加上若干个从动件组成而成。
机架:作为参考系的固定构件。
主动件:按预定给定运动规律独立运动的构件。
从动件:除主动件外的活动构件。
3.零件:不能够再分拆的单个实物体4.运动副元素:两构件直接接触的表面5.约束:对运动的限制称为约束。
分类:按运动副产生约束数目可以分为I 级副、II 级副、III 级副等;按接触方式分为低副和高副;按相对运动形式分为移动副和转动副以及空间运动副;按始终保持接触的方式分为几何形状封闭运动副、力封闭运动副等6.运动链分类:如果组成运动链的所有构件依次连接形成首尾封闭的系统则称之为闭式运动链,反之则为开式运动链。
7.机构运动简图:表明机构的组成、运动传递过程以及各构件相对运动特征的简单图形;机动示意图:只需表明机构的组成状况和结构特点而不需要严格按照比例尺绘制的简图。
8.机构自由度:机构维持确定运动所必需的的独立运动参数。
平面机构自由度计算公式:)2(3H L P P n F +⨯-⨯=;其中n:活动构件数,P L :低副约束数,P h :高副约束数;空间机构自由度计算公式:)2345(612345P P P P P n F +⨯+⨯+⨯+⨯-⨯=9.机构具有确定运动的条件:机构的自由度等于原动件的数目第三章:平面连杆机构分析与设计1.平面连杆机构:由若干构件通过低副(转动副、移动副、球面副、球销副、圆柱副及螺栓副等)连接而成,又称为低副机构。
机械原理知识点汇总

机械原理知识点汇总机械原理是研究机械中机构的结构和运动,以及机器的动力和传动的学科。
它是机械工程的基础,对于设计、制造和维护各种机械装备都具有重要的指导意义。
以下是对机械原理中一些关键知识点的汇总。
一、机构的结构分析机构是由若干个构件通过运动副连接而成的具有确定相对运动的组合体。
在机构的结构分析中,需要了解构件、运动副和运动链的概念。
构件是机器中独立的运动单元,它可以是一个零件,也可以是由若干个零件刚性连接而成的组合体。
运动副是两个构件直接接触并能产生相对运动的连接,常见的运动副有低副(如转动副、移动副)和高副(如齿轮副、凸轮副)。
运动链是由若干个构件通过运动副连接而成的相对可动的系统。
机构的自由度是指机构具有确定运动时所必须给定的独立运动参数的数目。
通过计算机构的自由度,可以判断机构是否具有确定的运动,以及其运动的可能性和复杂性。
二、平面连杆机构平面连杆机构是由若干个刚性构件用平面低副连接而成的机构。
常见的平面连杆机构有四杆机构、曲柄滑块机构和导杆机构等。
四杆机构是平面连杆机构中最基本的形式,根据其有无曲柄,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构。
在四杆机构中,存在着一些重要的特性,如急回特性、压力角和传动角等。
急回特性可以使机构在工作行程和回程中具有不同的速度,提高工作效率;压力角是作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角,传动角则是压力角的余角,传动角越大,机构的传动性能越好。
曲柄滑块机构是由曲柄摇杆机构演化而来的,它可以将曲柄的转动转化为滑块的直线运动,或者将滑块的直线运动转化为曲柄的转动。
导杆机构则是通过改变构件的形状和运动副的位置,实现不同形式的运动传递。
三、凸轮机构凸轮机构是由凸轮、从动件和机架组成的高副机构。
凸轮通常作为主动件,通过其轮廓曲线的形状和运动规律,推动从动件实现预期的运动。
凸轮的轮廓曲线决定了从动件的运动规律,常见的运动规律有等速运动、等加速等减速运动和简谐运动等。
机械原理全部知识点总结

机械原理全部知识点总结一、牛顿定律1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非有外力作用,否则不会改变其状态。
2. 牛顿第二定律:物体受力作用时,其加速度与作用力成正比,与物体质量成反比,方向与力的方向相同。
3. 牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在不同物体上。
