简述平面四杆机构的类型特点和应用

合集下载

平面四杆机构的类型特点及应用概念

平面四杆机构的类型特点及应用概念

平面四杆机构的类型特点及应用概念平行四杆机构的特点是固定杆和活动杆平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。

它的运动可以实现平行移动,适用于汽车悬挂系统、工艺机械等领域。

正交四杆机构的特点是固定杆和活动杆相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。

它的运动可以实现直线运动,适用于推动机械、绞车等领域。

菱形四杆机构的特点是固定杆和活动杆两两相交且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。

它的运动可以实现平行移动和旋转运动,适用于啮合机构、制造机械等领域。

推动机构的特点是固定杆和活动杆两两平行且相等长度,其中两个固定连接点和两个活动连接点分别位于固定杆的两端和活动杆的两端。

它的运动可以实现直线运动,适用于传动机构、物料输送机械等领域。

平面四杆机构的应用非常广泛。

它可以用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。

在制造机械中,平面四杆机构常用于构建精密机床,如铣床、钻床等。

在工艺机械中,平面四杆机构常用于构建织机、纺机等。

在汽车悬挂系统中,平面四杆机构可以实现汽车悬挂系统的运动,提高汽车悬挂性能。

在绞车中,平面四杆机构可以用于提升和绞丝等工作。

在传动机构中,平面四杆机构可以用于实现直线传动和转动传动。

在物料输送机械中,平面四杆机构可以用于实现物料的输送和分拨。

总之,平面四杆机构具有多种类型和特点,适用于多个领域的应用。

它可以实现复杂的运动轨迹,广泛应用于制造机械、工艺机械、汽车悬挂系统、绞车、传动机构、物料输送机械等领域。

平面四杆机构的基本类型

平面四杆机构的基本类型

平面四杆机构是一种常见的机械结构,由四个连杆组成,可以实现转动和传递力量。

根据其连杆排列方式和运动特点,平面四杆机构可以分为以下几种基本类型:
四杆平行机构:四个连杆平行排列的机构,常见的形式是平行四边形。

四杆平行机构具有简单结构和稳定性好的特点,在工程和机械设计中广泛应用。

四杆平行滑块机构:四个连杆中有一个是滑块,可以在平面内作直线运动。

这种机构常见的应用是在平面上实现直线运动,如印刷机的工作台。

四杆旋转机构:四个连杆可以围绕一个固定点旋转,形成一个封闭的轨迹。

这种机构常见的形式是摇杆机构或曲柄摇杆机构,常用于发动机的活塞运动转化为旋转运动。

四杆转动滑块机构:四个连杆中有一个是滑块,可以在平面内作转动运动。

这种机构常见的应用是实现旋转运动和直线运动的转换,如某些机床的进给机构。

这些基本类型的平面四杆机构都具有不同的运动特点和应用场景。

根据具体的工程需求和设计要求,可以选择合适的平面四杆机构类型,并进行优化和改进,以满足特定的运动和力学要求。

平面铰链四杆机构分类

平面铰链四杆机构分类

平面铰链四杆机构分类1. 介绍平面铰链四杆机构是一种常见的机械结构,由四个杆件和若干个铰链连接而成。

它具有简单、可靠、可控性好等特点,在机械设计中得到广泛应用。

本文将对平面铰链四杆机构进行分类,并介绍每种分类的特点和应用。

2. 分类2.1 单自由度四杆机构单自由度四杆机构是指只有一个活动连接件(也称为驱动件)的四杆机构。

这种机构可以实现一个自由度的运动,常见的有曲柄滑块机构和双曲柄滑块机构。

2.1.1 曲柄滑块机构曲柄滑块机构由一个旋转的曲柄和一个直线运动的滑块组成。

