1.3.1 有理数的加法(1) 教案

合集下载

七年级数学上册1.3.1有理数的加法第一课时

七年级数学上册1.3.1有理数的加法第一课时
=-(3+9)(和取负号,把绝对值相加) =-12. (2)(-4.7)+3.9(两个加数异号,用加法法则第2条计算) =-(4.7-3.9)(和取负号,用大绝对值减去小绝对值) =-0.8. 教师点评法则利用过程中注意点:先定符号,再算绝对值 .
第7页
下面请同学们计算以下各题以及教材第18页练习. (1)( - 0.9) + ( + 1.5) ; (2)( + 2.7) + ( - 3) ; (3)( - 1.1) + ( - 2.9). 学生练习,四位学生板演,教师巡视指导,学生交流,师 生评价. 本节课教师可依据时间情况,多安排一些练习,以求经过 练习到达巩固掌握知识目标. 活动4:小结与作业 小结:谈一谈你对加法法则认识,在加法计算中都应该注 意哪些问题? 作业:必做题,习题1.3第1,11题;选做题,习题1.3第12 题.
第4页
有理数加法法则是: 1.同号两数相加,取相同符号,并把绝对值相加; 2.绝对值不一样异号两数相加,取绝对值较大加数符 号,并用较大绝对值减去较小绝对值.互为相反数两个数 相加得0. 3.一个数与0相加,仍得这个数.
第5页
活动3:运使用方法则 试一试身手:口答以下算式结果: (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3); (4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0; (7)0+(+2);(8)0+0. 学生逐题口答后,师生共同得出.
进行有理数加法,先要判断两个加数是同号还是异号, 有一个加数是否为零;再依据两个加数符号详细情况, 选取某一条加法法则.进行计算时,通常应该先确定“和” 符号,再计算“和”绝对值.
第6页
教师:出示教材例1,师生共同完成,教师规范写出解答, 注意解答过程中讲解对法则应用.

“有理数的加法”教案

“有理数的加法”教案

1.3.1《有理数的加法》教案(第一课时)大赵峪初级中学吉红波一、学习目标:1、通过实际问题中“结余”的求法,引入有负数参与的加法运算;2、通过物体左右运动问题,结合学生已有知识探究有理数加法法则;3、通过观察,比较,归纳等得出有理数加法法则;4、熟练运用有理数加法法则进行运算;5、能运用有理数加法法则解决实际问题;6、在有理数加法法则的教学过程中,注意培养学生的运算能力;7、认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、重难点:1、重点:用有理数加法法则进行运算;2、难点:掌握并熟练运用两数相加的法则。

三、教材分析:“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计在学生已有的数轴、正负数知识以及小学正数加法基础上,通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

四、学校与学生情况分析:大赵峪初级中学位于郊区,学生大都来自农村及郊区,学生的基础及学习习惯是比较差,家长督促力度不够,学生和老师对新的课堂教学方法不是很适应。

在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。

在学生已有知识基础上让学生主动参与到学习中去,达到本节课的学习目标。

五、教学过程:(一)问题与情境我们已经熟悉正数及0的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。

例如,本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等。

(注意:这里负数符号与运算符号的区别,负数放在运算符号后面要加括号)这里用到正数与负数的加法,那么怎么运算呢?(二)、师生共同探究有理数加法法则(思考p16)引入负数后,除了已有正数和正数相加、正数和0相加,还有负数负数相加、负数和正数相加、负数与0相加。

人教版七年级数学上册:1.3.1《有理数的加法》说课稿

人教版七年级数学上册:1.3.1《有理数的加法》说课稿

人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。

这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。

在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。

二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。

但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。

因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。

三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。

2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。

四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。

2.教学难点:对有理数加法概念的理解,数轴的使用。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。

2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。

六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。

2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。

3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。

4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。

5.小结:对本节课的内容进行总结,强调重点知识。

6.布置作业:布置适量的作业,巩固所学知识。

1.3.1《有理数的加法》教案

1.3.1《有理数的加法》教案
1.教学重点
(1)有理数加法法则的理解与应用:本节课的核心是使学生掌握同号相加和异号相加的法则,并能熟练运用这些法则进行计算。
-同号相加:两个正数或两个负数相加,保留原符号,直接将绝对值相加。
-异号相加:一个正数和一个负数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(2)减法转化为加法的技巧:使学生理解减法是加法的逆运算,能够将减法问题转化为加法问题进行计算。
其次,在新课讲授环节,我发现学生对有理数加法的基本概念掌握得还不错,但在案例分析中,部分学生对符号的处理仍存在困难。针对这一点,我打算在接下来的教学中,增加一些典型案例,让学生在分析案例的过程中,逐步突破难点。
此外,实践活动环节,学生分组讨论和实验操作的过程较为顺利。但在成果展示时,我发现部分学生表达不够清晰,可能是因为他们对知识点的理解还不够深入。为了提高学生的表达能力,我计划在以后的课堂中,多给学生一些展示自己的机会,并适时给予指导和鼓励。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数加法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.3.1《有理数的加法》教案
一、教学内容
《有理数的加法》教案,选自人教版七年级数学上册1.3.1节。本节课主要内容包括以下三个方面:
1.掌握有理数的加法法则:同号相加,保留原符号,得到结果;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,得到结果。

1.3.1有理数的加法(1)

1.3.1有理数的加法(1)

五、当堂检测
• 3.计算: • (1)15+(-22);(2) (-13)+(-8); 1 1 • (3)(-0.9)+1.5; (4) +( )
2 3
• 4.请你用生活实例解释5+(-3)=2,(-5) +(-3)=-8的意义
课后交流


• 结果是物体从起点向 运动了 m.写成算式 就是 .④
( -6( ) +2 - _ )
二、自主探究
• 根据以上两个算式③、④,尝试总结异号两数相 加的法则. • 符号相反的两个数相加,结果的符号与________ 加数的符号相同,并用 减去 . • 运用这一规律,尝试解题. • 例 计算: • (1)(-6+2);(2)8+(-3.6) • 解:(1)原式=_(I I-I I)= ; • (2)
第一章 有理数的加法(1)
(第1课时)
制作人:彭谡
一、情境导入
在小学,我们学过正数及0的 加法运算,引入负数后,怎 样进行加法运算呢?下面, 我们来研究这个问题.
二、自主探究
在小学,我们学过正数与正数相加、 正数与0相加.引入负数后,除了上述 情况外,还有哪几种情况呢?它们是: .下面借助具 体情境和数轴来研究有理数的加法.
二、自主探究
• 该问题还可以借助数轴来思考:将物体的 运动起点放在原点,向右运动与数轴的正 方向一致,分段运动的结果标在数轴的上 方,两次运动后总的结果标在数轴的下方 ,如图:
• 这样就在数轴上表示了运算5+3=8.
二、自主探究
• 2.如果物体先向左运动5 m,再向左运动3 m ,那么两次运动后总的结果是什么?用怎 样的算式表示?我们可以仿照(1)来回答 :
• 1.有理数的加法法则是什么? 2.在探索加法法则时我们使用了哪些常 见的数学研究方法? 3.进行有理数的加法运算时需要注意 几个步骤?