二、运动学1. 位移、速度和加速度的定义及关系2. 直线运动和曲线运动的描述和分析3. 相对运动和相对运动问题的解决方法4. 圆周运动和角速度、角加速度的计算5. 瞬时速度和瞬时加速度的概念及计算方法三、动力学1. 动量和动量定理:动量的定义和计算方法,动量守恒定律的应用2. 动能和动能定理:动能的定义和计算方法,动能定理的应用3. 动力和动力定理:动力的定义和计算方法,动力定理的应用4. 质点受力分析:引力、弹力、摩擦力等力的计算和分析5. 动能、动量和功率的关系:能量守恒定律和功率的计算方法四、静力学1. 平衡条件和平衡方法:受力平衡条件的表述和计算方法2. 力的合成和分解:力的合成定理和力的分解定理的应用3. 各向同性和各向异性材料的力学性质4. 梁的静力学分析方法:简支梁、固支梁和悬臂梁的静力学分析方法五、轴系1. 轴系的分类和特点:一般轴系、滚动轴系和滑动轴系的特点和应用2. 轴系的受力分析:轴系受力平衡条件和计算方法3. 轴系的设计与选用:轴系的设计原则和选材方法4. 轴系的传动:轴系的传动原理和传动装置的种类及应用六、传动1. 传动的分类和特点:齿轮传动、带传动、链传动和齿条传动的特点和应用2. 传动的传递特性:传动的传递比、效率和传动比的计算方法3. 传动装置的设计与选用:传动装置的设计原则和选用方法4. 传动装置的振动和噪音控制:传动装置的振动和噪音控制原理和方法七、机构1. 机构的分类和特点:平面机构、空间机构、连杆机构和歧杆机构的特点和应用2. 机构的运动分析:机构的运动规律、运动轨迹和运动参数的计算方法3. 机构的静力学分析:机构的受力平衡条件和受力分析方法4. 机构的动力学分析:机构的运动学和动力学分析方法八、机器人1. 机器人的分类和特点:工业机器人、服务机器人和专用机器人的特点和应用2. 机器人的结构和工作原理:机器人的机械结构和工作原理3. 机器人的传感器和执行器:机器人的传感器和执行器的种类和应用4. 机器人的控制系统:机器人的控制系统和编程方法以上是机械原理的全部知识点总结,涵盖了牛顿定律、运动学、动力学、静力学、轴系、传动、机构和机器人等内容。
机械原理总复习(总结)

平面四杆机构的演化
1. 改变构件的形状和运动尺寸:移动副可认为是转 动副的一种特殊情况
• 例如:曲柄摇杆机构演化为曲柄滑块机构或具有两个移 动副的四杆机构
2. 改变运动副的尺寸:
• 曲柄滑块机构演化为偏心轮机构,运动特性完全等效
3. 选用不同机构为机架的演化(机构倒置/变更机 架):相对运动原理的应用
3. 机构:在运动链中,若将某一构件加以固定而成为机架,则这 种运动链便成为机构。机构中的构件(表示法:see pp.19)可分为:
• 机架:被认为固定不动的构件,用来支承活动构件。 • 原动件:按给定的运动规律独立运动的构件。通常标运动方向。 • 从动件:随原动件运动的活动构件。
机构具有确定运动的条件
2. 推杆常用运动规律(优缺点及其适用场合)
• 等速运动规律:刚性冲击,宜用于低速的情况
• 等加速减速运动规律:柔性冲击,宜用于中速的情况
• 余弦运动规律:柔性冲击,宜用于中速的情况
• 正弦运动规律:无刚性,柔性冲击,可在高速下应用
• 五次多项式运动规律:无刚性,柔性冲击,可在高速下应用
aequ |m ax acos |m ax asin |m ax
3. 虚约束常见几种情况:
• 两构件在多处接触而构成移动副,且移动方向彼此平行; • 两构件在多处接触而构成转动副,且移动轴线重合; • 两构件在多处接触而构成平面高副,且各接触点处的公法线彼此
重合;只能算一个运动副。
• 特定的几何条件: 重复轨迹;重复部分
平面机构组成的基本原理
1. 平面机构的组成原理:
• 最小传动角与机构中各杆的尺寸有关,在曲柄与机架共线 的两位置之一
4. 死点:机构在运动过程中,会出现传动角为零的位置(即连
《机械原理》期末复习资料

《机械原理》期末复习资料第一章平面机构运动简图和自由度◆这种能实现确定的机械运动,又能做有用的机械功或完成能量、物料与信息转换和传递的装置称为机器。
◆无论机器还是机构,最基本的一点是都能实现确定的机械运动。
从结构和运动观点看,二者之间并无区别,所以统称为机械。
◆机械零件可分为两大类:一类是在各种机器中都能用到的零件,称为通用零件。
另一类则是在特定类型的机械中才能用到的零件,称为专用零件。
◆三个单元:装配单元、运动单元、制造单元1、零件:机械的制造单元,如螺钉、螺母、曲轴等。
