模电5放大电路的频率响应
模电第5章

低通电路: 二. 低通电路:频率响应
f<<fH时放大 倍数约为1 倍数约为
fH
1 Uo 1 jω C = Au = = 1 1 + jωRC Ui R+ jω C
1 1 = 令f H = ,则Au 2 πRC 1+ j f fH
1 Au = 1 + ( f fH )2 = arctan( f f ) H
fL
= 1 , = 45 0; f = f L : Au 2 f f
f << f L : A << 1, u ≈
fL fL Au 也下降10倍;当 f 趋于0时, u 趋于0,趋于90 0 。 A
,表明 f 每下降10倍,
画出特性曲线如图, 称为下限截止频率。 画出特性曲线如图, fL称为下限截止频率。
' 高频段: 的影响, 开路。 高频段:考虑 Cπ 的影响,C 开路。 '
'
一. 中频电压放大倍数
Uo Ausm = Us U i U b'e U o = U U Us i b'e
带负载时: 带负载时: Ausm = 空载时: 空载时:
rb'e Ri [ g m ( Rc ∥ RL )] Rs + Ri rbe
5.2 晶体管的高频等效电路
5.2.1 混合π模型:形状像Π,参数量纲各不相同 混合π模型:形状像Π
完整的混合π模型 一. 完整的混合 模型 结构:由体电阻、结电阻、结电容组成。 结构:由体电阻、结电阻、结电容组成。
因面积大 而阻值小
因多子浓 度高而阻 值小
rbb’:基区体电阻 rb’e’:发射结电阻 Cπ:发射结电容 re:发射区体电阻 rb’c’:集电结电阻 C:集电结电容 rc:集电区体电阻
5章-模电习题解-放大电路的频率响应题解

第五章 放大电路的频率响应自 测 题☆一、(四版一)选择正确答案填入空内。
(1)测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是 。
A.输入电压幅值不变,改变频率B.输入电压频率不变,改变幅值C.输入电压的幅值与频率同时变化(2)放大电路在高频信号作用时放大倍数数值下降的原因是 ,而低频信号作用时放大倍数数值下降的原因是 。
A.耦合电容和旁路电容的存在B.半导体管极间电容和分布电容的存在。
C.半导体管的非线性特性D.放大电路的静态工作点不合适(3)当信号频率等于放大电路的f L 或f H 时,放大倍数的值约下降到中频时的 。
A.0.5倍B.0.7倍C.0.9倍 即增益下降 。
A.3dBB.4dBC.5dB(4)对于单管共射放大电路,当f = f L 时,oU 与i U 相位关系是 。
A.+45˚B.-90˚C.-135˚当f = f H 时,oU 与i U 的相位关系是 。
A.-45˚ B.-135˚ C.-225˚ 解:(1)A (2)B ,A (3)B A (4)C C★二、(四版二)电路如图T5.2所示。
已知:V C C =12V ;晶体管的C μ=4pF ,f T = 50MHz ,'bb r =100Ω, β0=80。
试求解:(1)中频电压放大倍数smu A ; (2)'πC ;(3)f H 和f L ;(4)画出波特图。
图T5.2解:(1)静态及动态的分析估算:∥178)(mA/V2.69k 27.1k 27.1k 17.1mV26)1(V 3mA 8.1)1(Aμ 6.22c m bee b'i s ismTEQ m b be i e b'bb'be EQe b'c CQ CC CEQ BQ EQ bBEQCC BQ -≈-⋅+=≈=Ω≈=Ω≈+=Ω≈+=≈-=≈+=≈-=R g r r R R R A U I g R r R r r r I r R I V U I I R U V I u ββ(2)估算'πC :pF1602)1(pF214π2)(π2μc m 'μTe b'0μπe b'0T ≈++=≈-≈+≈C R g C C C f r C C C r f πππββ(3)求解上限、下限截止频率:Hz14)π(21kHz 175π21567)()(i s L 'πH s b b'e b'b s b b'e b'≈+=≈=Ω≈+≈+=CR R f RC f R r r R R r r R ∥∥∥(4)在中频段的增益为dB 45lg 20sm ≈u A频率特性曲线如解图T5.2所示。
模电:放大电路的频率响应-用人话解释什么是频率响应