通过改变曲柄的旋转角度,可以实现滑块的往复直线运动。

曲柄滑块机构广泛应用于发动机、压力机等领域。

2.1.2 双曲柄滑块机构双曲柄滑块机构是指两个曲柄与一个滑块组成的机构。

与曲柄滑块机构相比,双曲柄滑块机构可以实现更复杂的运动轨迹,具有更广泛的应用。

双曲柄滑块机构常用于绘图仪、印刷机等设备中。

2.2 多自由度四杆机构多自由度四杆机构是指有多个活动连接件(驱动件)的四杆机构。

这种机构可以实现多个自由度的运动,常见的有平行四杆机构和串联四杆机构。

2.2.1 平行四杆机构平行四杆机构是指由两个平行排列的驱动件和两个平行排列的从动件组成的机构。

它可以实现平面内任意点的直线运动,并且具有较高的精度和刚性。

平行四杆机构广泛应用于工业生产线上,用于传输、装配等工作。

2.2.2 串联四杆机构串联四杆机构是指由一个驱动件和三个从动件组成的机构。

它可以实现复杂的运动轨迹,并且具有较高的自由度。

串联四杆机构常用于医疗器械、机器人等领域,用于实现复杂的运动任务。

3. 应用3.1 工业生产线平面铰链四杆机构在工业生产线上广泛应用。

曲柄滑块机构常用于压力机、冲床等设备中,用于实现往复运动;平行四杆机构常用于传输线上,用于实现物料的输送和装配。

3.2 机器人平面铰链四杆机构在机器人领域也有着重要的应用。

串联四杆机构可以用于实现机器人的手臂运动,使其能够完成复杂的操作任务;双曲柄滑块机构可以被应用在机器人的关节传动中。

平面四杆机构的基本类型及其应用

平面四杆机构的基本类型及其应用
§8-1 连杆机构及其传动特点
一、特点
全低副(面接触),利于润滑,故磨损小、压强小,传载 大、寿命长;几何形状较简单,易加工,制造成本低等。
不能精确实现复杂的运动规律,设计计算较复杂,惯性 力不易平衡等。
二、应用 实现已知运动规律; 实现给定点的运动轨迹。
§8–2 平面四杆机构的类型和应用
平面连杆机构-平面机构+低副连接 (转动、移动副) 最常用→平面四杆机构( 四个构件→四根杆)
三、双移动副机构
正弦机构
正切机构
双转块机构 (十字滑块机构)
动画
双滑块机构 椭圆仪
四、偏心轮机构
• 对心式曲柄滑块机构
• 偏心轮机构
B
1
2
A
3
C
B副扩大
4
B
1 A
2
3
C 4
五、四杆机构的扩展
手动冲床
双摇杆机构 摇杆滑块机构
筛料机构 双曲柄机构
曲柄滑块机构
连杆
2
C 连架杆
3
4
D
机架
(按连架杆类型)
铰链四杆机构
曲柄摇杆机构
双曲柄机构
双摇杆机构
一曲一摇
二曲
二摇
1.曲柄摇杆机构: 连架杆┌曲柄→(一般)原动件→匀速转动
└摇杆→(一般)从动件→变速往复摆动
雷达调整机构
(天线→摇杆)→调整天线 俯仰角的大小
搅拌器机构 缝纫机踏板 刮雨器
B 1 A
C 2
3
4
基本类型
→铰链四杆机构(全由转动副相联)
→最简单,应用广泛,组成多杆机构的基础。
一、铰链四杆机构基本类型
-全由转动副相联的平面四杆机构

平面四杆机构的三种基本类型

平面四杆机构的三种基本类型

平面四杆机构的三种基本类型
1.平面四杆机构的基本类型
平面四杆机构是机械驱动系统中的一种常见结构,相对于其他机构而言,它具有简单结构,容易制造、安装和维护等特点,可以满足不同的机械驱动需求。

平面四杆机构可以分为三大类:摆动运动的活动类四杆机构、运动类四杆机构以及悬臂类四杆机构。

(1)摆动运动的活动类四杆机构
摆动运动的活动类四杆机构是一种典型的四杆机构,它具有一个主动类似于摆动运动的活动部件,一个棍杆组成,它一端连接固定在机械设备上的活动部件,另一端连接执行器,它可以通过输入信号来控制四杆机构的运动方向和速度。

