天津大学《最优化方法》复习题
最优化方法复习题66882.docx
《最优化方法》复习题第一章概述(包括凸规划)一、判断与填空题ar§ max /W =玄生min【―/(兀)】・71xeR n xeR n2max |/(x): x e D o }= - min [f(x): x e D Q R H\ x3设f : D u RJ R・若T wR”,对于一切xeR n恒有/(Z)</(x),则称T为最优化问题m in fM的全局最优解.xxeD4设f •・D U RJ R.若Z eD ,存在F的某邻域Ng,使得对一切恒有/U*)</(兀),则称T为最优化问题min /(兀)的严格局部最xeD优解.X5给定一个最优化问题,那么它的最优值是一个定值.V6非空集合D匸/?"为凸集当且仅当D屮任意两点连线段上任一点属于D. V 7非空集合D o 7?"为凸集当J1仅当D中任意有限个点的凸组合仍属于D. V 8任意两个凸集的并集为凸集.x9 函数f : D匸R” T R为凸集£>上的凸函数当且仅当—/为D上的凹函数.V1()设f : D u R” T R为凸集D上的可微凸函数,Z G Z).则对V XG D,有/(x)-/(x*)<V/(x*/(x-x*). x11若c(兀)是凹函数,则D = {xeR n\ c(x) > 0}是凸集。
V12设{*}为由求解min的算法A产生的迭代序列,假设算法A为下降算法,XG D则对\^^{0,1,2,・・・},恒有____ /(x A.+1)< f(x k) ____________ :13算法迭代时的终止准则(写出三种): ____________________________ o 14凸规划的全体极小点组成的集合是凸集。
V15函数f : D u R“ T R在点('沿着迭代方向d* eR n \ {()}进行精确一维线搜索的步长匕.,则其搜索公式为_____________________________ .16函数f •. D匚R“ T R在点*•沿着迭代方向d k e/?z, \{0}进行梢确一•维线搜索的步长匕,则V/(x A+a k d k Yd k = ___________ 0 .17设d k eR n\{0}为点/ w D匸R“处关于区域D的一个下降方向,则对于Va >0, 3«G(0,a)使得x二、简述题1写出Wolfe-Powell非精确一维线性搜索的公式。
天津大学最优化历年试题(精品资料).doc
【最新整理,下载后即可编辑】2003—2008《工程与科学计算》历届试题类型 1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛.例2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位)(2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y xy xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度.例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈+++⎰是Gauss 型求积公式.6.Romberg 方法例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填入下表(结果保留至小数点后第五位).7(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i , 证明:⎰⎰==ba ba i i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即 1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nbi k i k ia k x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。
最优化方法习题1
《最优化方法》期末考试练习题声明:仅供复习时参考。
实际考试题型类似,题量小于本练习。
一. 选择题:略第一题主要考察基本概念、定理,算法的基本思想和matlab 命令。
二.简答题1. 写出线性规划问题;0, ,94 3 ,5 32 4 s.t. ,823 max 21321321321≥≥-+-≥+-+-x x x x x x x x x x x 的对偶规划。
2.如果求解某整数规划问题的松弛问题得到如下的最优单纯形表:求以1x ,2x 为源行生成的割平面方程。
3.在区间[0,3]上用黄金分割法求函数12)(3+-=t t t ϕ的极小点,只要求求出 初始的迭代点和保留区间及此时的近似最优解。
4. 用tx ex y 21-=拟合下列数据1.0,24.0,11,07.2,1=======-=y t y t y t y t写出非线性最小二乘问题三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。
取初始点()()Tx2,21=,.1.0=ε2.讨论约束极值问题⎪⎪⎩⎪⎪⎨⎧≥≥≤-≤++--+=0004..866)(min212121212221x x x x x x t s x x x x x f 的Kuhn-Tucker 点。
3.用外点法(外部惩罚函数法)求解2s.t.)3()1()(min 212221≤-+-+-=x x x x x f4.用内点法求解非线性规划03)( 03)( s.t. 296)(min 22112121≥-=≥-=++-=x x g x x g x x x x f5.用乘子法求解1s.t.6121)(min 212221=++=x x x x x f 6.用表格单纯形法求解线性规划⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤++++=0,,34623max 3213231321321x x x x x x x x x x x x x Z并根据最优单纯形表格写出该线性规划的最优基和最优基的逆。
《最优化方法》复习题.docx
《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。