通用零件:在各种机器中都能用到的零件。
专用零件:在特定类型的机器中才能用到的零件。
2、部件:由一组协同工作的零件组成的独立制造装配的组合件,如减速器、离合器、制动器等。
部件是装配的单元。
3、构件:机构中形成相对运动的各个运动单元。
可以是单一的零件,也可以是由若干零件组成的运动单元。
◆机器主要由5个部分组成,包括动力部分、控制部分、传动部分、执行部分、支撑及辅助部分。
◆机械设计的程序:1.计划阶段 2.方案计划阶段 3.技术设计阶段 4.技术文件编制阶段◆判断高低副两构件通过面接触形成的运动副,称为低副。
两构件通过点或线接触形成的运动副,称为高副。
◆自由度的计算公式:F=3n-2PL-PH◆复合铰链:两个以上构件在同一轴线处共同参与形成的转动副,称为复合铰链(两个转动副◆局部自由度:机构中与输出构件运动无关的自由度,称为局部自由度。
(可忽略)◆机构具有确定运动的条件:机构的构件之间应具有确定的相对运动。
(标箭头的都是原动件。
)✔原动件个数等于机构的自由度数。
若原动件数小于自由度数,则机构无确定运动。
若原动件数大于自由度数,则机构可能在薄弱处损坏。
第二章平面连杆机构◆铰链四杆机构的基本类型:曲柄摇杆机构:转动运动转变成往复摆动运动双曲柄机构:等速转动变为变速转动双摇杆机构:主动摇杆的摆动变为从动摇杆的摆动(补充)曲柄滑块机构:转动运动转换成往复直线运动,也可把往复直线运动转换成转动运动◆铰链四杆机构存在曲柄的条件:①机构中是否存在整转副;②选择哪个构件作为机架。
机械原理知识点总结详细

机械原理知识点总结详细第一章机械原理概述1.1 机械原理的定义机械原理是研究和应用机械运动规律的科学,它包括机械结构、机械运动、机械传动等内容,是机械设计与制造的基础。
1.2 机械原理的基本概念机械原理包括机械结构、机械运动和机械传动,机械结构是机械系统的组成部分,机械运动是机械系统的基本运动规律,机械传动是机械系统实现运动的手段。
1.3 机械原理的研究内容机械原理主要包括力学、运动学、动力学、材料力学、结构力学等内容,其中力学是机械原理的基础,它研究物体的静力学和动力学。
第二章机械结构2.1 机械结构的分类机械结构可以分为刚性结构和柔性结构两大类,刚性结构包括机架、轴系、连杆、机构等,柔性结构包括弹簧、轴承等。
2.2 机械结构的基本部件机械结构的基本部件包括轴、支承、齿轮、齿条、皮带、链条等,它们是机械系统的骨架,支撑和传动机械运动。
2.3 机械结构的设计原则机械结构的设计原则包括合理、简洁、坚固、耐用、易于维修等,设计过程中需考虑机械系统的工作环境和使用要求。
2.4 机械结构的材料选择机械结构的材料选择需考虑其力学性能、热处理性能、加工性能、耐磨性、耐腐蚀性等因素,常用的材料有钢、铝合金、黄铜等。
第三章机械运动3.1 旋转运动旋转运动是物体绕轴线旋转的运动,它有角度、角速度、角加速度等物理量,旋转运动的基本原理是牛顿第二定律。
3.2 直线运动直线运动是物体沿直线运动的运动,它有位移、速度、加速度等物理量,直线运动的基本原理是牛顿第一定律。
3.3 圆周运动圆周运动是物体绕圆周运动的运动,它有周期、频率、角速度等物理量,圆周运动的基本原理是向心力和离心力。
3.4 抛物线运动抛物线运动是物体在重力作用下进行的运动,它有初速度、抛射角度等物理量,抛物线运动的基本原理是牛顿的万有引力定律。
第四章机械传动4.1 齿轮传动齿轮传动是利用齿轮传递动力和运动的一种机械传动,它有直齿轮、斜齿轮、蜗杆、锥齿轮等类型,齿轮传动的基本原理是齿轮的啮合。
机械原理复习重点

01机械:是机器和机构的总称02机器三要素:是一种人为的实物组合;各部件之间具有确定的相对运动;能够实现能量转换或代替人类劳动(前两条是机构,三条是机器)03构件:机器中每一个独立运动的单元体09运动副:两个构件直接接触并能产生一定相对运动的链接04运动副三要素:两构件、直接接触、可动联结05高副:点、线接触 低副:面接触(转动副、移动副)5 机构:具有固定构件的运动链称为机构06机构组成:机架、原动件、从动件07机构运动简图:根据机构的运动尺寸,按一定的比例定出各运动副的位置,采用运动副及常用机构运动简图符号和构件的表示方法,将机构运动传递情况表达出来的简化图形08机构示意图:不按严格的比例绘制的,只表示机械结构状况的简图(区别)10结构具有确定运动的条件是:结构的原动件数目应等于机构的自由度数目F (小于:机构运动不确定 大于:机构最薄弱环节损坏)11 平面自由度计算公式:)2(n 3h P P F I +-=11连杆机构传动特点:运动副一般为低副,承载力大,易制造;构件多呈杆的形状;可实现多种运动变换和运动规律;连杆曲线形状丰富,可满足各种轨迹要求。