(2)运动类四杆机构
运动类四杆机构是一种典型的四杆机构,它由一个主杆、两个连接杆、一个活动杆和一个联动机构组成,它可以实现前后、左右运动,可以通过改变运动方向和速度,来达到控制任务的目的。

(3)悬臂类四杆机构
悬臂类四杆机构是一种新型的四杆机构,它的结构类似悬臂梁,由一个主杆、两个连接杆、一个支点和一个活动杆组成,它可以实现前后、左右悬臂运动,可以通过改变运动方向和速度,来达到控制任务的目的。

- 1 -。

2-2平面四杆机构的类型及应用

2-2平面四杆机构的类型及应用
0 15
双摇杆
45
双曲柄
55
双摇杆
115mm
2.3.2急回特性
请观察:
雷达天线机构
牛头刨床
急回特征用从动件行程速度变化系数K表示: 从动件快行程(回程) 平均速度v2 K 1 从动件慢行程(工作) 平均速度v1
急回运动的原理 曲柄AB等速转动,摇杆CD摆动 C1
曲柄摇杆 机构
C v1 v2
3
缝纫机机构运动简图
施加一外力
死点位置的利用
例:
1.飞机起落架机构 2.折叠桌台
②不满足杆长条件。
3.双摇杆:①满足杆长条件,且最短杆为连杆(与题意不符!)
lAB +50>30+35 ∴ 15< lAB<30 若lAB<30: 若30< lAB <50: 30+50 >lAB+35 ∴30 < lAB <45 若50<lAB<115: 30+lAB>35+50 ∴ 55< lAB < 115 即:15mm< lAB<45mm,或 55mm< lAB<115mm 曲柄摇杆
C C
C2 3
v
2
1
F
B2
4 D
此时机构: 不动(卡死), 运动不确定!
B B1 =00 A =00 C1 C B2
=00
F

v
原因: 没有使从动曲柄转动的力矩, 即:M=F ×L=0
C
2
如何克服死点?
例:家用缝纫机
B2
A
vB

B1
FB 脚 C2 踏板 C1
D
克服死点措施:
利用惯性力

θ
=0、K=1, 无急回特性 θ↑K↑,急回特征越显著

平面四杆机构ppt课件

平面四杆机构ppt课件
平面四杆机构ppt课件
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机

平面四杆机构

平面四杆机构

4.移动导杆机构 4.移动导杆机构 取曲柄滑块机构中的滑块4为机架而得到的。当曲柄2 转动时,导杆1可在固定滑块4中往复移动,故该机构 称为移动导杆机构 移动导杆机构(或定块机构 定块机构)。 移动导杆机构 定块机构
应用实例:手压抽水机、抽油泵等。 应用实例:手压抽水机、抽油泵等。
铰链四杆机构存在曲柄的条件
平面四杆机构的类型及应用
曲柄摇杆机构 平 面 四 杆 机 构 铰链四杆机构 双曲柄机构 全转动副) (全转动副) 双摇杆机构 曲柄滑块机构 含有移动副 的平面四杆 机构 曲柄导杆机构 曲柄摇块机构 移动导杆机构
铰链四杆机构
铰链四杆机构中, 固定不动的构件为机架 机架; 铰链四杆机构中 , 固定不动的构件为 机架 ; 与机架相 连架杆, 联的构件为连架杆 连架杆中, 联的构件为 连架杆 , 连架杆中 , 能绕机架的固定铰链 作整周转动的称为曲柄 曲柄, 作整周转动的称为 曲柄 , 仅能在一定角度范围内往复 摇杆; 摆动的称为摇杆 摆动的称为 摇杆 ; 联接两连架杆且不与机架直接相联 的构件称为连杆。 的构件称为连杆。 连杆
根据两个连架杆能否成为曲柄,铰链四杆机构可 根据两个连架杆能否成为曲柄, 分为三种基本形式:曲柄摇杆机构、双曲柄机构和 分为三种基本形式:曲柄摇杆机构、双曲柄机构和双 摇杆机构。 摇杆机构。
特点是: 曲柄摇杆机构特点是:既能将曲柄的整周转动变 换为摇杆的往复摆动, 换为摇杆的往复摆动,又能将摇杆的往复摆动变换 为曲柄的连续回转运动。 为曲柄的连续回转运动。
2
4
3.曲柄摇块机构 3.曲柄摇块机构 取曲柄滑块机构中的连杆3为机架而得到的。当 曲柄2为原动件绕点转动时,滑块4绕机架3上的铰 链中心摆动,故称该机构为曲柄摇块机构 曲柄摇块机构或称为 曲柄摇块机构 摆动滑块机构。 摆动滑块机构 应用于各种摆动式 原动机和工作机中。 原动机和工作机中。 摆缸式液压泵、 摆缸式液压泵、卡 车车箱自动翻转卸 料机构 。