5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。
最优化方法试卷及答案5套
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
24.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
《最优化方法》复习题(含答案)
附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。
最优化方法(试题+答案)
一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。
3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。
2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。
三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。
天津大学最优化历年试题
2003—2008《工程与科学计算》历届试题类型 1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛. 例 2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位) (2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y x y xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度. 例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈++⎰是Gauss 型求积公式.6.Romberg 方法 例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填7.证明(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i ,证明:⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2Λρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x L ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =L 是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nb i k i k iak x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2Λρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。
天津大学《最优化方法》复习题(含答案)
天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2{}{}.:)(min :)(max n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。
√12 设{}kx 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{} ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合是凸集。
天津大学最优化方法复习题.docx
《最优化方法》复习题笫一章概述(包括凸规划)一、判断与填空题1arg max /(x) = arg m in7xeR n xeR n2max {/(x): x G D e /?" }= 一min {/(x): x e Z) o /?H} x3设f : D u RJ R.若疋wR”,对于一切xwR”恒有/(x*)</(x),W 弥 X 为最优化问题min /(兀)的全局最优解.xXG D4设f : D匚R" — R.若x* ,存在F的某邻域/.(/),使得对一切兀e 恒有/(%*)< f(x),则称T为最优化问题min fM的严格局部最XE D优解.X5给定一个最优化问题,那么它的最优值是一个定值.V6非空集合D c /?"为凸集当且仅当D中任意两点连线段上任一点属于D. V7非空集合D匸/?"为凸集当且仅当D中任意有限个点的凸组合仍属丁D. V 8任意两个凸集的并集为凸集.x9 函数f : D j R" T/?为凸集D上的凸函数当且仅当一/为D上的凹函数.V10设f : D u RJ R为凸集D上的可微凸函数,eD .则对Vx G D ,有fM -/(%*)< V/(x*)' (x -x*). x11若c(兀)是凹函数,则D = [x^R n\ c(x) > 0}是凸集。
V12设{*}为由求解min/(Q的算法A产牛的迭代序列,假设算法A为下降算法,xeD则对Pk e {0,1, 2,…},恒有____ /(x,+1) < /(X,) _____________ .13算法迭代吋的终止准则(写出三种): _____________________________ o 14凸规划的全休极小点组成的集合是凸集。
V15函数f:D^R n TR在点戏沿着迭代方向d* eR n \{0}进行耕确一维线搜索的步长则其搜索公式为 ______________________________________________ .16函数f:D^R n T/?在点/沿着迭代方向d* eR n \{0}进行精确一维线搜索的步长匕,则Vf(x k +a k cl k)T d k = ______ 0 _____________ .17设d k eR n\{0}为点x k eD^R n处关于区域D的一个下降方向,则对于V 厉〉0, 3cre(0, a)使得+ad k e D. x二、简述题1写出Wolfe-Powell非精确一维线性搜索的公式。
最优化方法试题