运动长,累积误差大,效率低;惯性力难以平衡,动载荷大,不应用于告诉运动;一般只能近似满足运动规律要求。
12曲柄:四杆机构中能做整周回转的杆件13 铰链四杆机构:包含4个杆(包括机架),每每两个杆之间用铰链连接13四杆机构的基本形式:曲柄摇杆机构、双曲柄机构(平行、逆平行四边形机构)、双摇杆机构(等腰梯形机构)14铰链四杆机构:杆与杆之间由铰链链接的四个杆组成的机构15周转副:能做整周回转的转动副 摆转副:不能做整周回转的转动副16存在周转副的条件:最短杆+最长杆小于等于其余两杆长度之和;(杆长条件)组成该周转副的两杆中必有一杆为最短杆说明:最短杆两端的转动副均为周转副;其余转动副为摆转副17曲柄存在的条件:前提:运动副中必有周转副存在;各杆的长度应满足杆长条件最短杆为机架(双曲柄)、最短杆的相邻杆为机架(曲柄摇杆);18满足杆长条件时:最短杆为连杆(双摇杆) 不满足杆长条件:无周转副(双摇杆) 19运动不连续问题:错位不连续、错序不连续21 急回特性及行程速比系数:θθ-180180+=K 或11180+-⨯=K K θ22 四杆机构传动角 压力角及死点 :γ↑(ɑ)↓→F '↑→机构传动越有利;曲柄与机架共线时,出现最小传动角20凸轮机构的组成:凸轮、推杆、机架、锁合装置21凸轮机构特点:可使从动件得到各种预期的运动规律、结构紧凑、实现停歇运动;高副接触,易于磨损,多用于传递力不大的场合、加工比较困难、从动件行程不宜过大,否则会使凸轮变得笨重22机构命名:盘形、圆柱形;尖顶、滚子、平底;直动推杆、摆动推杆;对心、偏置23锁合装置:力锁合、形锁合24刚性冲击:从动件在起始和终止点速度有突变,使瞬时加速度趋于无穷大,从而产生无限值惯性力,并由此对凸轮产生冲击25柔性冲击:从动件在起点、中点和终点,因加速度有有限值突变引起推杆惯性力的有限值突变,并由此对凸轮产生有限值冲击26运动规律:等速运动(刚性)、等加等减速(柔性)、余弦加速度(柔性)、正弦加速度(无)、五次多项式(无)27压力角a :推杆所受正压力的方向与推杆上点B 的速度方向之间所夹的锐角在其他情况不变的情况下,a 越大,F 越大,若a 大到使F 增至无穷大时(称为临时压力角),机构将发生自锁,为保证凸轮机构能正常运转,应使其最大压力角max α小于临界压力角c α30出现尖点或失真应采取的措施:适当减小滚子半径;增大基圆半径31偏置问题: 正偏置:当凸轮逆时针方向回转时,若推杆处于凸轮回转中心右侧,e 为正。
机械原理复习要点

机械原理复习要点机械原理复习要点绪论1.何为机器?其三个特征是什么?2.何为机构?其三个特征是什么?机器和机构有何异同?3.何为构件?构件是什么单元?4.何为零件?零件2345565件是什么单元?5.机械、机器、机构、构件、零件间的关系。
6.机械原理的三大内容:(1)结构分析(2)运动分析(3)动力分析第二章机构的结构分析1.运动副的分类。
2.何为构成运动副的元素。
3.何为I级副?II级副?III级副?如何确定机构的级别?4.何为运动链?运动链按开、闭形式可分为几类?常见的运动链为何种形式?5.何为机架?何为原动件?6.运动简图和示意图的区别?7.绘制运动简图应搞清那些问题?8.机构具有确定运动的条件是什么?9.当m个构件在一处构成转动副,其转动副应为几个?10.虚约束有几种类型?11.局部自由度常见的场所?12.计算机构自由度时,若不剔除虚约束的影响,机构的自由度会如何?13.当不剔除机构的局部自由度时,机构自由度的计算结果如何?14.当计算一个运动链的自由度时,计算的结果F=0,这时:(1)若想使其成为自由度为F=1的机构应如何?(2)若想使其成为自由度为F=2的机构又如何?15.高副低代是瞬时替代还是永久替代?16.高副低代必须满足的条件是什么?第三章平面机构的运动分析1.速度瞬心的概念?2.何为绝对瞬心?何为相对瞬心?当两构件之一为固定不动,另一构件为活动时,它们的瞬心为什么瞬心?3.当运动副为下列几种类型时,瞬心位置如何确定?1)移动副。