模电:放⼤电路的频率响应-⽤⼈话解释什么是频率响应⼀:1.什么是频率响应?⼀句话解释:频率响应就是频率和放⼤系数的关系。
由于⼀些元件的作⽤,信号的频率过⾼或者过低,都会导致这个放⼤电路的放⼤倍数改变,同时信号的相位也会改变,超前或者滞后。
在⼀个放⼤电路⾥,信号的频率会影对于任何⼀个具体的放⼤电路都有⼀个确定的通频带,因此在设计电路时,必须要⾸先了解信号的频率范围,以便使所设计的电路具有适应该信号频率范围的通频带。
响这个放⼤电路的放⼤系数。
这两者之间有⼀个函数关系。
2.耦合电容、下限频率、⾼通电路第⼀个问题:什么是耦合电容?耦合电容就是指的两个信号直接通过⼀个电容连接。
如图所⽰,电容连接在uo和ui之间。
在这样的连接⽅式之下,电容可以通过频率⾼的信号,当频率降低到⼀定程度后,将会阻⽌他的通过,导致放⼤倍数下降。
所以这样的电路是⼀个⾼通电路,可以通过⾼频率的信号,⽽频率的下限就是下限频率。
如图所⽰:3.同理,我们来讨论⼀下低通电路,极间电容,上限频率⾸先先解释⼀下极间电容:指的是两个电源电极(+,—)之间的电容。
如图:这样的连接⽅式导致了他只能通过低频率的信号,当频率慢慢增加到⼀个⾼频率的信号后,就会被截⾄。
因此,他有⼀个上限频率。
还有⼀个概念:传输特性。
指的是输出⽐上输⼊。
输出和输⼊的关系化简得到的式⼦:需要交代的是:Fl 和 Fh 分别指的是下限截⽌频率对应⾼通电路,反之亦然。
两者都是取的相位偏移45°时的值。
式⼦之间的R指的是从电容端⼝看进去的戴维南等效。
⼆:波特图⼀句话简单理解:波特图就是上⾯那两种图。
额外做了⼀点变换。
⾄于是什么变换?⾸先:上⾯的图是来⾃于Au 和 f 的函数式。
这个变换就是对这个函数左右两边取对数。
变换后的式⼦就是:把⼀个线性的变量,变成了对数。
可以看出,当f=fl 的时候,这个函数值肯定⼩于0, 算出来是3 当信号频率等于下限频率 fL 或上限频率 fH 时,放⼤电路的增益下降 3 dB,且产⽣+ 45°或 - 45°相移。
模拟电路第五章 放大电路的频率响应

5.2.1 晶体管的混合π模型
结构:由体电阻、结电阻、结电容组成。
阻值小, 可忽略
阻值小, 可忽略
整理ppt
rbb’:基区体电阻 rb’e’:发射结电阻 Cπ:发射结电容 re:发射区体电阻 rb’c’:集电结电阻 Cμ:集电结电容 rc:集电区体电阻
④ Cπ的求法。
整理ppt
5.3 场效应管的高频等效电路
可与晶体管高频等效电流类比,简化、单向化变换。
单向化变换
忽略d-s间等效电容
很大,可忽略其电流
C g ' sC g s (1gm RL ' )C gd
极间电容 数值/pF
Cgs
Cgd
1~10 1~10 整理ppt
Cds 0.1~1
5.4 单管放大电路的频率响应 5.4.1 单管共射放大电路的频率响应
放大电路对信号频率适应程度,即信号频率对放大倍数的影响。 在使用一个放大电路时应了解其信号频率的适用范围,在设计放 大电路时,应满足信号频率的范围要求。
整理ppt
5.1.2 频率响应基本概念
一、RC高通电路频率响应
Au U Uoi 1RR1jjRRCC jC
令fL
1 2πRC
则Au
jf 1j
f
第五章 放大电路的频率响应
5.1 频率响应概述 5.2 晶体管的高频等效模型 5.3 场效应管的高频等效模型 5.4 单管放大电路的频率响应 5.5 多级放大电路的频率响应
5.1 频率响应概述
5.1.1 必要性
由于放大电路中耦合电容、旁路电容、半导体器件极间电容的存 在,当输入信号频率过低或过高时,放大倍数变小,并且产生超 前或滞后相移,即,放大倍数是频率的函数。
《模拟电子电路》 放大电路的频率响应