《最优化方法》试题一、 填空题1.设()f x 是凸集n S R ⊂上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( );2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ∇是( )矩阵;3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ⎧=+---⎪--≥-⎨⎪--≥-≥⎩,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。
二、选择题1.给定问题222121212min (2)..00f x x s t x x x x ⎧=-+⎪⎪-+≤⎨⎪-≤⎪⎩,则下列各点属于K-T 点的是( )A) (0,0)T B) (1,1)TC) 1(,22T D) 11(,)22T 2.下列函数中属于严格凸函数的是( )A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-<C) 2222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题()22121212121211min 51022..2330420,0f x x x x x s t x x x x x x =+---≤+≤≥取初始点()0,5T。
四、考虑约束优化问题()221212min 4..3413f x x x s t x x =++≥用两种惩罚函数法求解。
五.用牛顿法求解二次函数222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。
初始点011,1,22Tx ⎛⎫= ⎪⎝⎭。
最优化方法试卷及答案5套.docx
最优化⽅法试卷及答案5套.docx《最优化⽅法》1⼀、填空题:1. _______________________________________________________ 最优化问题的数学模型⼀般为:_____________________________________________ ,其中___________ 称为⽬标函数,___________ 称为约束函数,可⾏域D可以表⽰为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2⽄+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿⽅向d的⼀阶⽅向导数为___________ ,⼏何意义为_____________________________________ ,⼆阶⽅向导数为____________________ ,⼏何意义为_____________________________3.设严格凸⼆次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中⼦(兀)为严格凸函数,D 是凸集)的最优解是唯⼀的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可⾏点,若在元处 d 满⾜巧(计<0,VC,(元)(可则d 是元处的可⾏下降⽅向。
最优化方法考试试题
最优化方法考试试题一、选择题(每题2分,共20分)1、下列哪个选项不是最优化方法的常见应用场景?A.生产计划优化B.金融投资组合优化C.图像处理优化D.自然语言处理优化正确答案:D.自然语言处理优化。
2、下列哪个算法不是求解线性规划问题的常用算法?A.单纯形法B.内点法C.外点法D.牛顿法正确答案:D.牛顿法。
3、下列哪个选项不是整数规划问题的特点?A.变量取值必须是整数B.问题复杂度较高,通常需要特殊算法求解C.在实际应用中比线性规划更为广泛D.可以使用与线性规划相同的方法求解正确答案:D.可以使用与线性规划相同的方法求解。
4、下列哪个选项不是梯度下降法的优点?A.简单易行,易于实现B.能较快地收敛到局部最优解C.对初值不敏感,易于找到全局最优解D.对于大规模数据处理效率较高正确答案:C.对初值不敏感,易于找到全局最优解。
5、下列哪个选项不是模拟退火算法的特点?A.基于概率的搜索方法,有一定的随机性B.在解空间内随机搜索,可以跳出局部最优解的陷阱C.可以找到全局最优解,但需要设置退火温度等参数D.对于组合优化问题通常比暴力搜索算法更快找到最优解正确答案:D.对于组合优化问题通常比暴力搜索算法更快找到最优解。
二、填空题(每空2分,共20分)6.最优化方法中,通常使用__________来衡量一个解的好坏。
正确答案:目标函数。
7.在使用单纯形法求解线性规划问题时,__________是算法终止的条件。
正确答案:迭代次数达到预设的上限。
8.整数规划问题中,如果所有变量都有上限和下限的约束,则称为__________规划问题。
正确答案:背包。
9.在使用模拟退火算法求解组合优化问题时,__________是算法终止的条件。
正确答案:达到预定的迭代次数或者解的变化小于某个给定的阈值。
10.最优化方法中,__________是一种启发式搜索方法,通常用于解决组合优化问题。
正确答案:遗传算法。
最优化问题在现实世界中随处可见,从解决日常生活中的最佳路线问题,到企业寻求最大化利润和最小化成本,最优化方法都发挥着至关重要的作用。
最优化方法期末考试复习
最优化理论与方法知识点总结最优化理论与方法知识点总结 (1)一、最优化简介: (2)1.1最优化应用举例 (2)1.2基本概念 (2)1.3向量范数 (3)1.4矩阵范数 (3)1.5极限的定义 (3)1.6方向导数存在性和计算公式 (4)1.7梯度定义 (4)1.8海塞矩阵 (5)1.9泰勒展开式: (5)1.10凸集定义 (5)1.11凸集性质 (5)1.12凸函数定义 (6)1.13凸函数判断 (6)1.14矩阵正定与半正定判断 (6)1.15例题(判断矩阵是否正定) (7)1.16凸优化 (7)二、线性规划 (7)2.1线性规划数学模型的一般形式 (7)2.2解的基本定理 (7)2.3解的分类 (8)2.4图解法 (8)2.5例题(图解法) (8)2.6标准型的化法 (9)2.7例题(化为标准型) (9)2.8单纯形法 (10)2.9例题(单纯形法) (11)三、对偶线性规划 (13)3.1对偶问题 (13)3.2单纯形法解对偶问题 (13)3.3对偶单纯形法求解线性规划问题过程 (14)四、无约束优化 (14)4.1无约束优化概述 (14)4.2搜索区间的确定 (15)4.3区间消去法原理 (16)4.4黄金分割法 (17)4.5插值方法 (17)4.6常见的终止准则 (19)4.7最速下降法 (20)4.8牛顿类方法 (20)4.9例题(牛顿类方法) (21)一、最优化简介:1.1最优化应用举例具有广泛的实用性运输问题,车辆调度,员工安排,空运控制等工程设计,结构设计等资源分配,生产计划等通信:光网络、无线网络,ad hoc等.制造业:钢铁生产,车间调度等医药生产,化工处理等电子工程,集成电路VLSI etc.排版1.2基本概念目标函数和约束函数都是线性的,称之为线性规划问题,而有的模型中含有非线性函数,称之为非线性规划。