2)转动副。
3)高副(滚滑副、滚动副)4.瞬心的数目如何确定?5.瞬心法是否可用来求加速度?6.当机构位置改变时,瞬心位置是否改变?(哪些改变?哪些不变?举四杆机构为例)7.当已知某一构件上一点速度,求其他点速度时,用什么方法?8.当机构中存在滑动副(导杆与滑块)时,求它们某重合点间的速度时,用什么方法?1)一般动点选在何处? 2)动系选哪个构件?9.相对速度矢量下标与其矢量图中代表矢量下标字母顺序是否一致?10.在矢量图中:1)P点代表什么? 2)bc代表什么? 3)pc代表什么? 4)相对速度矢量是从那里画出的?5)绝对速度矢量是从那里引出的?11.何为速度影像定理?加速度影像定理?速度多边形、加速度多边形与机构中某一构件上各同名点构成的多边形是什么关系?顺序字母是什么关系?12.速度影像定理,加速度影像定理是否可用来求不同构件间的速度和加速度?13.在什么情况下,存在哥氏加速度?哥氏加速度a k = 2w k vjk中, ωk是指哪个构件的角速度?14.在什么情况下,不存在哥氏加速度?第四章力分析1.驱动力与其作用构件运动间的关系?2.阻力与其作用构件运动间的关系?3.机械上的平衡力是否一定为驱动力?4.低速机构是否需要作动态静力分析?高速机构呢?5.何为动态静力分析?6.分别在下列几种情况下分析构件的惯性力,惯性力矩?1)匀速移动的滑块. 2) 加速移动的滑块.3)匀速定轴转动的曲柄(质心S在转轴,质心S不在转轴).4)加速定轴转动的曲柄(质心S在转心处,质心S不在转心处).5)做平面运动构件的惯性力和惯性力矩.7.总惯性力是如何求得的?(当已知F i,M i如何合成F i总)8.质量代换应满足的三个条件?9.何为动代换,何为静代换,哪一种代换求出来的总惯性力与采用一般力学方法求出的总惯性力完全等效?4--31.分别在三种情况下讨论移动副中的摩擦力F f和摩擦系数f ,f v.1)平滑块. 2)v形槽滑块. 3)半圆形槽滑块.2.转动副的摩擦的总反力作用的位置?其对转心所取力矩与构件转动的关系如何?3.滑动副总反力的作用位置和与构件相对运动的关系如何?4.摩擦圆直径等于多少?5.轴端摩擦力矩如何求?1)未跑合轴端. 2)跑合轴端.6.不考虑摩擦时,下列情况的运动副反力的方向和大小(或作用点)两因素哪个是未知.1)转动副的F R(大小,方向,作用点);2)移动副的F R (大小,方向,作用点);3)高副中的F R (大小,方向,作用点);7.每个构件可列出几个独立的力平衡方程?8.构件组的静定条件是什么?第八章四杆机构1.铰链四杆机构的基本类型有几种?2.原动件运动规律一定时,可通过改变各构件的相对杆长而使从动件具有不同的运动规律(对;错?)3.连杆机构中有曲柄的条件是什么?4.四杆机构中的周转副、摆动副的含义?5 .图8—2中,杆AB为主动件时,求机构该位置的压力角和传动角?6.双曲柄有几种类型?它们各自的运动特征为什么?(共3种类型)7.等腰梯形机构是什么机构?8.曲柄滑块机构是由什么机构演化而来的?滑块是哪个杆演化而来的?如何演化的?9.图8—16(a)、(b)两机构的关系?10.在曲柄滑块的基础上通过机构的倒置,可分别获得哪些机构?(第197页,图8—17)11.运动副元素的逆换?(第199页,图8—22)12.四杆机构的急回运动特性可用哪两个参数来描述13.行程速比系数K和极位夹角θ的关系是什么?K=?θ=?有急回运动?K=?θ=?无急回运动?14.何为机构的极位?何为机构的极位夹角?何为摇杆的最长摆角?15.何为机构的压力角、传动角?这两个角在哪个构件的哪一点上?16.为何用传动角来描述四杆机构的传力特征?17.最小传动角的位置?18.对应机构的极位,曲柄的位置是什么?19.当连杆与摇杆间所夹的位置角为锐角(钝角)时,传动角与其位置角的关系是什么?20.四杆机构在什么条件下具有死点?死点的位置是什么?死点产生的原因是什么?21.举例说明死点的利与弊?22.掌握四杆机构如下设计方法:按给定的行程速比系数设计。
机械原理复习提纲