1.3.1 第1课时 有理数的加法法则

1.3.1 第1课时 有理数的加法法则
第1课时 有理数的加法法则
第一章 有理数
1.3 1.3.1 第1课时 有理数的加法法则
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第1课时 有理数的加法法则
学习指南
教学目标 理解有理数加法的意义,初步掌握有理数的加法法则,并能准确地进行 有理数的加法运算. 情景问题引入 (多媒体展示)回答下列问题:
课件目录
首页
末页
第1课时 有理数的加法法则
9.规定一种新的运算:a⊗b=1a+1b,那么(-2)⊗(-3)= -56 . 10.已知|a|=8,|b|=2. (1)当 a,b 同号时,求 a+b 的值; (2)当 a,b 异号时,求 a+b 的值.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)因为|a|=8,|b|=2,且 a,b 同号, 所以 a=8,b=2 或 a=-8,b=-2, 所以 a+b=10 或 a+b=-10. (2)因为|a|=8,|b|=2,且 a,b 异号, 所以 a=8,b=-2 或 a=-8,b=2, 所以 a+b=6 或 a+b=-6.
合适吗?请说明理由.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)8+1=9,所以东京时间为上午 9:00. (2)不合适.15-13=2,也就是说纽约时间正好是凌晨 2:00,正在睡觉, 所以不合适.
课件目录
首页
末页
第1课时 有理数的加法法则
分层作业
点击进入word链接
课件目录
首页
末页
第1课时 有理数的加法法则
课件目录
首页
末页

1.3.1有理数的加法 课时1 教案

1.3.1有理数的加法 课时1 教案
教学难点:有理数加法中的异号两数如何进行加法运算。
教学准备:
PPT课件和微课等。
教学过程
一、温故知新、引入新课
1、比较下列各数的大小:
7______4 7____-4 -7_____4 -7_____-4
2、如果向东走5米记作+5米,那么向西走3米记作_________.
3、已知a=-5,b=+3,︱a︳+︱b︱=_______
三、巩固训练、深化提高
1、计算下列各式(1)(-11)+(-9)(2)(-3.5)+(+7)
(3)(-1.08)+0(4)(+)+(说明理由
(如果认为结论不成立,请举例说明)
(1)若两个数的和是0,则这两个数都是0.
(2)任意的两个数相加,和不小于任何一个加数.
(3)(—5 )+0;(4)(+2 )+(—2.2);
【拓展应用】
3.(1)a+|a|=0,a是什么数?(2)若|a+1|=2,那么a=?
教学反思:
本节课基本上能采用以建构主义为依据,以学生为学习主体教师为主导的方式进行合作探究的教学方法。通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究。学生积极思考问题大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则。以问题为主线,能减少教师占用课堂时间,把主要时间交还给学生去探索新知识,避免教师“讲得太多”。
【让学生经历观察、猜测、验证思考的过程,放手让学生去探索有理数加法法则。给学生充分的动手操作,合作交流的时间和空间,让学获得丰富的活动经验,进行数形结合思想的渗透。】

1.3.1 有理数的加法法则

1.3.1 有理数的加法法则

1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则课题第1课时有理数的加法法则教学目标知识与技能理解有理数加法的意义,初步掌握有理数的加法法则,并能准确地进行有理数的加法运算.过程与方法1、经历探索有理数加法法则的过程,体会分类和归纳的思想方法.2、在有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力;3、渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.情感与态度1、通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.2、运用知识解决问题的成功体验教学重点有理数加法法则的理解和运用.教学难点异号两数相加的法则.教具多媒体教学活动教学步骤师生活动设计意图活动一:创设情境导入新课探究】在小学,我们学过正数及0的加法运算.学过的加法类型是正数与正数相加、正数与0相加.引入负数后,加法的类型还有哪几种呢?列举说明:正数、0、负数:1.正数+正数2.负数+负数3.正数+负数(负数+正数)4.正数+零5.负数+零创造一种轻松的学习氛围,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人.活动二:实践探究交流新知所以加法共分为三种类型:一、同号两数相加一个物体向左右方向运动,我们规定向右为正,向左为负.比如:向右运动5 m记作5 m,向左运动5 m记作-5 m.问题(1):如果物体先向右运动5 m,再向右运动3 m,那么两次运动后总的结果是什么?能否用算式表示?这一运算在数轴上表示为:问题(2):如果物体先向左运动5 m,再向左运动3 m,那么两次运动本活动的设计意在引导学生通过自主探究、合作交流对加法的运算过程进行总结,为加法运算法则的归纳奠定基础,同时学生也通过实际问题后总的结果是什么?能否用算式表示?这一运算在数轴上表示如图为:总结问题(1)(2)归纳:(+5)+(+3)=8;(-5)+(-3)=-8.根据以上两个算式能否尝试总结同号两数相加的法则?结论:同号两数相加,取相同的符号,并把绝对值相加.二、异号两数相加求以下物体两次运动的结果,并用算式表示:(1)一个物体先向左运动3 m,再向右运动5 m,该物体从起点向右运动了__2__m,__(-3)+5=2__;(2)一个物体先向右运动了3 m,再向左运动了5 m,该物体从起点向左运动了__2__m,__3+(-5)=-2__;(3)一个物体先向左运动了5 m,再向右运动了5 m,该物体从起点运动了__0__m,__(-5)+5=0__.根据上述问题可归纳出:(-3)+5=2;3+(-5)=-2;(-5)+5=0.根据以上三个算式能否尝试总结异号两数相加的法则?结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.三、一个数与0相加如果物体第1秒向右(或左)运动5 m,第2秒原地不动,很显然,两秒后物体从起点向右(或左)运动了5 m.如何用算式表示呢?5+0=5或(-5)+0=-5.结论:一个数同0相加,仍得这个数.综合以上情形,我们得到有理数的加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;4.一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习的加法运算不同. 情境,亲身参与了探索发现,获取知识和技能的全过程,培养了学生的分类和归纳概括的能力.活动三:应用迁移,巩固提高例1计算下列各题:(1)(-3)+(-9)(2)(-4.9)+3.9.处理方式:给学生提供示范,进行有理数的加法运算,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.变式计算:(1)15+(-22);(2)(-13)+(-8);(3)(-25)+5;(4)45+(-45);通过例题进一步熟悉有理数的加法法则.(5)-23+0;(6)-13+5.加强练习:(-4)+(-6)= -10(2)(+15)+(-17)= -2 (3)(-39)+(-21)= -60 (4)(-6)+│-10│+(-4)= 0 (5)(-37)+22= -15(6)-3+(3)= 0注意:在进行有理数的加法运算时,先确定是同号、异号、互为相反数还是同0相加,再根据法则进行运算.运算过程中,一定要先定符号再确定和的绝对值.例2利用有理数的加法解决下列实际问题:(1)一人一个月工资可得800元,奖金可得500元,这个人一个月收入多少元?(2)一个人向东走了200米,又向西走了300米,结果他是向东走还是向西走,向东或向西走了多少米?处理方式:教师引领分析,然后让学生板演解答过程:例3土星表面的夜间平均温度为-150 ℃,白天比夜间高27 ℃,那么白天的平均温度是多少?处理方式:两名学生板演,其余学生在练习本上完成.让学生交流对照,对于出现的问题及时强调,如:27前需加“+”吗?教师利用多媒体出示答案并矫正.通过应用有理数知识解决生活中的实际问题,一方面体会有理数加法的应用价值,另一方面培养学生在具体情况下灵活应用有理数知识解决实际问题的能力.【课堂小结】通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.师生共同总结:1.两个有理数相加,应按照“一观察,二确定,三求和”的步骤进行,即首先判断加法类型,再确定和的符号,最后确定和的绝对值.2.有理数的加法法则及其应用.3.注意异号的情况.【课堂反思】鼓励学生谈自己的收获和感想,让学生总结本节所学知识的同时学会及时反思和总结.。

1-3-1 有理数的加法(第一课时)(教学设计)-(人教版)

1-3-1 有理数的加法(第一课时)(教学设计)-(人教版)

1.3.1 有理数的加法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.1 有理数的加法(第一课时),内容包括:有理数加法法则、运用法则进行有理数的加法运算.2.内容解析有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一.熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础.有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践.就本章而言,有理数的加法是本章的重点之一.学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