在线性与非线性规划中,满足约束条件的点称为可行点,全体可行点组成的集合称为可行集或可行域。
天津大学《最优化方法》复习题(含答案)
天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg)(arg min maxx f x f n nR x Rx -=∈∈ √2 {}{}.:)(m in :)(m ax nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯ 3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x Nε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。
√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合是凸集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(m in :)(m ax n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解、 ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解、 ⨯5 给定一个最优化问题,那么它的最优值就是一个定值、 √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D 、 √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D 、 √ 8 任意两个凸集的并集为凸集、 ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数、 √10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*、 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 就是凹函数,则}0)( {≥∈=x c R x D n 就是凸集。
√12 设{}k x 为由求解)(min x f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ 、13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合就是凸集。
√15 函数R R D f n →⊆:在点k x 沿着迭代方向}0{\nk R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 、16 函数R R D f n →⊆:在点k x 沿着迭代方向}0{\nk R d ∈进行精确一维线搜索的步长k α,则=+∇k T k k k d d x f )(α 0 、17 设}0{\n k R d ∈为点nk R D x ⊆∈处关于区域D 的一个下降方向,则对于0>∀α,),0(αα∈∃使得.D d x k k ∈+α ⨯二、 简述题1 写出Wolfe-Powell 非精确一维线性搜索的公式。
2 怎样判断一个函数就是否为凸函数、(例如: 判断函数2122212151022)(x x x x x x x f +-++=就是否为凸函数) 三、 证明题1 证明一个优化问题就是否为凸规划、(例如 判断0 ..21)(min ≥=++=x bAx t s b x c Gx x x f T T (其中G 就是正定矩阵)就是凸规划、2 熟练掌握凸规划的性质及其证明、第二章 线性规划考虑线性规划问题:,0,..min )(≥=x b Ax t s xc LP T其中,m n m n R b R A R c ∈∈∈⨯,, 为给定的数据,且rank .,n m m A ≤=一、 判断与选择题1 (LP)的基解个数就是有限的、 √2 若(LP)有最优解,则它一定有基可行解为最优解、 √3 (LP)的解集就是凸的、 √4 对于标准型的(LP),设{}k x 由单纯形算法产生,则对{}Λ,2,1,0∈k ,有.1+>k T k T x c x c ×5 若*x 为(LP)的最优解,*y 为(DP)的可行解,则.**y b x c T T ≥ √6 设0x 就是线性规划(LP)对应的基),,(1m P P B Λ=的基可行解,与基变量m x x ,,1Λ对应的规范式中,若存在0<k σ,则线性规划(LP)没有最优解。
×7 求解线性规划(LP)的初始基可行解的方法:____________________、 8 对于线性规划(LP),每次迭代都会使目标函数值下降、 ×二、 简述题1 将以下线性规划问题化为标准型:.0,0,2,1242,6..32)(max 32321321321321≥≥≥+-≥++≤+++-=x x x x x x x x x x x t s x x x x f 2 写出以下线性规划的对偶线性规划:.0,,,,3342,6342..423)(max 4321432143214321≥≥+++-=++++++=x x x x x x x x x x x x t s x x x x x f 三、 计算题熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法)、 见书本:例2、5、1 (利用单纯形表求解);例2.6.1 (利用大M 法求解);例2、6、2 (利用二阶段法求解)、四、 证明题熟练掌握对偶理论(弱对偶理论、强对偶理论以及互补松弛条件)及利用对偶理论证明相关结论。