平面四杆机构

平面四杆机构

这些机构生活有哪些作用
机械手臂:在机械手臂中,通 常会使用双摇杆机构来驱动手 臂的伸缩和旋转,以实现机械
手臂的各种动作
汽车门窗:在汽车中,门窗的 开合机构通常会使用曲柄摇杆 机构或双曲柄机构来实现,以 提供稳定且平滑的开合体验
儿童玩具:许多儿童玩具中也 会使用到平面四杆机构,例如 玩具车、玩具飞机等,以实现
平面四杆机构在各种生活和工业应用中有着广泛的作用。由于其结构简单,易于制造 和调节,因此被广泛应用于实现各种运动规律和运动轨迹。以下是几种常见的应用
摄影机或摄像机:在摄影机或摄像机的镜头伸缩装置中,通常会使用双曲柄机构或双 摇杆机构来驱动镜头的伸缩,以实现精确控制和稳定的拍摄效果
打印机和复印机:在打印机和复印机的打印头或扫描头部分,可能会使用到曲柄摇杆 机构或双曲柄机构来驱动打印头或扫描头的移动,以实现高精度的打印和复印效果
有哪些地方用到的原理
总的来说,平面四杆 机构是一种非常有用 的机械元件,它的原 理被广泛应用于各种 不同的机械系统和设 备中
-
THANKS
20xx
平面四杆机构
汇报人:xxx
-
1
平面四杆机构分类那些机构

2
这些机构生活有哪些作用
3
有哪些地方用到的原理
1 平面四杆机构分类那 些机构
平面四杆机构分类那些机构
平面四杆机构是一种常 见的机械机构,它由四 个刚性杆组成,且所有
杆件在同一直线上
根据杆件的不同组合和 运动特征,平面四杆机 构可以分为以下几类
01
曲柄摇杆机构: 曲柄为主动件, 摇杆为从动件, 曲柄的转动转化 为摇杆的摆动
平面四杆机构分类那些机构
02
双曲柄机构:两 个曲柄协同转动, 其中一个是主动 件,另一个是从 动件

平面四杆机构分析报告

平面四杆机构分析报告

工业设计机械设计基础大作业一、序言平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。

虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。

对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。

二、平面连杆机构优缺点的介绍连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。

例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。

这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。

它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。

连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。

此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。

正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。

三、平面四杆机构的基本类型与应用实例。

连杆机构是由若干刚性构件用低副连接所组成的。

平面四杆机构.

平面四杆机构.