基于以上分析,确定本节课的教学重点为:(1)了解有理数加法的意义,理解有理数加法法则的合理性.(2)能运用该法则准确进行有理数的加法运算.二、目标和目标解析1.目标(1)了解有理数加法的意义,理解有理数加法法则的合理性.(几何直观)(2)能运用该法则准确进行有理数的加法运算.(运算能力)(3)经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.(几何直观)2.目标解析通过情景了解有理数加法的意义;经历探索有理数加法法则的过程,理解并掌握有理数加法的法则;运用有理数加法法则正确进行运算(主要是整数的运算)。

在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力. 在探索过程中感受数形结合和分类讨论的数学思想.渗透由特殊到一般的数学思想.通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识.培养学生合作意识,体验成功,树立学习自信心.三、教学问题诊断分析七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索的问题充满好奇,又刚从小学升上初中,人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算分析得出结论,并利用小组合作帮助学生理解法则,运用法则.基于以上学情分析,确定本节课的教学难点为:经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.四、教学过程设计(一)情境引入在小学,我们学过正数及0的加法运算. 引入负数后,怎样进行加法运算呢?实际问题中,有时也会遇到与负数有关的加法运算. 例如,在本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.(二)自学导航思考1:小学学过的加法是正数与正数相加、正数与0相加. 引入负数后,加法有哪几种情况?思考2:结合上表思考,有理数的加法可以统一划分成几类?【结论】共三种类型.(1)同号两个数相加;(2)异号两个数相加;(3)一个数与0相加.(三)合作探究某校举行数学知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,没有作答得0分.问题1:先锋队第一题答对了,第二题答错了,则该队两题过后得多少分?我们可以把赢一个球记为+1,输一个球记为-1,此时该队的净胜球数为:(+1)+(-1)=0如果我们用1个表示+1,用1个表示-1,那么就表示0.问题2:先锋队第一题答错了,第二题答对了,则该队两题过后得多少分?我们可以把答对一题记为+1,答错一题记为-1,此时该队的得分为:(-1)+(+1)=0如果我们用1个表示+1,用1个表示-1,那么也表示0.探究1:计算 5+3 即(+5)+(+3)因此 5+3=8我们也可以利用数轴来表示加法运算过程. 以原点为起点,规定向东的方向为正方向,向西的方向为负方向.因此 5+3=8探究2:计算 (-5)+(-3)因此 (-5)+(-3)=-8【归纳】从算式5+3=8、(-5)+(-3)=-8可以看出:符号相同的两个数相加,结果的符号不变,绝对值相加.(+5)+(+13)=____ 8+5=____ (+7)+4=____(-4)+(-1)=____ (-12)+(-5)=____ (-3)+(-13)=____探究3:计算 (-3)+5因此 (-3)+5=2探究4:计算 3+(-5)因此 3+(-5)=-2【归纳】从算式(-3)+5=2、3+(-5)=-2可以看出:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值.(-9)+(+13)=____ 5+(-8)=____ (-7)+2=____(+4)+(-1)=____ 12+(-5)=____ 3+(-13)=____探究5:计算 5+(-5)因此 5+(-5)=0互为相反数的两个数相加,结果为0.思考:一个数同0相加,结果如何?仍得这个数5+0=____,(-5)+0=____.【归纳】有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(四)考点解析例1.计算:(1)(+15)+(+7); (2)(-10.3)+(-3.8); (3)(-15)+(+7);(4)(+23)+(-13); (5)(-6.6)+(+6.6); (6)(-12)+0.(2)原式=-(10.3+3.8)=-14.1;(4)原式=+(23-13)= 10;(5)原式=0;(6)原式=-12.【总结提升】【迁移应用】1.计算:5+( -7)=( )A.2B.-2C.12D.-122.比-3大5的数是( )A.-2B.-8C.2D.83.有理数a,b在数轴上的对应点的位置如图所示,则a+b的值为( )A.正数B.负数C.0D.非负数4.计算:(1)(-51)+(-37); (2)(-3)+0; (3)12+(-12); (4)(-1.2)+0.7; (5)34+(-23). 解: (1)原式=-(51+37)=-88; (2)原式=-3; (3)原式=0; (4)原式=-(1.2-0.7)=-0.5; (5)原式=+(34-23)=112.例2.计算:(1)(-123)+(+56); (2)(+18)+(-0.125); (3)(-215)+(+0.8).解: (1)原式=-(53-56)=-56; (2)原式=(+18)+(-18)=0; (3)原式=+(45-215)=1015=23. 【迁移应用】1.下列计算错误的是( )A.(-214)+0.25=-2 B.(-3)+(-3)=6 C.(-11)+0=-11 D.(-1.75)+(-214)=-42.计算:(1)(+314)+(-2.25); (2)(-323)+(-213);解: (1)原式=+(3.25-2.25)=1; (2)原式=-(323+213)=-6.例3.下列说法正确的是( )A.两个有理数的和一定大于任何一个加数B.若两个有理数的和为0,则这两个有理数一定互为相反数C.若两个有理数的和为负数,则这两个有理数一定都是负数D.若a ≠0,b ≠0,则a+b ≠0【迁移应用】1.若两个有理数的和为正数,则下列说法正确的是( )A.两个数一定都是正数B.两个数都不为0C.两个数中至少有一个为正数D.两个数中至少有一个为负数2.如果a+b<0且b>0,那么以下判断不正确的是( )A.|a|+b>0B.a+|b|<0C.(-a)+|b|<0D.(-a)+(-b)>03.已知有理数a,b,c在数轴上的对应点的位置如图所示,根据有理数的加法法则判断下列各式的符号:(1)a+b; (2)a+c; (3)b+c; (4)a+(-b).解:根据数轴上点的位置得c<b<0<a,且|a|<|b|<|c|,所以,(1)a+b<0;(2)a+c<0;(3)b+c<0;(4)a+(-b)>0.例4.若|x|=2,|y|=5,且x>y,求x+y的值.解:因为|x|=2,所以x=2或-2.因为|y|=5,所以y=5或-5.因为x>y,y=5时, x不可能大于y.所以x=2,y=-5或x=-2,y=-5.①当x=2,y=-5时,x+y=2+(-5)=-3;②当x=-2,y=-5时,x+y=(-2)+(-5)=-7.综上所述,x+y的值为-3或-7.【迁移应用】1.已知|x|=11,|y|=9,且x<y,则x+y的值为___________.【解析】因为|x|=11,|y|=9,且x<y,所以x=-11,y=9或x=-ll,y=-9,所以x+y=-11+9=-2或x+y=-11+(-9)=-20.所以x+y的值为-2或-20.2.已知|x|=8,|y|=3, |x+y|=x+y,则x+y=__________.【解析】因为|x|=8,|y|=3,所以x=8或-8,y=3或-3.因为|x+y|=x+y,所以x+y大于或等于0,所以x=8,y=3或x=8,y=-3.当x=8,y=3时,x+y= 11;当x=8,y=-3时,x+y=5.所以x+y的值为11或5.例5.去年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支情况存入一笔钱,如表为小黄去年从7月到12月的存款情况:(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,存折上共有多少元存款?分析:(1)依次求出7月到12月每个月存入的钱,并进行比较;(2)存款总数=6月到12月存入钱的总和.解:(1)7月存入3000+(-400)=2600(元);8月存入2600+(-100)=2500(元),9月存入2500+(+500)=3000(元),10月存入3000+(+300)=3300(元) ,11月存入3300+(+100)=3400(元),12月存入3400+(-500)=2900(元).因为2500<2600<2900<3000<3300<3400,所以11月存入的钱最多,8月存入的钱最少.(2)截止到12月,存折.上共有:3000+2600+2500+3000+3300+3400+2900=20700(元).【迁移应用】下表记录的是长江流域某站点某一周6天内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),上周日的水位已达到警戒水位33m.这6天哪一天的水位最高?位于警戒水位之上还是之下?解:星期一水位:33+(+0.2)=33.2(m),星期二水位:33.2+(+0.8)=34(m),星期三水位:34+(-0.4)=33.6(m),星期四水位:33.6+(+0.2)=33.8(m),星期五水位:33.8+(+0.3)=34.1(m),星期六水位:34.1+(-0.2)=33.9(m).因为33.2<33.6<33.8<33.9<34<34.1,所以星期五水位最高,位于警戒水位之上.五、教学反思。