fL 下限截 止频率
上限截 fH 止频率
f
通频带: fbw=fH–fL
本章小结
1.基本放大电路的组成。 BJT加上合适的偏置电路(偏置电 路保证BJT 工作在放大区)。 2.交流与直流。正常工作时,放大电路处于交直流共存的状 态。为了分析方便,常将两者分开讨论。 直流通路:交流电压源短路,电容开路。 交流通路:直流电压源短路,电容短路。 3.三种分析方法。 (1)估算法(直流模型等效电路法)——估算Q。 ( 2 ) 图 解 法 —— 分 析 Q ( Q 的 位 置 是 否 合 适 ) ; 分 析 动 态 (最大不失真输出电压)。 (3)h参数交流模型法——分析动态(电压放大倍数、输入 电阻、输出电阻等)。
0.1fH fH 10fH 100fH f
45 / 十倍频
这种对数频率特性曲线称为波特图
可见:当频率较低时,│AU │ ≈1,输出与输入电压之间的相位差=0。 随着频率的提高, │AU │下降,相位差增大,且输出电压是滞后于输入电 压的,最大滞后90o。
其中fH是一个重要的频率点,称为上限截止频率。
其中,fL是一个重要的频率点,称为下限截止频率。
二. RC低通电路
R
(1)频率响应表达式:
+
+
1
A
u
Uo
Ui
R
jC
1
jC
1
1
jRC
ui
-
C
uo
-
令:H
1 RC
1
fH
H 2
1
2RC
A
u
Uo
Ui
模拟电子技术_ ( 放大电路的频率响应)_

频率响应的基本概念1.绪论2.晶体二极管及应用电路3.晶体三极管及基本放大电路4.场效应管及基本放大电路5.放大电路的频率响应(4学时)6.负反馈放大电路7.双极型模拟集成电路8.双般型模拟集成电路的分析与应用 9.MOS 模拟集成电路(自学) 10.直流稳压电源电路课程主要内容1/68主讲:刘颖第五章放大电路的频率响应问题:1.什么是电路的频率响应?2.工程上如何绘制频率响应曲线?3. 三极管的高频模型与低频模型(h参数模型)有何不同?4.耦合电容、旁路电容、三极管结电容对电路频率特性有怎样的影响?第五章放大电路的频率响应5.1 频率响应的基本概念5.2 晶体三极管的高频模型5.3 频率响应的分析方法5.4 单管共射放大电路的频率响应5.5 共集、共基放大电路的频率响应5.6 多级放大电路的频响5.1 频率响应的基本概念CE 组态基本放大电路5.1.1. 放大电路频率响应概念 概念:放大电路增益随着频率变化而变化的特性称为频率响应特性,可表示为 其中:()()()j U U A j A j f f feϕ=()()U A j f f ϕ称为增益的幅频特性 称为增益的相频特性4/685/68 -180° -90° -270°A U|A U (j f )|fφ(f )f中频段:A U =常数 低频段高频段A U 下降中频段:相位差 φ =常数 低频段高频段φ 改变增益幅度|A U (j f )∣与频率f 的关系称为幅频特性。
增益相位φ(j f )与频率f 的关系称为称为相频特性。
幅频特性曲线相频特性曲线说明:放大电路的频率响应特性是增益幅频特性和相频特性统称。
幅度频率失真:幅频特性偏离中频值的现象相位频率失真:相频特性偏离中频值的现象♦ 中频增益: 中间频率段的增益♦ 频率失真f L f h 0.707A UA UA (j f )f幅频特性曲线-180° -90° -270°φ(f )f相频特性曲线5.1.2. 放大电路的带宽放大电路的带宽:也称通频带、有效带宽,带宽BW=f h -f L上限截止频f h 、下限截止频f L 定义:增益下降到中频增益的0.707倍(即3dB 处)所对应的频率。
放大电路的频率响应