第三章 无约束最优化方法一、 判断与选择题1 设n n R G ⨯∈为正定矩阵,则关于G 共轭的任意1+n 向量必线性相关、 √2 在牛顿法中,每次的迭代方向都就是下降方向、 ×3 经典Newton 法在相继两次迭代中的迭代方向就是正交的、 ×4 PRP 共轭梯度法与BFGS 算法都属于Broyden 族拟Newton 算法、 ×5 用DFP 算法求解正定二次函数的无约束极小化问题,则算法中产生的迭代方向一定线性无关、 √6 FR 共轭梯度法、PRP 共轭梯度法、DFP 算法、及BFGS 算法均具有二次收敛性、 ×7 共轭梯度法、共轭方向法、DFP 算法以及BFGS 算法都具有二次终止性、√8 函数R R f n →:在k x 处的最速下降方向为 、 9 求解)(min x f nR x ∈的经典Newton 法在k x 处的迭代方向为=k p 、10 若)(x f 在*x 的邻域内具有一阶连续的偏导数且0)(*=∇x f ,则*x 为的局部极小点、 ×11 若)(x f 在*x 的某邻域内具有二阶连续的偏导数且*x 为)(x f 的严格局部极小点,则)(*2*x f G x ∇=正定、 ×12 求解)(min x f nR x ∈的最速下降法在k x 处的迭代方向为=k p 、13 求解)(min x f nR x ∈的阻尼Newton 法在k x 处的迭代方向为=k p 、14 用牛顿法求解)(21min n n n T T R x R G R b x b Gx x n ⨯∈∈∈+,时,至多迭代一次可达其极小点、 ×15 牛顿法具有二阶收敛性、 √16 二次函数的共轭方向法具有二次终止性、 ×17 共轭梯度法的迭代方向为:_____________________、二、证明题1 设R R f n →:为一阶连续可微的凸函数,n R x ∈*且0)(=∇*x f ,则*x 为)(min x f n R x ∈的全局极小点、2 给定n R b ∈与正定矩阵n n R G ⨯∈、 如果n k R x ∈为求解x b Gx x x f T T R x n +=∈21)(min 的迭代点, {}0\n k R d ∈为其迭代方向,且),0[∞+∈k α为由精确一维搜索所的步长,则.)()(k T k kT k k Gdd d x f ∇-=α 3 试证:Newton 法求解正定二次函数时至多一次迭代可达其极小点、四、 简述题1 简述牛顿法或者阻尼牛顿法的优缺点、2 简述共轭梯度法的基本思想、五、 计算题1 利用最优性条件求解无约束最优化问题、例如:求解121222122123)(min x x x x x x f --+= 2 用FR 共轭梯度法无约束最优化问题、见书本:例3、4、1、3 用PRP 共轭梯度法无约束最优化问题、见书本:例3、4、1、例如:01.0,)0,0( 22123)(min 01212221==--+=εT x x x x x x x f 其中 第四章 约束最优化方法考虑约束最优化问题:{}{},,,2,1,0)(,,,2,1,0)(..)(min )(m l l I i x c l E i x c t s x f NLP i i ΛΛ++=∈≥=∈=其中,.:),,2,1(,R R m i c f n i →=Λ一、判断与选择题1 外罚函数法、内罚函数法、及乘子法均属于SUMT 、 ×2 使用外罚函数法与内罚函数法求解(NLP)时,得到的近似最优解往往不就是(NLP)的可行解、 ×3 在求解(NLP)的外罚函数法中,所解无约束问题的目标函数为 、4 在(NLP)中0=l ,则在求解该问题的内罚函数法中,常使用的罚函数为 、5 在(NLP)中0=l ,则在求解该问题的乘子法中,乘子的迭代公式为=+i k )(1λ ,对{}m i ,,1Λ∈、6 在(NLP)中l m =,则在求解该问题的乘子法中,增广的Lagrange 函数为:_________________________________7 对于(NLP)的KT 条件为:_______________二、计算题1利用最优性条件(KT 条件)求解约束最优化问题、 2 用外罚函数法求解约束最优化问题、见书本:例4、2、1;例4、2、2、3 用内罚函数法求解约束最优化问题、见书本:例4、2、3、4 用乘子法求解约束最优化问题、见书本:例4、2、7;例4、2、8、三、简述题1 简述SUMT 外点法的优缺点、2 简述SUMT 内点法的优缺点、四、证明题利用最优性条件证明相关问题、例如:Q 设为正定矩阵,A 为列满秩矩阵、试求规划bx A t s a x c Qx x x f P =++=T T T .. 21)(min )( 的最优解,并证明解就是唯一的、第五章 多目标最优化方法一、判断与选择题1 求解多目标最优化问题的评价函数法包括 、2 通过使用评价函数,多目标最优化问题能够转化为单目标最优化问题、 √3 设m n R R D F →⊆:,则F 在D 上的一般多目标最优化问题的数学形式为 、4 对于规划T m R D x x f x f x F V n))(,),(()(1min K =-⊆∈,设D x ∈*,若不存在Dx ∈使得)()()()(**≠≤x F x F x F x F 且,则*x 为该最优化问题的有效解、 √ 5 一般多目标最优化问题的绝对最优解必就是有效解、 √6 对于规划T m R D x x f x f x F V n))(,),(()(1min K =-⊆∈,设i w 为相应于),,2,1(m i f i K =的权系数,则求解以上问题的线性加权与法中所求解优化的目标函数为 、7 利用求解T m R D x x f x f x F V n))(,),(()(1min K =-⊆∈的线性加权与法所得到的解,或者为原问题的有效解,或者为原问题的弱有效解、 √二、简述题1 简单证明题☆ 绝对最优解、有效解、及弱有效解之间的关系、● 第5、2节中几个主要结论的证明、2 简单叙述题★ 简述求解一般多目标规划的评价函数法的基本思想、● 简述求解一般多目标规划的线性加权与法的基本思想、★ 简述求解一般多目标规划的理想点法的基本思想、● 简述在求解一般多目标规划的评价函数法中,确定权系数方法的基本思想、。