最新人教版七年级数学上册《第1课时 有理数的加法》优质教案

最新人教版七年级数学上册《第1课时 有理数的加法》优质教案

1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法一、新课导入1.课题导入:(1)教师提问:前面我们学习了有理数,有理数有几种分类方法?(2)学生回答后,教师口述:在小学,我们学过正数及0的加法运算,引入负数后,怎样进行加法运算呢?日常生活中也会遇到与负数有关的加法运算.例如,在本章引言中,我们曾看到一张“收支情况表”,那里把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4.0+(-5.2)等.(3)教师再提问:小学学过正数与正数相加,正数与0相加,引入负数后,加法会出现哪些新的情况?(4)学生回答后,教师导入课题,这节课我们就从这几个方面来探讨有理数加法的法则.2.三维目标:(1)知识与技能经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.(2)过程与方法①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.②获得渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.(3)情感态度①通过观察、归纳、推断得到数学猜想,体验数学的探索性和创造性.②运用知识解决问题的成功体验.3.学习重、难点:重点:有理数的加法法则.难点:分情况讨论有理数的加法法则思路的建立;异号两数相加的法则.二、分层学习1.自学指导:(1)自学内容:探究有理数加法的法则.(2)自学时间:10分钟.(3)自学要求:借助数轴,用数形结合的方法理解有理数加法法则.注意法则的两个方面:和的符号与绝对值的和.(4)探究提纲:①问题1:一个物体作左右运动,我们规定向右为正,向左为负.向右运动5 m记作5 m,向左运动5 m记作-5 m,如果物体先向右运动5 m,再向右运动3 m,那么两次运动的最后结果是什么?可以用怎样的算式表示?这个问题我们可以借助于数轴表示运动过程与结果,进而列出算式.a.用原点表示第一次运动的起点.b.第二次运动的起点是第一次运动的终点.c.由第二次运动的终点与原点的相对位置得出两次运动的结果.由图示可知两次运动的结果是:从起点向右运动了8m,写成算式是5+3=8.②你能模仿上述过程,解决下面的问题吗?问题2:如果物体先向左运动5 m,再向左运动3 m,那么两次运动的最后结果是什么?可以用怎样的算式表示?最后结果是从起点向左运动了8 m,写成算式是(-5)+(-3)=-8.③根据上面两个问题所列算式,你能从“符号”和“绝对值”两个方面,用一句话概括一下上述两种情况的运算方法吗?符号相同的两个数相加,结果的符号不变,绝对值相加.④类比前面的研究过程,探究下列问题:问题3:如果物体先向左运动了3 m,再向右运动5 m,那么两次运动的最后结果怎样?如何用算式表示?结果是:从起点向右运动了2 m,-3+5=2.问题4:如果物体先向右运动了3 m,再向左运动5 m,那么两次运动的最后结果怎样?如何用算式表示?结果是:从起点向左运动了2 m,3+(-5)=-2.从“符号”和“绝对值”两个方面,概括问题3和问题4这两种情况下的运算方法:符号相反但绝对值不相等的两个数相加,结果的符号与绝对值较大的加数的符号相同,结果的绝对值等于较大的绝对值减去较小的绝对值.⑤如果物体先向右运动5 m,再向左5 m,那么两次运动的最后结果是仍在起点处,写成算式是5+(-5)=0.这说明:互为相反数的两个数相加,结果为0.⑥如果物体第1 s向右运动5 m,第2 s原地不动,那么2 s后的结果是从起点向右运动了5 m,写成算式是5+0=5;如果物体第1 s向左运动5 m,第2 s原地不动,那么2 s后的结果是从起点向左运动了5 m,写成算式是(-5)+0=-5.由这两个算式可以得出结论:一个数同0相加,仍是这个数.⑦你能从上述所列算式中归纳出有理数加法的运算法则吗?同桌相互交流一下.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:深入学生之中,了解学生在探究中作图、列式、归纳结论是否正确.②差异指导:指导学困生弄清探究中的作图,列算式及法则的归纳.(2)生助生:学生相互帮助解决一些自学中的疑难问题.4.强化:有理数的加法法则.1.自学指导:(1)自学内容:教材第18页例1.(2)自学时间:3分钟.(3)自学要求:进行有理数加法运算时,通过例题学习,掌握计算方法.(4)自学参考提纲:①应用法则计算时,先定符号,再算绝对值.②用算式表示下面的结果:a.温度由-4 ℃上升7 ℃; b.收入7元,又支出5元.结果收入多少元?a.-4+7=3;b.7-5=2③计算:a. (-4)+(-6)=-10b.4+(-6)=-2c.(-4)+6=2d.(-4)+4=0e.(-4)+14=10f.(-14)+4=-10g.6+(-6)=0h.0+(-6)=-62.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生之中,看学生做计算时思考过程及步骤是否正确.②差异指导:对个别法则运用不熟的同学进行强化记忆,查找法则运用中的不当之处在哪里.(2)生助生:学生通过交流解决一些自学中的疑难问题.4.强化:(1)在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算绝对值的和(或差).即“一看、二定、三算”.(2)判断题:①两个负数的和一定是负数.(√)②绝对值相等的两个数的和等于零.(×)③若两个有理数相加时的和为负数,这两个有理数一定都是负数.(×)④若两个有理数相加时的和为正数,这两个有理数一定都是正数.(×)⑤互为相反数的两个数的和为0. (√)三、评价1.学生的自我评价(围绕三维目标):学生相互交流各自的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的积极表现和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时可从学生熟悉的问题入手,让学生在具体问题中经历探索有理数加法的过程,理解有理数加法法则,并应用于实际计算中,教学采用合作探究式方法,让学生在合作中学习知识、掌握方法.教师在指导学生解决实际问题时强调,计算时先确定和的符号,再把绝对值相加或相减,不要疏忽出错.一、基础巩固(70分)1.(10分)计算:(-7)+(+5)=-2;(-3)+3=0;(-4)+5=1.2.(10分)上升10米,再上升-3米,则共上升了7米.3.(10分)甲地的海拔高度是-63米,乙地比甲地高24米,丙地比乙地高72米,则乙地的海拔高度是-39米,丙地的海拔高度是33米.4.(20分)两个有理数的和为负数,则这两个数一定(C).A.都是负数B.只有一个负数C.至少有一个负数D.无法确定5.(20分)计算:(1)(-10)+(+6)=-4(2)(+12)+(-4)=8(3)(-5)+(-7)=-12(4)(+6)+(-9) =-3(5)(-0.9)+(-2.7)=-3.6(6)25+(-35)=-15(7)(-13)+25=115(8)(-314)+(-1112)=-133二、综合应用(20分)6.(10分)如果|a|=3,|b|=2,则|a+b|等于(C )A.5B.1C.5或1D.±5或±17.(10分)请你用生活中的例子解释算式(+3)+(-3)=0;(-1)+(-2)=-3.解:①冬季某天早晨温度为0度,到中午气温上升了3度,再到下午又下降了3度,下午气温为0度;②取向东为正方向,先向西走了1 km,后又走了2 km,一共向西走了3 km.三、拓展延伸(10分)8.(10分)数a,b表示的点如图所示,则(1)a+b>0;(2)a+(-b)<0;(3)(-a)+b>0;(4)(-a)+(-b)<0.(填“>”“<”或“=”)学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