1 .中频段 所有的电容均可忽略。 中频电压放大倍数:
共射放大电路
Ausm
VO Ri RL VS RS Ri rbe
2. 低频段
在低频段,三极管的极间电容可视为开路,耦合电 容C1、C2不能忽略。 方便分析,现在只考虑C1,将C2归入第二级。画出低频 等效电路如图所示。 该电路有 一个RC电路高通环节。有下限截止频率:
高通电路及频率响应
fL
可见:当频率较高时,Au ≈1,输出与输入电压之间的相位差=0。随着 频率的降低, Au下降,相位差增大,且输出电压是超前于输入电压的,最 大超前90o。在此频率响应中,下限截止频率fL是一个重要的频率点。
二. 阻容耦合共射放大电路的频率响应
对于如图所示的共射放大电路, 分低、中、高三个频段加以研究。
共射放大电路高频段的波特图
幅频响应 : 相频响应 :
20lg | AusH | 20lg | Ausm | 20lg
1 1 ( f
180 arctg( f
fH
)
fH
)2
4. 完整的共射放大电路的频率响应
Aus Ausm
1 1 f f (1 j L ) (1 j f ) f H
2. RC 高通网络
(1)频率响应表达式:
. . Vo A= .
v
Vi
R 1 1 R 1/ jwC 1 j / wRC 1 jwL / w
RC 高通电路
式中 wL 1 。
RC
下限截止频率、模和相角分别为
1 fL 2RC
1 │v A│ 1 ( fL f )2
arctg( f L f )
模电第5章 放大电路的频率响应

当β=1时对应的频率称为 特征频率fT,且有fT≈β0f
图05.10 三极管β的幅频特性和相频特性曲线
5.3 场效应管的高频等效模型(共源)
' C gs C gs (1 K ) C gd
K g m ( R C // R L )
5.4 共发射极接法放大电路的频率特性
5.4.3频率响应的改善和增益带宽积:
频率响应的改善主要是通频带变宽,即是高 频时性能的改善,其高频等效电路如图所示: 1、通频带
f bw f H f L
(要使fbw加宽有两种方法) (1) fL下降(即是使耦合电容C所在回路的时间 常数取值大)亦是R或C增大,改善有限。 (2) fH增大(。。。。)就会使Au下降。 于是形成了带宽和增益的矛盾,合理的解决的办法 是综合考虑。
m b' e
b0
.
.
简化的混合π模型
简化的混合π模型参数计算
C C Cu
' '
' C u (1 K ) C u
C u C ob
gm
K 为中频段电压增益
U ce K g m ( R C // R L ) U '
be
.
0 Ib
U b 'e
0
U b 'e Ib
0
rb ' e
26 m v I EQ
rb ' e (1 0 )
gm I EQ 26 m v
26 m v I EQ
0
IC g m U b ' e 0 Ib
的分析
Ic Ib
模拟电子技术基础--第5章--放大电路的频率响应

等效变换后电流不变
X C 'µ
ɺ X Cµ U b'e = ≈ ' ɺ I Cµ 1 + g m RL
' ' Cµ ≈ (1 + g m RL )Cµ
k −1 ⋅ Cµ 同理可得,C ≈ k
'' µ
晶体管简化的高频等效电路
' 为什么不考虑 Cµ'?
如何得到模型中的参数?
' ' C π = C π + Cµ
≈
I EQ UT
=?
低中频时 C
b ′c
和 C
b ′e
视为开路
rbe = rbb′ + rb′e
又因为
所以
gm =
ɺ V b ′e = ɺ g mVb′e β
rb′e
ɺ I b rb ′e ɺ = βI b
IE = VT
UT rbe = rb + (1 + β ) re = rb + (1 + β ) IE
3. 晶体管的频率参数
共基截 止频率 共射截 止频率
ɺ β=
特征 频率
集电结电容
β0
1+ j
f fβ
ɺ f β 、fα、f T、Cob (C µ )。 使 β = 1时的频率为f T f T ≈ fα ≈ β 0 f β 1 fβ = 2 π rb'e ( C π + Cµ )
手册 查得 通过以上分析得出的结论: 通过以上分析得出的结论: 低频段和高频段放大倍数的表达式; ① 低频段和高频段放大倍数的表达式; 截止频率与时间常数的关系; ② 截止频率与时间常数的关系; 波特图及其折线画法; ③ 波特图及其折线画法; 的求法。 ④ Cπ的求法。
模电基础第5章 频率响应