机械原理复习提纲
1、对心曲柄滑块机构与偏置曲柄滑块机构的区别
2、渐开线直齿圆柱齿轮的分度圆与节圆概念
3、机构处于死点产生的条件,死点产生时的压力角概念
4、动平衡的转子一定满足平衡条件
5、调节周期性速度波动方法、精度的概念
6、斜齿圆柱齿轮的端面、注面概念
7、运动副的概念
8、机器的等效转动惯量与组成该机器的各构件转动惯量关系
9、渐开线斜齿圆柱齿轮、蜗轮蜗杆、件开心啊直齿圆锥齿轮的标准参数
10、平面四杆机构有无急回特性,极位夹角概念
11、拆杆组与基本杆组的自由度概念
12、滚子从动件盘形凸轮机构的实际廓线与滚子半径、基圆半径的关系
13、考虑摩擦的转动副,其总反力的作用线,,摩擦圆概念
14、考虑摩擦时的移动副两件等速相对运动,其总反力Ra方向与相对速度V12概念
15、一对渐开线直齿圆柱齿轮的理论啮合线、实际啮合线、节圆、节点、压力角、啮合角等概念
16、在平面机构中,低副、高副与约束掉的自由度关系
17、渐开线圆柱齿轮产生根切的原因、克服根切的方法
18、齿轮连续传动的条件
19、在凸轮机构中,从动件的运动规律与冲击的概念
20、在曲柄摇杆机构中,当曲柄为主动件,曲柄在特殊位置时传动角的概念
21、图解法求平面机构的瞬心
22、图解法求凸轮机构中的理论廓线,基圆、偏距圆、压力角、偏距方向
23、铰链四杆机构曲柄存在的条件,判定四杆机构类型的方法。
《机械原理》复习资料(主要)

《机械原理》复习资料 (主要)《机械原理》复习资料第一部分课程要点内容机械原理研究的对象和内容机构的构成;★机构运动简图;★机构拥有确立运动的条件;★平面机构的自度计算;★计算平面机构自度时应注意的事项;平面机构的构成原理、构造分类及构造剖析。
★利用速度瞬心对平面机构进行速度剖析;平面机构运动剖析的图解法。
构件惯性力确实定;运动副中的摩擦:挪动副中的摩擦;螺旋副中的摩擦;转动副中的摩擦;不考虑摩擦机遇构的力剖析。
机械效率;机械的自锁。
刚性转子的静均衡和动均衡的条件、均衡原理和方法。
连杆机构的传动特色及其应用;★平面四杆机构的基本型式及其演化;★平面四杆机构的基本特征;★平面四杆机构的设计。
凸轮机构的应用和分类;推杆常用的运动规律及其选择原则;★用作图法设计平面凸轮的轮廓曲线;平面凸轮的压力角、自锁及其基本尺寸的合理选择。
齿轮机构的种类及特色;★齿轮的齿廓曲线;★渐开线标准直齿圆柱齿轮的基本参数及几何尺寸、啮合传动;渐开线标准齿轮的加工与变位齿轮;斜齿圆柱齿轮、直齿圆锥齿轮及蜗杆蜗轮的基本参数及几何尺寸、啮合传动轮系的分类和应用;★定轴轮系、周转轮系和复合轮系传动比的计算方法。
棘轮机构、槽轮机构、不完整齿轮机构、螺旋机构、万向联轴节、组合机构基来源理和应用。
注:★为课程的要点和难点《机械原理》第1页共40页第二部分分类练习题一.填空题构件和零件不一样,构件是,而零件是。
两构件直接接触并能产生必定相对运动的连结称为,依据其接触特征,又可将它分为和。
3.两构件经过面接触构成的运动副称为,在平面机构中又可将其分为和。
两构件经过点或直线接触构成的运动副称为。
在平面机构中,若引入一个高副,将引入个拘束,而引入一个低副将引入个拘束。
4.在运动链中,假如将此中某一构件加以固定而成为机架,则该运动链便成为。
6.在机构中与其余拘束重复而不起限制运动的拘束称为。
7. 平面机构拥有确立运动的条件是等于,且。
8. 平面机构构造剖析中,基本杆组的构造公式是。
机械原理复习要点

K V 2 C1C 2
V1
C1C 2
t2 t1
t1 t2
180 180
1、平面四杆机构有三种基本形式,即
机构, 机构
和
机构。
2、组成曲柄摇杆机构的条件是:最短杆与最长杆的长度之和
或
其他两杆的长度之和;最短杆的相邻构件为
,则最短杆为
。
3、在曲柄摇杆机构中,如果将
杆作为机架,则与机架
相连的两杆都可以作____
运动,即得到双曲柄机构。
4、在
机构中,如果将
杆对面的杆作为机
架时,则与此相连的两杆均为摇杆,即是双摇杆机构。
5.在
机构中,最短杆与最长杆的长度之和
其余两杆的长度之和时,则不论取哪个杆作为
,都可以
组成双摇杆机构。
6.导杆机构可看做是由改变曲柄滑块机构中的
C
B
A
D
θ 180°+θ
B2
作者: 潘存云教授