1.3.1 有理数的加法(第1课时 有理数的加法法则)(教案)-2022-2023学年七年级数学上册

1.3.1 有理数的加法(第1课时 有理数的加法法则)(教案)-2022-2023学年七年级数学上册

1.3.1 有理数的加法(第1课时有理数的加法法则)(教案)一、教学目标1.了解有理数加法的定义和性质。

2.掌握有理数加法法则,能够熟练进行有理数加法运算。

3.能够运用有理数加法解决实际问题。

二、教学内容1.有理数加法的定义和性质。

2.有理数加法法则。

3.实际问题的解决。

三、教学重点1.有理数的加法法则的掌握。

2.运用有理数加法解决实际问题。

四、教学难点1.运用有理数加法解决实际问题的能力提升。

五、教学准备1.教材《数学(上册)》人教版。

2.教学PPT。

3.小黑板和粉笔。

4.学生课本和练习册。

六、教学过程Step 1 引入新知1.简要复习上节课所学的有理数的基本概念和正数、负数的概念。

2.引导学生思考,如果有两个有理数相加,应该怎样计算呢?Step 2 定义和性质1.讲解有理数加法的定义:有理数的加法是指将两个有理数进行相加,得到一个新的有理数的运算。

2.介绍有理数加法的性质:–交换律:对于任意两个有理数a和b,a + b = b + a。

–结合律:对于任意三个有理数a、b和c,(a + b) + c = a + (b + c)。

–存在零元素:对于任意有理数a,a + 0 = a。

–存在相反元素:对于任意有理数a,存在一个有理数-b,使得a + (-b) = 0。

Step 3 加法法则1.揭示有理数加法法则,并通过例题进行讲解和演示。

2.分组练习:让学生分成小组,进行有理数加法的练习。

教师巡回指导和辅导。

Step 4 实际问题1.引导学生思考,如果有理数加法运算与实际问题相关,我们该如何解决呢?2.通过实际问题的例子,让学生运用有理数加法解决实际问题。

教师指导学生分析问题、列方程、解答问题。

Step 5 拓展练习1.教师出示一些拓展练习题,让学生在课堂上进行解答。

2.学生独立完成练习册上的相关题目,巩固和加深对有理数加法的理解和掌握。

七、课堂总结1.对本节课所学内容进行总结,强调有理数加法法则的重要性。

1.3.1有理数的加法教学设计(第一课时)

1.3.1有理数的加法教学设计(第一课时)

1.3.1有理数的加法教学设计(第一课时)赣州市南康区第八中学卓毓媛教学目的1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.2.通过有理数的加法运算,培养学生的运算能力.教学重点与难点重点:熟练应用有理数的加法法则进行加法运算.难点:有理数的加法法则的理解.教学过程(一)复习提问1.有理数有几种分类方法?都是如何分类的呢?2.在小学,我们学过正数及0的加法运算.学过的加法类型是正数与正数相加、正数与0相加.引入负数后,加法的类型还有哪几种呢?结论:共三种类型.即:(1)同号两个数相加;(2)异号两个数相加;(3)一个数与0相加.(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.(三)进行新课有理数的加法(板书课题)观察探究:数扩展到有理数之后,下面这些结论还成立吗?请说明理由.(1)若两个数的和是0,则这两个数都是0;(2)任何两数相加,和不小于任何一个加数.能力提高训练:1.如果两个有理数的和为正数,则下列正确的是()A.两个数一定都是正数B.两数都不为零C.两个数中至少有一个为正数D.两个数中至少有一个为负数2.已知|a|=2,|b|=3,求a+b的值。

解:因为|a|=2,|b|=3,所以a=±2,b=±3所以当a=2,b=3时,a+b=2+3=5当a=2,b=-3时,a+b=2+(-3)=-1当a=-2,b=3时,a+b=-2+3=1当a=-2,b=-3时,a+b=-2+(-3)=-5. (七)课堂小结:1.有理数的加法法则是什么?2.在总结加法法则时我们使用了哪些常见的数学研究方法?3.进行有理数的加法运算时需要注意哪几个步骤?(八)课后作业:1.教科书习题1.3第1题.2. 《数学作业本》第7页教学反思:本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此不必要把时间过多地放在复习这些旧知识上,而应以活动课的方式展开本节课的教学。

最新人教版七年级数学上册1.3.1_第1课时_有理数的加法法则1教案(精品教学设计)

最新人教版七年级数学上册1.3.1_第1课时_有理数的加法法则1教案(精品教学设计)

1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312); (3)(-5.25)+514; (4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113; (3)(-5.25)+514=0; (4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用1000股,下表为本周内每日该股票的涨跌情况:(1)(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题已知________.解析:因为|a|=5,所以a =-5或5,因为b 的相反数为4,所以b=-4,则a +b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎪⎨⎪⎪⎧(1)同号两数相加,取相同的符号,并把绝对值 相加.(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.。

《1.3.1有理数的加法》教学设计(第一课时)

《1.3.1有理数的加法》教学设计(第一课时)
3、注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议.
1.3.1有理数的加法(1)
教学
目标
1、理解有理数加法的实际意义;
2、会作简单的加法计算;
3、感受到原来用减法算的问题现在也可以用加法算。
教学
重点
和的符号的确定。
教学
难点
异号两数相加。
教学互动设计
设计意图
一、创设情境导入新课
回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况.
2、借助数轴来讨论有理数的加法.I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.
(2)交流汇报.(对学习小组的汇报结果,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则.
3、有理数加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