第5章 频率响应
5–1 频率响应的概念 5–2 单级共射放大器的高频响应 5–3 共集电路的高频响应 5–4 共基电路的高频响应 5–5 差分放大器的频率响应 5–6 场效应管放大器的高频响应 5–7 放大器的低频响应 5–8 多级放大器的频率响应 5–9 建立时间tr与上限频率fH的关系 5–10 举例及计算机仿真
b rbb′
b′
Cb′e
Rs
Cb′e
rb′e
.
Us
. gmUb′e
第5章 频率响应
R′L c +
rce
RC
RL
. Uo
-
e
(b)
图5–6 (a)电路;(b)等效电路(设RB1‖RB2>>Rs)
AuI
0.707 AuI
(5–4)
BW fH fL fH
(5–5)
GH 20lg Au ( jfH ) 20lg AuI 3dB
(5–6)
GL 20lg Au ( jfL ) 20lg AuI 3dB
G BW AuI BW AuI fH
(5–7)
第5章 频率响应
5–2单级共射放大器的高频响应
第5章 频率响应
三、不失真条件––理想频率响应 综上所述,若放大器对所有不同频率分量信号的 放大倍数相同,延迟时间也相同,那么就不可能产生 频率失真,故不产生频率失真的条件为
Au ( j ) Au ( j ) /_ ( j ) _ Au ( j ) K (常数) ( j ) td (td也为常数)
第5章 频率响应
|Au(jω)| 0.7 07A| uI|
|AuI|
L 半功率点
半功率点 H
理想幅频特性 实际幅频特性
模电 第五章 放大电路的频率响应

图5.3.1场效应管的高频等效模型(a)
一般情况下 rgs和 rds比外接电阻大得多,可认为是开路
Cgd可进行等效变化,使电路单向化
第五章
Cgd等效变化
g-s之间的等效电容为
C gs (1 K )C gd ) C gs ( K g m RL
0 3dB 20
高通特性:
20dB/十倍频
40
图 5.1.3(a)
幅频特性
1 A u 1 当 f < fL (低频), A u
当 f ≥ fL(高频),
的值愈小, 且频率愈低,A u
最大误差为 3 dB, 发生在 f = fL处
低频信号不能通过。
第五章
对数相频特性
f 相角: 90 arctan( ) fL
f
O
f 0.1f
fT
对数相频特性
f arctan f
0 45º 90º
10 f
f
的波特图 图 5.2.4
第五章
几个频率的分析 1.共射截止频率 f
1 0 )时的频率。 值下降到 0.707 0 (即 2
当 f = f 时,
1 0 0.707 0 2
0
f 1 T f
2
1;
得:
fT 0 f
第五章
3.共基截止频率 f
值下降为低频 0 时 的 0.707 时的频率。
0
f 1 j f
第五章
f 与 f 、 fT 之间关系:
因为
1
,
模电课件第五章放大电路的频率响应

2
f 当f =fH时, 20lg Au 20lg 2 3dB , arctan 45 fH
f 当f >>fH时, 20 lg Au 20 lg , 90,表明f 每上升10倍, fH
增益下降20dB,即对数幅频特性在此区间可等效成斜率为 (-20dB/十倍频)的直线。
2019/1/10 模电课件
A u
f j fL
3、波特图
在画频率特性曲线时采用对数坐标,称为波特图。波特图由 对数幅频特性和对数相频特性两部分组成,它们的横轴采用对数 u 表示,单位是分贝(dB); 刻度lgf,幅频特性纵轴采用 20 lg A 相频特性纵轴仍用 表示。 2 f f 高通电路的对数幅频特性为: 20 lg Au 20 lg 20 lg 1 fL fL f 90 arct an fL u 0dB , 0 当f >>fL时,20 lg A
u 20 lg f , 90 ,表明f 每下降10倍,增 当f <<fL时,20 lg A fL 益下降20dB,即对数幅频特性在此区间可等效成斜率为(20dB/ 模电课件 2019/1/10 十倍频)的直线。
★低通电路的波特图
f 20 lg Au 20 lg 1 fH u 0dB , 0 当f <<fH时,20 lg A
§5.2 晶体管的高频等效模型
一、晶体管的混合π模型 1、完整的混合π模型
π模型
晶体管结构示意图
rc和re分别是集电区和发射区的体电阻,数值比较小,常忽略
不计。Cμ为集电结电容,Cπ为发射结电容。 rbc为集电结电阻,
rbb 为基区体电阻, rbc rbc , rbe rbe 。 rbe 为发射结电阻, be 成线性关系,与频率无关。gm为 c 与U I 根据半导体物理的分析, c 的控制关系,I be 对 I c g mU be。 跨导,是一个常数,表明 U
模拟电子技术课程习题 第五章 放大电路的频率响应说课讲解