A B 180°-θ
1
D
第1章 绪论
1、 机构与机器的区别 2、 零件与构件的区别 3、 机器的分类 4、 工作机的组成
第2章 平面机构的结构分析
1、运动副(高副、低副) 2、约束及自由度 3、运动链 4.机构具有确定运动的条件
机构具有确定运动的条件是原动件数=自由度。
5、自由度的计算(虚约束、局部自由度、复合铰链)
6.机构分级
而演变来
的。
7、将曲柄滑块机构的
改作固定机架时,可以得到导杆
机构。
8、曲柄摇杆机构产生“死点”位置的条件是:摇杆为
件,曲柄为
件或者是把
运动转换成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以: F = f × N = K × f ×Q = fv ×Q
fv——当量摩擦系数 于是:M = F × r = fv × r ×Q 摩擦阻力矩
Q
显然: R21 = -Q,Mf = R21×r ∴ Md=Mf Q×r = R21× =r fv × r × Q ∴ r = fv ×r ——摩擦圆半径 结论: A. 总反力始终切于摩擦圆; B. 总支反力方向与作用点速度方向相反。
F2Ⅱ
Ⅱ
F2 Ⅰ F2
Ⅰ
m r1 1 F1 Ⅰ
m2 r2
m3 r3 F3
F1Ⅱ
F3 Ⅱ
F1 L2
F3 Ⅰ
L1
L3
L
第七章 机械的运转及速度波动的调节 等效转动惯量的一般计算式为: n Je = ∑[JSi ( i=1 等效力矩的一般计算式为: n Me = ∑[Fi cosa( i=1 等效质量的一般计算式为: n me = ∑[JSi ( i=1 等效力的一般计算式为:
P13
P34
1
w1
3 P23
已知w1 求v5,则问题的关键在
P14
于寻找相对瞬心P15
(3) 滑动兼滚动的高副机构(齿轮、凸轮机构) 例 3 :如图所示的凸轮机构。已知各 构件的尺寸、凸轮的角速度 w1,求推 杆速度v2 。
v2= v2P12 = v1P12 = P12 P13 ×ml×w1
2 3 P23 ∞
• 当h=0时,机械处于临界自锁状态; 若h<0,则其绝对值越大,表明自锁越可 靠。
例:图示为一斜面压榨机。求在去掉水 平力P后的机构自锁条件。 解: 1. 确定运动副上的总反力 2. 以受力体2和3为对象,分别 列出平衡方程式为: Q + R42 +R32 = 0 P + R43 + R23 = 0
●导杆机构(摇杆为主动件)
2
3
3
A
1
B
VB3 FB3
A
1 2
VB2
B D
FB2
D
4 结论:导杆作原动件时,有死点位置存在。 机构是否出现死点的判断:
4
若原动件作往复运动,则一定会出现死点位置; 其位置处于连杆与从动件共线和 重合之处。
死点 C C1 B VB 3
C2
M
A
B2
A
a
1 2
F
D
VB2
B
FB2
Md
Q ρ R21
ω12
N1 F1 r 1 Fi 2 Ni
0
N
F
(2) 轴端的摩擦 轴用以承受轴向力的部分称为轴端。
例:如图所示为一曲柄滑块机构。已知 w1转向,Q为作用于滑块 上的阻力,驱动力 F 作用点位置、方向已知。不计各构件质量、 惯性力。求各支反力及F的大小。
F R12
v
1
w
4
2
3
Q R32
F'3 = F3
F"3 = F3
Ⅰ F'
m' r' F'1 F'3 L1 L2 m1
r2
r1
m3 r3 F3
L
F"
F1
L3
L
F'1 + F'2 + F'3 +F' = 0 F"1 + F"2 + F"3 +F" = 0
从而求得m'r'和m"r "。
步骤:
(1) 分别将各回转平面上集中质量点mi所产生的惯性力Fi (或质径积、重径积)向 两个平衡基面上分解,得到F 'i和F "i 。 (2) 分别在两个平衡基面上用静平衡的方法求解平衡质量点的质径积mi ri(或重 径积)。
● 对心式曲柄滑块机构
q=0
结论:对心式曲柄滑块机构无急回 特性。 B B1 A
B2
C1
C
C2
● 偏置式曲柄滑块机构
q≠0
结论:偏置式曲柄滑块机构有急回 特性。
B1
A
q
B2 C1
C
C
(2) 推广到导杆机构 结论:有急回特性,且极位夹角等于摆杆摆角,且
q= j
C
B
C1
q
C2
j
D
A
●导杆机构(曲柄为主动件)