基本特性
双曲柄存在的条件 急回特性 传动角和压力角 死点位置 运动连续性
平面四杆机构的基本特征
平面四杆机构的基本特征
上式两两相加得: l1≤l2 , l1≤l3, l1≤l4, 即AB为最短杆。
平面连杆机构有曲柄的条件: 1)连架杆与机架中必有一杆为四杆机构中的最 短杆; 2)最短杆与最长杆之和应小于或等于其余两杆 的杆长之和。(杆长和条件) (Grashof 定理)
平面四杆机构的基本特征
杆长条件ቤተ መጻሕፍቲ ባይዱ
机架条件
机构类型
最短杆相邻的杆为机架 曲柄摇杆机构
满足杆长之 和条件
最短杆本身为机架
双曲柄机构
最短杆相对的杆为机架 双摇杆机构(I)
不满足杆长 之和条件
任意杆为机架
双摇杆机构(II)
作业 书P38(3-1、3-2、3-6)
谢谢!
End
双曲柄机构的运动特点:
普通双曲柄机构 平行双曲柄机构 反向双曲柄机构
主动曲柄等速转动 从动曲柄变速转动 两曲柄转动的角速度始终相等 双曲柄的转向相反,且长度也相等
2.双曲柄机构
平行四边形机构的运动不确定性 当四杆共线时会出现运动不确定现象
2.双曲柄机构
解决方法:
1、惯性飞轮 2、加虚约束 3、靠自重
往复摆动;当以摇杆为原动件时,可将摇杆的往复摆动变成曲柄的 连续转动。
2.双曲柄机构
特征:两个连架杆,均为 为曲柄
特点:可将原动件的匀速转动变
成从动件的变速转动。
2.双曲柄机构
应用:
2.双曲柄机构
平行四边形机构:
当相对两杆平行且相等,称为平行四边形机构。
B B’
C C’

平面四杆机构的基本类型及应用

平面四杆机构的基本类型及应用

总结:平面连杆机构的演化
感谢下 载
可编辑
图 3-11
3、双摇杆机构
双摇杆机构:铰链四杆机构中的两连架杆均不能作 整周转动的机构。
如图3-12所示鹤式起重机的双摇杆机构ABCD, 它可使悬挂重物作近似水平直线移动,避免不 必要的升降而消耗能量。在双摇杆机构中,若 两摇杆的长度相等称等腰梯形机构,如图3— 13中的汽车前轮转向机构。
二、平面连杆机构的演化
铰链四杆机构可分为以下三种类型
1、曲柄摇杆机构
铰链四杆机构的两连架杆中一个能作整 周转动,另一个只能作往复摆动的机构。
2、双曲柄机构
铰链四杆机构的两连架杆均能作整周转 动的机构。
在双曲柄机构中,若相对两杆平行相 等,称为平行双曲柄机构(图3-9)。 这种机构的特点是其两曲柄能以相同 的角速度同时转动,而连杆作平行移 动。图3-10a所示机车车轮联动机构 和图3-10b所示的摄影平台升降机构 均为其应用实例。
前面介绍的三种铰链四杆机构, 还远远满足不了实际工作机械的 需要,在实际应用中,常常采用 多种不同外形、构造和特性的四 杆机构,这些类型的四杆机构可以看作是由铰链
四杆机构通过各种方法演化而来的。
这些演化机构扩大了平面连杆机构的应用,丰 富了其内涵。
1、改变相对杆长、转动副演化为移动副
在曲柄摇杆机构中,若摇杆的杆长增大至无穷长,则
其与连杆相联的转动副转化成移动副。 ——曲柄滑块机构
曲柄滑块机构——偏心轮机构
当曲柄的实际尺寸很 短并传递较大的动力 时,可将曲柄做成几 何中心与回转中心距 离等于曲柄长度的圆 盘,常称此机构为偏 心轮机构。
双滑块机构
若继续改变图3—14b中对心曲柄滑块机构中杆 2长度,转动副C转化成移动副,又可演化成双 滑块机构(图3-15)。该种机构常应用在仪 表和解算装置中。