人教版数学七年级上册1.3《有理数的加法(1)》名师教案

人教版数学七年级上册1.3《有理数的加法(1)》名师教案

1.3.1 第一课时〔蒋庆东〕有理数的加法一、教学目标〔一〕学习目标1.经历探索有理数加法法那么的过程;2.初步理解有理数的加法法那么;3.会正确进展有理数的加法运算.〔二〕学习重点有理数的加法法那么的理解和运用.〔三〕学习难点异号两数相加.二、教学设计〔一〕课前设计1.预习任务有理数的加法法那么:(1)同号两数相加,取一样的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.预习自测〔1〕计算-2+3的结果是〔 〕A .-5B .1C .-1D .5【知识点】有理数的加法【解题过程】解:1)23(32=-+=+-【思路点拨】根据绝对值不相等的异号两数相加的法那么即可求解.【答案】B〔2〕以下计算结果是负数的是〔 〕A .0+[-(-3)]B .21211+- C .75.2431+- D .|)31(21-+-| 【知识点】有理数的加法法那么【解题过程】解:[]330)3(0=+=--+;121211-=+-;175.2431=+-;65)31(21=-+-.故应选B . 【思路点拨】根据有理数的加法法那么即可求解.【答案】B(3)以下运算中正确的选项是〔 〕A .0)7(7=-+-;B .17107-=+- ;C .21)43(41=++- ;D .6)313()322(-=-+--. 【知识点】有理数的加法【解题过程】解:14)7(7-=-+-,故A 错误;3107=+-,故B 错误;21)43(41=++-,C 正确;32)313(322)313()322(-=-+=-+--,故D 错误. 【思路点拨】根据有理数的加法法那么即可求解.【答案】C〔4〕小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为〔 〕A .4℃B .9℃C .-1℃D .-9℃【知识点】有理数的加法【解题过程】解:小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为-5+4=-1℃.【思路点拨】根据有理数的加法法那么即可求解.【答案】C .(二)课堂设计1.知识回忆(1)数轴的三要素是什么?(2)绝对值的法那么是什么?2.问题探究探究一探索有理数加法法那么★●活动①我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余〞时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.【设计意图】通过情景引入,让学生体会有理数的加法在实际生活中运用的必要性.●活动②看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.●活动③:1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向左运动了2m;(2)先向右运动5m,再向左运动5m,物体从起点向左/右运动了0m;(3)先向左运动5m,再向右运动5m,物体从起点向左/右运动了0m.【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.同时通过学生之间的互助与合作,激发学生学习数学的热情.探究二初步理解有理数的加法法那么★●活动①:师问:你能从算式中发现有理数加法的运算法那么吗?学生举手抢答总结:有理数加法法那么:(1)同号两数相加,取一样符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注:进展有理数的加法运算时,一定是先确定结果的符号,再定结果的绝对值.【设计意图】通过小组合作学习及教师问题的层层设置,培养学生团结协作的能力以及归纳总结的能力,激发学生学习的热情.探究三 会正确进展有理数的加法运算★▲.●活动 :例1 计算:〔1〕)9()3(-+-;〔2〕)5()8(++-【知识点】有理数的加法【解题过程】解:〔1〕12)93()9()3(-=+-=-+-;〔2〕3)58()5(8-=--=++-【思路点拨】利用有理数的加法法那么即可求解.【答案】〔1〕-12; 〔2〕-3练习:计算:〔1〕(+5)+(+7);〔2〕(-3)+(-8);〔3〕(-7)+(+5) ;〔4〕(-3)+(+8)【知识点】有理数的加法【解题过程】〔1〕12)75()7(5+=++=+++;(2)(-3)+(-8)=-〔3+8〕=-11;(3)(-7)+(+5)=-〔7-5〕=-2;(4)(-3)+(+8)=+〔8-3〕=+5【思路点拨】根据有理数的加法法那么即可求解.【答案】〔1〕+12;〔2〕-11; 〔3〕-2; 〔4〕+5【设计意图】通过练习,让学生能根据算式的构造,合理选择相应的计算法那么,同时学会有理数加法运算的简单书写过程.●活动②例2 计算:〔1〕9.3)7.4(+-;〔2〕)32(21-+. 【知识点】有理数的加法【解题过程】解:〔1〕8.0)9.37.4(9.3)7.4(-=--=+-〔2〕61)2132()32(21-=--=-+.【思路点拨】根据有理数的加法法那么即可求解.【答案】〔1〕8.0-; 〔2〕61-.练习:计算:〔1〕)213(312-+;〔2〕)6.7(525-+;〔3〕)69.1()71.2()533(++-+-. 【知识点】有理数的加法.【解题过程】解:〔1〕67)312213()213(312-=--=-+ 〔2〕2.2)4.56.7()6.7(525-=--=-+; 〔3〕62.4)69.171.26.3()69.1()71.2()533(-=-+-=++-+- 【思路点拨】根据有理数的加法法那么即可求解.【答案】〔1〕67-;〔2〕2.2-; 〔3〕62.4-. 【设计意图】通过练习,使学生能灵活运用有理数的加法法那么进展计算,让学生在运算中提升计算能力.●活动③例3 甲地海拔高度是-28 m ,乙地比甲地高32 m ,求乙地的海拔高度.【知识点】有理数的加法【解题过程】解:甲地海拔高度是-28 m ,乙地比甲地高32 m ,那么乙地的海拔高度为 -28+32=4m .【思路点拨】根据有理数的加法法那么即可求解.【答案】-28+32=4m练习:一个数是11,另一个数比11的相反数大2,求这两个数的和【知识点】有理数的加法【解题过程】解:由题意可得: 2119,9211=+--=+-【思路点拨】根据有理数的加法法那么即可求解.【答案】2.【设计意图】通过练习,让学生会用有理数的加法解决实际问题,提高学生解决实际问题的能力.●活动④例4 假设3||=x ,2||=y ,且y x <,求y x +的值.【知识点】有理数的加法,绝对值. 【解题过程】解:因为2,3==y x ,所以2,3±=±=y x ,又y x <,所以2,3±=-=y x ,故1-=+y x 或5-=+y x【思路点拨】先根据绝对值等于一个正数的数有两个,求出y x ,的值,再根据条件确定y x ,的值,最后代入即可求解.【答案】1-=+y x 或5-=+y x练习:|a |=2,|b |=2,|c |=3,且有理数a ,b ,c 在数轴上的位置如下图,计算a +b +c 的值.【知识点】有理数的加法.【数学思想】数形结合.【解题过程】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ;又∵|a |=2,|b |=2,|c |=3,∴a =2,b =﹣2,c =3;故a +b +c =2﹣2+3=3.【思路点拨】根据数轴上a 、b 、c 和原点的位置,判断出三个数的取值,然后再代值求解.【答案】a +b +c =2﹣2+3=3【设计意图】通过练习,让学生能运用有理数的加法的相关知识解决较复杂的问题,培养学生的综合解题能力.3.课堂总结知识梳理有理数的加法法那么:(1)同号两数相加,取一样的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.重难点归纳〔1〕绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(2)进展有理数的加法时,一定是先确定结果的符号,再确定结果的绝对值.〔三〕课后作业根底型 自主突破1.计算(-3)+(-9)的结果等于〔 〕A .12B .-12C .6D .-6【知识点】有理数的加法【解题过程】解:12)93()9()3(-=+-=-+-【思路点拨】根据有理数的加法法那么即可求解.【答案】B2.以下计算中,不正确的选项是〔 〕A .-(-6)+(-4)=2B .(-9)+[-(-4)]=-5C .-|-9|+4=13D .-(+9)+[+(-4)]=-13【知识点】有理数的加法【解题过程】解:由题意可知:A 、B 、D 的计算结果均是正确的,只有C 是错误的,因为 54949-=+-=+--【思路点拨】根据有理数的加法法那么计算后即可判断.【答案】C3.两个数相加,其和小于每一个加数,那么〔 〕A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不确定【知识点】有理数的加法【解题过程】解:两个数相加,假设其和小于每一个加数,那么这两个数必定均为负数.故应选B【思路点拨】根据有理数的加法法那么即可判断.【答案】B4.填空:①假设a >0,b >0,那么a +b 0;②假设a <0,b <0,那么a +b 0;③假设a >0,b <0,且│a │>│b │,那么a +b 0;④假设a >0,b <0,且│a │<│b │,那么a +b 0.【知识点】有理数的加法【解题过程】解:①假设a >0,b >0,那么a +b > 0;②假设a <0,b <0,那么a +b < 0;③假设a >0,b <0,且│a │>│b │,那么a +b > 0;④假设a >0,b <0,且│a │<│b │,那么a +b < 0.【思路点拨】根据有理数的加法法那么即可判断.【答案】>,<,>,<,5.计算:〔1〕(-34)+(+76) ;〔2〕)43()31(-+- 〔3〕)32(21-++ ;〔4〕)312()433(++-. 【知识点】有理数的加法.【解题过程】解:〔1〕42)3476()76()34(=-+=++-;(2)1213)4331()43()31(-=+-=-+-;(3)61)2132()32()21(-=--=-++;(4)1251)312433(312433-=--=⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛-【思路点拨】根据有理数加法法那么即可求解.【答案】〔1〕42;〔2〕1213-;〔3〕61-;〔4〕1251-. 6.|a |=8,|b |=2;〔1〕当a 、b 同号时,求a +b 的值;〔2〕当a 、b 异号时,求a +b 的值.【知识点】有理数加法【解题过程】解:〔1〕∵|a |=8,|b |=2,且a ,b 同号,∴a =8,b =2;a =﹣8,b =﹣2,那么a +b =10或﹣10;〔2〕∵|a |=8,|b |=2,且a ,b 异号,∴a =8,b =﹣2;a =﹣8,b =2,那么a +b =6或﹣6.【思路点拨】各项根据题意,利用绝对值的代数意义求出a 与b 的值,即可求出a +b 的值.【答案】〔1〕a +b =10或﹣10;〔2〕a +b =6或﹣6.能力型 师生共研1.假设a 、b 互为相反数,那么=-+|5|b a .【知识点】有理数的加法【解题过程】解:因为a 、b 互为相反数,所以0=+b a ,5505=-=-+b a【思路点拨】根据互为相反数的两个数的和为零即可求解.【答案】52.〔1〕:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么a = ;b = ;c = .〔2〕假设|x |=3,|y |=4,|b |=1且b<0,a =1且ay <0,求a +b +x +y 的值.【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数, ∴a =1,b =﹣1,c =0;故答案为1,﹣1,0.〔2〕因为a =1,由于ay <0,所以y <0.因为|x |=3,|y |=4,所以x =±3,y =﹣4.当a =1,b =﹣1,x =3,y =﹣4时a +b +x +y =1+〔﹣1〕+3+〔﹣4〕=﹣1;当a =1,b =﹣1,x =﹣3,y =﹣4时a +b +x +y =1+〔﹣1〕+〔﹣3〕+〔﹣4〕=﹣7.【思路点拨】〔1〕根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a 、b 、c 的值;〔2〕由绝对值的意义,求出x 、y ,再由ay <0,确定y 的值.代入代数式求出a +b +x +y 的值.【答案】〔1〕1,﹣1,0.〔2〕-1或-7探究型 多维突破1.计算:++++++++++= .【知识点】有理数的加法【解题过程】解:原式=×〔+++…+〕 =×〔1﹣﹣…+﹣〕 =×〔1﹣〕 =×=. 【思路点拨】先提取,然后利用拆项裂项法求解即可.【答案】.2.假设规定b a b a f +=),(.如43)4,3(+=f =7.试求)]4,3(,4[--f f 的值.【知识点】有理数的加法【解题过程】解:314)1,4())4,3(,4(,143)4,3(-=+-=-=--=+-=-f f f f【思路点拨】根据题目要求,抓关键信息即b a b a f +=),( 即可.【答案】-3.自助餐1.计算3+(-3)的结果是〔 〕A .6B .-6C .1D .0【知识点】有理数的加法【解题过程】解:3+(-3)=0【思路点拨】根据有理数的加法法那么即可计算.【答案】D2.以下运算错误的有〔 〕① (-21)+(+21)=0; ②(-6)+(+4)= -10;③ 0+(-13)=+13; ④32)61()65(=-++ A .1个 B .2个 C .3个 D .4个【知识点】有理数的加法【解题过程】解: ① (-21)+(+21)=0,正确;②(-6)+(+4)= -10,错误,(-6)+(+4)=-2; ③ 0+(-13)=+13,错误,0+(-13)=-13; ④正确;故错误的个数为2个.【思路点拨】根据有理数的加法法那么即可求解.【答案】B3.假设|a |=7,b 的相反数是2,那么a +b 的值是 .【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵|a |=7,∴a =±7,∵b 的相反数是2,∴b =﹣2,①当a =7,b =﹣2时,a +b =7+〔﹣2〕=5;②当a =﹣7,b =﹣2时,a +b =﹣7+〔﹣2〕=﹣9;故答案为:5或﹣9.【思路点拨】分别求出a b 的值,分为两种情况:①当a =7,b =﹣2时,②当a =﹣7,b =﹣2时,分别代入求出即可.【答案】5或﹣9.4.在数﹣5、1、﹣3、5、﹣2中任取三个数相加,其中最大的和是 ,最小的和是 .【知识点】有理数的加法【解题过程】解:5+1+〔﹣2〕=4,〔﹣5〕+〔﹣3〕+〔﹣2〕=﹣10.答:其中最大的和是4,最小的和是﹣10.【思路点拨】由题意可知,要任取三个不同的数相加,使其中最大,那么取其中三个较大的数相加即可;使其中的和最小,那么取其中三个较小的数相加即可.【答案】4,﹣10.5.计算:〔1〕)75()41(-++ 〔2〕)851()3(++- 〔3〕)57.1()61.7(++- 〔4〕659)5.11(+- 【知识点】有理数的加法【解题过程】解:〔1〕()()34417575)41(-=--=-++;(2)()83185138513-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++-; (3)()()()04.657.161.757.161.7-=--=++-(4)()356595.116595.11-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++- 【思路点拨】根据有理数的加法法那么即可求解.【答案】〔1〕-34;〔2〕831-;〔3〕04.6-; 〔4〕35- 6.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:星期一 二 三 四 五 每股涨跌/元 +4 +4.5 ﹣1 ﹣2.5 ﹣6〔1〕星期三收盘时,每股多少元?〔2〕本周内每股买最高价多少元?最低价多少元?【知识点】有理数的加法【解题过程】解:〔1〕67+〔+4〕+〔+4.5〕+〔﹣1〕=74.5〔元〕,故星期三收盘时,每股74.5元;〔2〕周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+〔﹣1〕=74.5元,周四:74.5+〔﹣2.5〕=72元,周五:72+〔﹣6〕=66元,∴本周内最高价为75.5元,最低价66元.【思路点拨】〔1〕用买进的价格加上周一周二周三的涨跌价格,然后根据有理数加法运算法那么进展计算即可求解;〔2〕分别求出这五天的价格,然后即可得解.【答案】〔1〕星期三收盘时,每股74.5元;〔2〕本周内最高价为75.5元,最低价66元。