180°
C2
K =
180°- q
q = 180°
t1
K-1 K+1
w
a1
A
q
j
B2 D
B 2→ B 1
a1
B 1→ B 2 a2
v 1= C 2C 1 / t1
t2
⌒
C 2→ C 1 C 2C 1
⌒
B1
a2
v 2= C 1C 2 / t2
⌒
C 1→ C 2 C 1C 2
⌒
3. 推广 (1) 推广到曲柄滑块机构 B
F' L1 L L2
F"
平衡基面 F"2
Ⅱ
平衡基面
F'2
F2
Ⅰ
m1
m2 r2 m3 r3 F"3 F"1
r1
F'1
F3
F1
F'3
F'1 = F1
L- L1 L L1
F'2 = F2
L- L 2
L L2
F"2
Ⅱ
F"1 = F1
L L- L3 L L3 F'2
F"2 = F2
L
F2 m2 r" m" F"1 F"3
(3) 判定作用力在摩擦圆上切点位置 (4) 依据力平衡条件求解
对构件3:Q + R23 + R43 = 0 对构件1:R21 + R41+ F = 0
第五章 机械的效率和自锁
设MF、MF0为实际和理想的驱动力矩,MQ、MQ0为实际和理想 的生产阻力矩,则同样有 h = 理想驱动力矩 = 实际生产阻力矩 h = MF0/ MF = MQ/ MQ0 实际驱动力矩 理想生产阻力矩
绝对瞬心
w2
P24
方向垂直于K与P24连线,且与w2一致。
vk= KP24 ×ml ×w2,
相对瞬心
方向垂直于K与P24连线,且与w2一致。
绝对瞬心
w 1 /w3 = P13P34 / P13P14
结论1:
wi /wj = PijP1j / PijP1i
ml
vk
P12
K
vP23
2
P23
结论2: ◆ 相对瞬心用于建立两活 动构件间之角速度关系; ◆ 绝对瞬心用于确定活动 构件上任一点速度的方向。
解题步骤: (1) 判定连杆是受拉或受压; (2) 判定构件间的相对转向; (3) 判定作用力在摩擦圆上切点位置; (4) 依据力平衡条件求解。
(2) 判定构件间的相对转向
F R12 R12 R12 1 Q
w21
2
w23 R23
v 3
R23 R21
Q
R43
R41
w 14
4 R41
F
R32 R32 R43
B A C
改变运动副类型 C
∞
定为机架 改变机架 θ 双滑块机构
改变构件 相对尺寸
正弦机构
2. 扩大铰链副 C
C
B B A A D C B B A A D D
偏心轮机构
3. 取不同构件作为机架 曲 柄 滑 块 机 构
导 杆 机 构
摇 块 机 构
定 块 机 构
曲线轨迹曲柄滑块机构 偏置式曲柄滑块机构 对心式曲柄滑块机构 导杆机构 双转块机构 移动导杆机构 双滑块机构 正弦机构 双滑块机构 偏心轮机构 曲柄滑块机构 导杆机构 摇块机构 定块机构 曲柄摇杆机构 双曲柄机构 双摇杆机构
w2 i w
) + m2(
)2
vSi ]
w
综上 所述 有
等效构件角速度 力矩量纲 vi ) ± Mi (
w
)]
wi
w
等效构件角速度 力矩量纲
wi
)2 + v
mi (
vSi 2 ) ]
v
等效构件线速度 力矩量纲 vi ) ± Mi ( v )]
n Fe = ∑[Fi cosa( i=1
wi
v
等效构件线速度 力矩量纲
5. 速度瞬心法在机构速度分析中的应用 (1) 铰链四杆机构 例1:各构件尺寸、机构位置、构件1的角速度w1均已知,求连杆上点K 的速度vk及构件3的角速度w3。 vP23
vP13 = P13P14×ml×w1 = P13P34×ml×w3
绝对瞬心
ml vk
K
P23
P12
2
所以有: 相对瞬心 结论1:
4
Q
1
j
R42
2 m na R23
v
3 P
v23
a
jn
m R32 R43
j
有: Q / sin[90°- (a - 2j)] = R32 / sin( 90°- j) 即: Q = R32 *cos(a-2j) /cosj 即: R32 = Q * cosj / cos(a-2j) 又: P / sin(a-2j) = R23 /sin(90°+ j) 有: P = R23 *sin(a-2j) /cosj
驱动力矩的效率表示 生产阻力矩的效率表示
Nr 工作机 齿轮传动 轴承
二、应用(传动效率h )