模拟电子技术课程习题第五章放大电路的频率响应第五章 放大电路的频率响应5.1具有相同参数的两级放大电路在组成它的各个单管的截止频率处,幅值下降[ ]A. 3dBB. 6dBC. 10dBD. 20dB5.2在出现频率失真时,若u i 为正弦波,则u o 为 [ ] A. 正弦波 B. 三角波 C. 矩形波 D. 方波5.3 多级放大电路放大倍数的波特图是 [ ] A. 各级波特图的叠加 B. 各级波特图的乘积C. 各级波特图中通频带最窄者D. 各级波特图中通频带最宽者 5.4 当输入信号频率为f L 或f H 时,放大倍数的幅值约为中频时的 [ ]倍。
A.0.7B.0.5C.0.9D.0.15.5 在阻容耦合放大器中,下列哪种方法能够降低放大器的下限频率?[ ]A .增大耦合电容B .减小耦合电容C .选用极间电容小的晶体管D .选用极间电容大的晶体管5.6 当我们将两个带宽均为BW 的放大器级联后,级联放大器的带宽 [ ] A 小于BW B 等于BW C 大于BW D 不能确定 5.7 填空:已知某放大电路电压放大倍数的频率特性为6100010(1)(1)1010u fjA f f j j =++ (式中f 单位:Hz )表明其下限频率为 ,上限频率为 ,中频电压增益为 dB ,输出电压与输入电压在中频段的相位差为 。
5.8 选择正确的答案填空。
幅度失真和相位失真统称为失真(a.交越b.频率),它属于失真(a.线性b.非线性),在出现这类失真时,若u i为正弦波,则u o为波(a.正弦b.非正弦),若u i为非正弦波,则u o与u i的频率成分 (a.相同b.不同)。
饱和失真、截止失真、交越失真都属于失真(a.线性b.非线性),在出现这类失真时,若u i为非正弦波,则u o为波(a.正弦b.非正弦),u o与u i的频率成分 (a.相同b.不同)。
5.9 选择正确的答案填空。
晶体管主要频率参数之间的关系是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接了输入回路 和输出回路
gm为跨导,它不随信 号频率的变化而变。
2020/5/1
模电
华成英 hchya@
2. 混合π模型的单向化(使信号单向传递)
ICμ
Ub'e Uce X Cμ
(1 k) Ub'e X Cμ
k gm RL'
等效变换后电流不变
X C'μ
Ub'e ICμ
一、本章要研究的问题 二、高通电路和低通电路 三、放大电路中的频率参数
2020/5/1
模电
华成英 hchya@
一、研究的问题
放大电路对信号频率的适应程度,即 信号频率对放大倍数的影响。
由于放大电路中耦合电容、旁路电容、 半导体器件极间电容的存在,使放大倍数 为频率的函数。
2020/5/1
模电
华成英 hchya@
讨论二
2020/5/1
电路如图。已知各电阻阻 值;静态工作点合适,集电 极电流ICQ=2mA;晶体管的 rbb’=200Ω,Cob=5pF, fβ=1MHz。
试求解该电路中晶体管高 频等效模型中的各个参数。
模电
华成英 hchya@
2020/5/1
模电
华成英 hchya@
华成英 hchya@
§5.2 晶体管的高频等效电路
一、混合π模型 二、电流放大倍数的频率响应 三、晶体管的频率参数
2020/5/1
模电
华成英 hchya@
一、混合π模型
1. 模型的建立:由结构而建立,形状像Π,参数量纲各不相同。
阻值小
阻值大
1. 若干个放大电路的放大倍数分别为1、10、102、 103、104、105,它们的增益分别为多少? 2. 为什么波特图开阔了视野?同样长度的横轴,在 单位长度不变的情况下,采用对数坐标后,最高频 率是原来的多少倍?
O
f
10 20 30 40 50 60
10 102 103 104 105 106 lg f
0