1.3.1有理数的加法 教学设计 2022—2023学年人教版数学七年级上册

1.3.1有理数的加法 教学设计 2022—2023学年人教版数学七年级上册

1.3.1 有理数的加法教学设计 2022—2023学年人教版数学七年级上册一、教学目标1.理解有理数的概念,能够区分有理数与无理数。

2.掌握有理数的加法运算规则。

3.能够熟练进行有理数的加法运算,且具备解决实际问题的能力。

二、教学重点与难点1.教学重点:有理数的加法运算规则。

2.教学难点:有理数的加法运算应用与实际问题解决。

三、教学过程第一步:导入新知1.针对学生已经学过的正数和负数概念,通过提问的方式导入有理数的概念,引导学生明确有理数的定义和特点。

–有理数是可以表示为两个整数的比值的数,可包括正数、负数和零。

–与有理数相对的是无理数,无理数不能表示为两个整数的比值。

第二步:有理数的加法规则1.引导学生观察有理数的正负特点,并总结有理数的加法规则。

–正数加正数:结果仍为正数。

–负数加负数:结果仍为负数。

–正数加负数:数值较大的减去数值较小的,结果的符号与数值较大的相同。

–零与任何数的加法结果为该数本身。

第三步:加法运算实例演示1.通过具体的实例,演示有理数的加法运算过程。

–示例 1: 计算:3 + (-5)。

–示例 2: 计算:(-2) + 6。

–示例 3: 计算:(-4) + (-7)。

第四步:加法运算练习1.向学生提供一些有理数的加法计算题目,并指导学生独立完成。

–练习题 1: 1 + (-3)–练习题 2: (-6) + 2–练习题 3: (-9) + (-8)第五步:应用与拓展1.引导学生通过解决实际问题应用有理数的加法运算。

–问题 1: 小明从海拔3000米处徒步下山,连续走了500米后又爬了300米,最后又下山了200米,求小明最终所在的海拔高度。

–问题 2: 一个负债为180元的人又向别人借了130元,求他现在的负债是多少元。

–问题 3: 有两个水杯,一个杯子里有200毫升的水,另一个杯子里有400毫升的水,将两个杯子的水倒入一个容器中,求容器中的水量。

四、板书设计# 1.3.1 有理数的加法教学设计## 教学目标- 理解有理数的概念,能够区分有理数与无理数。

人教版七年级数学上册:1.3.1《有理数的加法》教学设计1

人教版七年级数学上册:1.3.1《有理数的加法》教学设计1

人教版七年级数学上册:1.3.1《有理数的加法》教学设计1一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的内容是在学生已经掌握了有理数的概念和运算法则的基础上进行授课的。