机械基础项目四 平面连杆机构

机械基础项目四 平面连杆机构
项目四
平面连杆机构
平 面 四 杆 机 构 的 类 型 及 应 用
四 杆 机 构 的 特 性
项目四
平面连杆机构
图为一台缝纫机,人们会问:它是怎样运动的?
缝纫机
4.1
4.1.1
平面四杆机构的类型及应用
平面四杆机构的定义
若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机 构或低副机构。所有构件均在某一平面内运动或相互平行平面内运动的连 杆机构称为平面连杆机构。 由四个构件组成的平面连杆机构称为平面四杆机构。
平面四杆机构的类型及应用
4)移动导杆机构 在图含有一个移动副的四杆机构(d) 中,滑块C为机架,AB杆摆动,AC杆往复直 线运动,称为移动导杆机构。如下图所示的 抽水唧筒就是移动导杆机构的应用。
抽水唧筒
4.2
4.2.1
四杆机构的特性
平面四杆机构的类型及应用
铰链四杆机构存在曲柄,必须同时满足以下两个条件: 1)连架杆和机架中必有一杆是最短杆; 2)最短杆与最长杆长度之和小于或等于其它两杆长度之和。
当双曲柄机构的相对两杆平行且相等时,则成为平行四边形机构, 如图(a)所示。注意:平行四边形机构在运动过程中,当两曲柄与机架 共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动 不确定现象,如图(b)所示。可以在机构中添加飞轮或使用两组相同机 构错位排列来克服此现象。
双曲柄机构
4.1
4.1.2
曲柄滑块机构
4.2
4.2.2 急回特性
四杆机构的特性
3. 导杆机构的急回特性
摆动导杆机构
4.2
4.2.2 急回特性
四杆机构的特性
4. 四杆机构的死点 摇杆为主动件,如图所示。当连 杆与曲柄两次共线时,连杆作用于曲 柄上B点的力与B点的速度垂直,此 时摇杆上无论加多大驱动力,机构不 能运动,此位置称为“死点”。

平面四杆机构的基本类型及应用

平面四杆机构的基本类型及应用

平面四杆机构的基本类型及应用
平面四杆机构是机械设计中常用的连杆机构之一,由于其简单可靠和使用方便,广泛应用于各种机械设备中。

平面四杆机构是由四个链杆组成的,其中至少有一个链杆是固定的。

四个链杆的联接点构成了四个运动副,包括一对转动副和一对平动副,它们通过固定的连杆来互相联系。

平面四杆机构可以实现转动或直线运动,同时可实现正、反、重复运动。

本文将主要介绍平面四杆机构的基本类型及应用。

1. 凸轮机构型平面四杆机构
凸轮机构型平面四杆机构是一种基于凸轮的平面四杆机构,由于其能够产生不同形状的凸轮运动来实现转动或直线运动,因此在机械设备中广泛应用。