1 j f f
1 f 2 π rb'e( Cπ Cμ )
fT f 0 f 手册
通过以上分析得出的结论: 查得
① 低频段和高频段放大倍数的表达式;
② 截止频率与时间常数的关系;
③ 波特图及其折线画法;
2020/5/1
④ Cπ的求法。
模电
华成英 hchya@
讨论一
第五章 放大电路的频率响应
2020/5/1
模电
华成英 hchya@
第五章 放大电路的频率响应
§5.1 频率响应的有关概念 §5.2 晶体管的高频等效电路 §5.3 放大电路的频率响应
2020/5/1
模电
华成英 hchya@
§5.1 频率响应的有关概念
在使用一个放大电路时应了解其信号 频率的适用范围,在设计放大电路时,应 满足信号频率的范围要求。
2020/5/1
模电
华成英 hchya@
二、高通电路和低通电路
1. 高通电路:信号频率越高,输出电压越接近输入电压。
. Uo
. I
Uo超前Ui,当 f 0时; . Uo 0,Uo超前Ui 90。
结电容
高通 电路
低通 电路
下限频率
fbw fH fL 上限频率
在低频段,随着信号频率逐渐降低,耦合电容、旁路 电容等的容抗增大,使动态信号损失,放大能力下降。
在高频段,随着信号频率逐渐升高,晶体管极间电容和
分布电容、寄生电容等杂散电容的容抗减小,使动态信号 损失,放大能力下降。
2020/5/1
模电
rbb'、Cμ可从手册查得
rb'e
(1 0 )
UT I EQ
Cπ' Cπ Cμ'
=?
2020/5/1
模电
华成英 hchya@
二、电流放大倍数的频率响应
1. 适于频率从0至无穷大的表达式
Ic Ib
UCE
因为k gmRL' 0,所以Cπ' Cπ Cμ
g mUb'e
Ub'e
[
1 rb'e
j
(Cπ
Cμ )]
0
1 j f f
为什么短路?
f
1 2 π rb'e (Cπ
Cμ )
2020/5/1
模电
华成英 hchya@
2. 电流放大倍数的频率特性曲线
0
1 j f f
0
1 ( f )2 f
tg-1
f
o
f
f f 时, 0;
Ui
2. 低通电路:信号频率越低,输出电压越接近输入电压。
.
I .
Uo滞后Ui,当 f 时;
Ui Uo 0,Uo滞后Ui 90。
.
Uo
使输出电压幅值下降到70.7%,相位为±45º的信号频率为
截202止0/5/频1 率。
模电
华成英 hchya@
三、放大电路中的频率参数
讨论二
ICQ gm、rb'e Cμ ( Cob )、gm、Rc、RL Cμ' f、Cμ ( Cob )、rb'e Cπ Cμ' Cπ Cπ'
2020/5/1
模电
华成英 hchya@
§5.3 放大电路的频率响应
一、单管共射放大电路的频率响应 二、多级放大电路的频率响应
采用对数坐标系,横轴为lg f,可开阔视野;纵轴为 20lg ,
单位为“分贝” (dB),使得 “ ×” →“ +” 。
2020/5/1
模电
华成英 hchya@
三、晶体管的频率参数
共射截 止频率
共基截 止频率
特征 频率
集电结电容
f、f、fT、Cob (C )。 使 1时的频率为fT
f
f
时,
0
2
0.7070 , -45;
f
f 时, ຫໍສະໝຸດ f f0;f时, 0, -90
2020/5/1
模电
华成英 hchya@
3. 电流放大倍数的波特图: 采用对数坐标系
折线化近似画法 20 lg 2 3dB -20dB/十倍频 lg f
5.71
注意折线化曲线的误差
1
X Cμ gmRL'
Cμ' (1 gmRL' )Cμ
同理可得,Cμ''
k
k
1
Cμ
2020/5/1
模电
华成英 hchya@
3. 晶体管简化的高频等效电路
为什么不考虑Cμ''? 如何得到模型中的参数?
0 Ib gmUb'e gm Ibrb'e
gm
0
rb'e
I EQ UT