有理数的加法是数学中基本的运算之一,它不仅在生活中有广泛的应用,而且是学习更高级数学知识的基础。

本节课的内容主要包括有理数的加法法则、加法的运算律以及加法在实际问题中的应用。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对于有理数的概念和运算法则已经有了一定的了解。

但是,学生在进行有理数的加法运算时,可能会对加法的运算律和有理数的加法法则理解不深,导致在实际运算中出现错误。

因此,在教学过程中,需要引导学生通过观察、思考、交流等方式,深入理解加法的运算律和有理数的加法法则,提高他们的运算能力。

三. 教学目标1.知识与技能:使学生掌握有理数的加法法则,理解加法的运算律,能够熟练地进行有理数的加法运算。

2.过程与方法:通过观察、思考、交流等方式,培养学生解决问题的能力和团队合作的精神。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。

四. 教学重难点1.重点:有理数的加法法则和加法的运算律。

2.难点:理解有理数的加法法则,能够灵活运用加法的运算律进行运算。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生理解和掌握有理数的加法法则。

2.问题驱动法:通过设置问题,激发学生的思考,培养他们解决问题的能力。

3.合作学习法:通过小组讨论和合作,培养学生的团队合作精神和交流能力。

六. 教学准备1.教学课件:制作课件,内容包括有理数的加法法则、加法的运算律以及实际问题的应用。

2.教学素材:准备一些实际问题,用于引导学生进行加法运算。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数的加法运算,例如:“小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?”引导学生进行思考和讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1 第一课时有理数的加法一、教学目标(一)学习目标1.经历探索有理数加法法则的过程;2.初步理解有理数的加法法则;3.会正确进行有理数的加法运算.(二)学习重点有理数的加法法则的理解和运用.(三)学习难点异号两数相加.二、教学设计(一)课前设计1.预习任务有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.预习自测(1)计算-2+3的结果是( )A .-5B .1C .-1D .5【知识点】有理数的加法【解题过程】解:1)23(32=-+=+-【思路点拨】根据绝对值不相等的异号两数相加的法则即可求解.【答案】B(2)下列计算结果是负数的是( )A .0+[-(-3)]B .21211+-C .75.2431+-D .|)31(21-+-| 【知识点】有理数的加法法则【解题过程】解:[]330)3(0=+=--+;121211-=+-;175.2431=+-;65)31(21=-+-.故应选B . 【思路点拨】根据有理数的加法法则即可求解.【答案】B(3)下列运算中正确的是( )A .0)7(7=-+-;B .17107-=+- ;C .21)43(41=++- ;D .6)313()322(-=-+--. 【知识点】有理数的加法【解题过程】解:14)7(7-=-+-,故A 错误;3107=+-,故B 错误;21)43(41=++-,C 正确;32)313(322)313()322(-=-+=-+--,故D 错误. 【思路点拨】根据有理数的加法法则即可求解.【答案】C(4)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃B .9℃C .-1℃D .-9℃【知识点】有理数的加法【解题过程】解:小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为-5+4=-1℃.【思路点拨】根据有理数的加法法则即可求解.【答案】C .(二)课堂设计1.知识回顾(1)数轴的三要素是什么?(2)绝对值的法则是什么?2.问题探究探究一探索有理数加法法则★●活动①我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.【设计意图】通过情景引入,让学生体会有理数的加法在实际生活中运用的必要性.●活动②看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.●活动③:1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向左运动了2m;(2)先向右运动5m,再向左运动5m,物体从起点向左/右运动了0m;(3)先向左运动5m,再向右运动5m,物体从起点向左/右运动了0m.【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.同时通过学生之间的互助与合作,激发学生学习数学的热情.探究二初步理解有理数的加法法则★●活动①:师问:你能从算式中发现有理数加法的运算法则吗?学生举手抢答总结:有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注:进行有理数的加法运算时,一定是先确定结果的符号,再定结果的绝对值.【设计意图】通过小组合作学习及老师问题的层层设置,培养学生团结协作的能力以及归纳总结的能力,激发学生学习的热情.探究三 会正确进行有理数的加法运算★▲.●活动 :例1 计算:(1))9()3(-+-;(2))5()8(++-【知识点】有理数的加法【解题过程】解:(1)12)93()9()3(-=+-=-+-;(2)3)58()5(8-=--=++-【思路点拨】利用有理数的加法法则即可求解.【答案】(1)-12; (2)-3练习:计算:(1)(+5)+(+7);(2)(-3)+(-8);(3)(-7)+(+5) ;(4)(-3)+(+8)【知识点】有理数的加法【解题过程】(1)12)75()7(5+=++=+++;(2)(-3)+(-8)=-(3+8)=-11;(3)(-7)+(+5)=-(7-5)=-2;(4)(-3)+(+8)=+(8-3)=+5【思路点拨】根据有理数的加法法则即可求解.【答案】(1)+12;(2)-11; (3)-2; (4)+5【设计意图】通过练习,让学生能根据算式的结构,合理选择相应的计算法则,同时学会有理数加法运算的简单书写过程.●活动②例2 计算:(1)9.3)7.4(+-;(2))32(21-+. 【知识点】有理数的加法【解题过程】解:(1)8.0)9.37.4(9.3)7.4(-=--=+-(2)61)2132()32(21-=--=-+.【思路点拨】根据有理数的加法法则即可求解.【答案】(1)8.0-; (2)61-.练习:计算:(1))213(312-+;(2))6.7(525-+;(3))69.1()71.2()533(++-+-. 【知识点】有理数的加法.【解题过程】解:(1)67)312213()213(312-=--=-+ (2)2.2)4.56.7()6.7(525-=--=-+; (3)62.4)69.171.26.3()69.1()71.2()533(-=-+-=++-+- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)67-;(2)2.2-; (3)62.4-. 【设计意图】通过练习,使学生能灵活运用有理数的加法法则进行计算,让学生在运算中提升计算能力.●活动③例3 甲地海拔高度是-28 m ,乙地比甲地高32 m ,求乙地的海拔高度.【知识点】有理数的加法【解题过程】解:甲地海拔高度是-28 m ,乙地比甲地高32 m ,则乙地的海拔高度为 -28+32=4m .【思路点拨】根据有理数的加法法则即可求解.【答案】-28+32=4m练习:一个数是11,另一个数比11的相反数大2,求这两个数的和【知识点】有理数的加法【解题过程】解:由题意可得: 2119,9211=+--=+-【思路点拨】根据有理数的加法法则即可求解.【答案】2.【设计意图】通过练习,让学生会用有理数的加法解决实际问题,提高学生解决实际问题的能力.●活动④例4 若3||=x ,2||=y ,且y x <,求y x +的值.【知识点】有理数的加法,绝对值. 【解题过程】解:因为2,3==y x ,所以2,3±=±=y x ,又y x <,所以2,3±=-=y x ,故1-=+y x 或5-=+y x【思路点拨】先根据绝对值等于一个正数的数有两个,求出y x ,的值,再根据条件确定y x ,的值,最后代入即可求解.【答案】1-=+y x 或5-=+y x练习:已知|a |=2,|b |=2,|c |=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值.【知识点】有理数的加法.【数学思想】数形结合.【解题过程】解:由数轴上A.B.c 的位置知:b <0,0<a <c ;又∵|a |=2,|b |=2,|c |=3,∴a =2,b =﹣2,c =3;故a +b +c =2﹣2+3=3.【思路点拨】根据数轴上A.B.c 和原点的位置,判断出三个数的取值,然后再代值求解.【答案】a +b +c =2﹣2+3=3【设计意图】通过练习,让学生能运用有理数的加法的相关知识解决较复杂的问题,培养学生的综合解题能力.3.课堂总结知识梳理有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.重难点归纳(1)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(2)进行有理数的加法时,一定是先确定结果的符号,再确定结果的绝对值.。

相关文档
最新文档