例如,凸轮式压力机、凸轮式磨床、凸轮式切削机和凸轮式卷板机等机器均采用了凸轮机构型平面四杆机构。

双曲线机构型平面四杆机构是一种基于双曲线运动的平面四杆机构,由于其具有双曲线重复运动的性质,因此在多运动副平面机构中应用较为广泛。

例如,位移量较小的曲柄滑块机构,就采用了这种结构。

此外,双曲线机构型平面四杆机构还被广泛应用于推动旋转工件的机械系统中。

心轮机构型平面四杆机构是一种基于心轮的平面四杆机构,其构造相比其他机构稍微复杂,但具有较高的可靠性和灵敏度,因此被广泛应用于重要的机械装置中。

例如,用于驱动自动调焦装置、扫描仪输送装置、医院电梯系统等机器的传动装置均采用了心轮机构型平面四杆机构。

总之,平面四杆机构广泛应用于机械设计中的各个领域,包括制造业、食品加工、印刷、医疗和各种运动设备等。

不同类型的平面四杆机构各具特点,可根据使用情况和需要选择。

平面四杆机构的类型,特点及应用概念

平面四杆机构的类型,特点及应用概念

平面四杆机构的类型,特点及应用概念平面四杆机构是一种重要的机械构件,具有固定点簇、连杆及活动点簇等关键组成部分。

根据不同的连接方式和功能需求,平面四杆机构可以分为平行四杆机构、菱形四杆机构、双曲线四杆机构、半圆四杆机构等多种类型。

下面本文将对这些机构类型的特点及应用进行相关介绍。

一、平行四杆机构平面四杆机构中的平行四杆机构,最为常见。

平行四杆机构由两对等长连杆组成,各自平行滑动,所以叫做平行四杆机构。

平行四杆机构的特点是连接点严格固定,适合转动相同方向的连续运动,如车床上的顶轴和平面磨床的进给机构就采用了平行四杆机构。

二、菱形四杆机构菱形四杆机构是由一对等长的对边固定的菱形和一对等长杆件组成的机构。

其中,两个杆件与菱形的对角线相连,另外两个杆件则与菱形两条平行线相连。

通过这样的联结方式,菱形四杆机构可以实现不同方向的运动,如旋钮开关,废乳机械的减速机构等都采用了菱形四杆机构。

三、双曲线四杆机构双曲线四杆机构是由双曲面、两个相交的固定点、两个关节和两个等长杆组成的平面四杆机构,主要是用来实现一定的负载传递和动力,例如工件阻力和重力等。

双曲线四杆机构的优点在于具有一定的自适应能力,可以自动调整杆长度,达到更稳定的运动效果。

应用领域包括夹持,钻床等。

四、半圆四杆机构半圆四杆机构是由两条半圆弧及两对连杆构成的平面四杆机构。

通过调整连接点的位置及杆长度,可以实现转轴轨迹的变化。

半圆四杆机构在工业生产中被广泛应用,如水平挖掘机,转子泵等。

在应用平面四杆机构的过程中,大多数机构的运动往往还需要与其它机构进行配合才能实现更复杂多变的功能。

此外在机器人领域中,四杆机构也得到了广泛应用,如各类机器人的手臂,就是利用四杆机构的特性来完成精细灵活的动作。

总的来说,平面四杆机构是机械领域中一类非常基础且重要的构件。

通过不同的连接方式和调整,可以实现多样化的运动功能,并被广泛应用在工业生产及机器人领域中。

16平面四杆机构特点及应用

16平面四杆机构特点及应用

16平面四杆机构特点及应用首先,16平面四杆机构具有高刚度和高精度的特点。

机构中的4个杆件通过铰接连接,能够提供较高的刚度和精度,使得机构在运动过程中具有较小的变形和误差。

其次,16平面四杆机构具有多自由度的特点。

机构中的4个杆件和2个固定件的长度和连接方式可以灵活调整,从而可以实现多种运动方式和自由度控制。

这使得机构在不同工况下能够适应各种需求,并具有一定的适应性和灵活性。

另外,16平面四杆机构还具有较高的传输效率和负载能力。

机构中的杆件通过铰接连接,能够提供较高的传输效率,并且可以通过调整杆件的长度和连接方式来调整机构的负载能力。

这使得机构在工业生产和机械传动等领域具有广泛的应用。

在应用方面,16平面四杆机构具有以下几个重要的应用:1.机器人领域:16平面四杆机构具有较好的刚度和精度,能够实现高速度和高精度的运动。

因此,在机器人领域中,可以将16平面四杆机构用于机械手臂的关节传动,实现工件的抓取、搬运和装配等操作。

2.运动模拟器:16平面四杆机构能够实现多自由度的运动,能够模拟人体的运动轨迹和姿态。

因此,在航天、飞行器和汽车等领域中,可以将16平面四杆机构用于运动模拟器中,用于飞行器的模拟驾驶、汽车的悬挂系统模拟和航天器的姿态控制等应用。

3.数控机床:16平面四杆机构具有高刚度和高精度的特点,能够实现高速度和高精度的运动。

因此,在数控机床中,可以将16平面四杆机构用于控制工件的运动轨迹和位置,从而实现工件的加工和成形。

4.医疗设备:16平面四杆机构具有刚度和精度高的特点,能够实现对患者的精确控制。

因此,在医疗设备中,可以将16平面四杆机构用于手术机器人和影像设备等领域,实现对患者的准确定位和操作。

综上所述,16平面四杆机构具有高刚度、高精度、多自由度、高传输效率和负载能力等特点,并且在机器人、运动模拟器、数控机床、医疗设备等领域具有广泛的应用。

平面四杆机构的类型和应用-2022年学习资料

平面四杆机构的类型和应用-2022年学习资料

例:选择双滑块机构中的不同构件-作为机架可得不同的机构-KLLLA-777刀-7777-正弦机 -椭圆仪机构-4运动副元素的逆换-将低副两运动副元素的包容关系进行逆换,不影响两-构件之间的相 运动。-导杆机构-摇块机构
§4一3有关平面四杆机构的一些基本知识-1.平面四杆机构有曲柄的条件-设a<d,-连架杆若能整 回转,必有两次与机架共线-则宙不B'CD可得:-三角形任意两边之和大于第三边-a+d≤b+c由△B”C”D可得:-最长杆与最短杆的长度之-b≤d-a+c-即:a+b≤d+c-和≤其他两杆 度之和-c≤d-a+b即:a+c≤d+b-将以上三式两两相加得:-a≤b,a≤c,a≤d-AB 晶短杆-若设a>d同理有:-d≤a,d≤b,d≤c-AD为最短杆-d中必有一个是机架
§4一1连杆机构及其传动特点-应用实例:-内燃机、鹤式吊、火车轮、急回冲床、生头刨床、翻箱机、 椭圆仪、机械手爪、开窗、车门、折叠伞、床、牙膏筒拔管-机、单车等-特征:有一作平面运动的构件, 为连杆。-特点:-①采用低副。面接触、承载大、便于润滑、不易磨损-形状简单、易加工。-②连杆曲 丰富。可满足不同要求。-③构件呈“杆”状、传递路线长。-④改变杆的相对长度,从动件运动规律不同
180°+0-由-K--可得:0=180°-K-1-180°-0-K+1-曲柄滑块机构的急回特 -思考题:对心曲柄滑块机构的急回特性如何?-导杆机构的急回特性-应用:空行程节省运动时间,如生 刨、往复式输送机等。-对于需要有急回运动的机构,常常是根据需要的行程速比系数K,先求出0,然后 设计各构件的尺寸。
2改变运动副的尺寸-偏心轮机构-3选不同的构件为机架-摆动导杆机构-曲柄滑块机构-转动导杆机构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述平面四杆机构的类型特点和应用
一、平面四杆机构的类型:
1. 平衡四杆机构:该机构有能力保持平衡,即使受到外部干扰也能够
回到原来的位置。

这种机构被广泛用于稳定系统和开放环境。

2. 驱动四杆机构:该机构可以转化旋转运动为线性运动或反之。

这种
机构广泛应用于机械工程、模具制造和自动化工程中。

3. 可逆四杆机构:该机构可以逆向工作,在不同的任务中灵活应用。

这种机构被广泛用于机器人工程和自动化工程中。

4. 变位四杆机构:该机构可以在不同位置自动调整,以适应不同的应
用需求。

这种机构被广泛用于自动化机械和精密制造领域。

二、平面四杆机构的特点:
1. 平面四杆机构可以转换不同类型的运动,包括旋转、线性、摆动等。

2. 平面四杆机构结构简单,易于制造和维护,具有良好的可靠性和稳
定性。

3. 平面四杆机构可以通过组装多个单元来实现更高级别的机械结构,
例如机器人、自动化系统等。

4. 平面四杆机构广泛应用于机械、汽车、制造、物流、自动化等领域,并逐渐成为机器人、智能装备的重要组成部分。

三、平面四杆机构的应用:
1. 发动机连杆机构:由于发动机需要将旋转运动转化为线性运动来驱
动汽车轮胎,平面四杆机构被广泛应用于汽车发动机的连杆机构中。

2. 物流设备:平面四杆机构可以逆向工作,可以将线性运动转化为旋
转运动,这使得物流设备可以保持高速和精度,如自动包装线、调料
机等。

3. 机械手:平面四杆机构的结构简单,稳定性好,这使得它成为机器
人手臂的优选部件之一,广泛应用于各个制造领域。

4. 印刷机械:平衡四杆机构可以使印刷平台始终稳定,特别是在高速
印刷时,它可以保持印刷品的精度和质量。

5. 飞控系统:平衡四杆机构被广泛应用于飞控系统的调节器中,以帮
助控制飞行器的稳定性。

总的来说,平面四杆机构具有结构简单、稳定性好、运动特性多样等特点,可以在各个行业发挥重要的作用。

相关文档
最新文档