重庆一中学年七上期末考试
2022-2023学年重庆市沙坪坝区第一中学校七年级上学期期末考试数学试卷带讲解
![2022-2023学年重庆市沙坪坝区第一中学校七年级上学期期末考试数学试卷带讲解](https://img.taocdn.com/s3/m/ec3569d1760bf78a6529647d27284b73f242366a.png)
重庆市第一中学2022−2023学年上学期七年级期末试题一、选择题:(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案写在答题卷相应位置.)1.如果将175cm 作为标准身高,高于标准身高3cm 记作+3cm ,那么身高170cm 应记作()A.-3cmB.-5cmC.+5cmD.-170cmB【分析】此题主要用正负数来表示具有意义相反的两种量:选175厘米为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.【详解】∵175-170=5,标准身高是175cm ,∴身高170cm 应记作-5cm .故选:B .【点睛】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.2.在8-, 3.14-,π,0.3070809,227中,有理数有()A.2个B.3个C.4个D.5个C【分析】根据有理数的分类,逐个判断即可.【详解】解:根据有理数的分类可得,有理数有8-, 3.14-,0.3070809,227,个数为:4故选:C【点睛】此题考查了有理数的分类,解题的关键是掌握有理数的概念,整数和分数统称为有理数.3.下列各式中,运算正确的是()A.325a b ab +=B.3332a a a -= C.2a b ab a-= D.2242a a a +=B【分析】直接根据合并同类项的法则计算即可.【详解】解:A 、3a 与2b 不是同类项,不能合并,不合题意;B 、3332a a a -=,正确,符合题意;C 、2a b 与ab 不是同类项,不能合并,不合题意;D 、2222a a a +=,不合题意;故选:B .【点睛】此题考查的是合并同类项,掌握其运算法则是解决此题的关键.4.钟表上的时间指示为两点半,这时时针和分针之间所形的成的(小于平角)角的度数是()A.120°B.105°C.100°D.90°B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹角可以看成3×30°+0.5°×30=105°.故选B .【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.5.已知210a ab --=,则代数式632a ab --的值是()A.5-B.1- C.3- D.1D【分析】已知210a ab --=,则21a ab -=,将代数式632a ab --变形为()322a ab --,进而把已知代入求出答案.【详解】解:210a ab --= ,21a ab ∴-=,632a ab ∴--()322a ab =--312=⨯-1=.故选:D .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.代数式求值题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.6.若2x 9=,y 2=,且x y <,则x y -的值为()A.5± B.1± C.5-或1- D. 5或1C【分析】首先根据绝对值和乘方的定义确定出x 、y 的值,再找出x <y 的情况,然后代入计算即可.【详解】解:∵x 2=9,|y|=2,∴x=±3,y=±2,∵x <y ,∴x=-3,y=±2,∴x-y=-5或-1,故选C .【点睛】此题主要考查了乘方、绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x 、y 的值.7.下列平面图形经过折叠后,不能围成正方体的是()A. B.C.D.D【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可【详解】解:常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有D 选项不能围成正方体.故选D .【点睛】本题考查了正方体展开图,解题关键是熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”.8.按如图所示的程序运算:当输入的数据为1-时,则输出的数据是()A.2B.4C.6D.8B【分析】把x =﹣1代入程序中计算,判断结果与0的大小,即可确定出输出结果.【详解】解:把x =﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0,把x =﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0,则输出的数据为4,故选:B .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,那么可列方程为()A.()103530x x +-=B.()310530x x +-=C.305103x x-+= D.305310x x-+=A【分析】根据题意直接列方程即可.【详解】解:根据题意,得:()103530x x +-=,故选:A .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.10.已知关于x 的方程38132ax xx --=-有负整数解,则所有满足条件的整数a 的值之和为()A.11- B.26- C.28- D.30-D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a+是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax xx --=-得x 7032a =+(a 32≠-),∵关于x 的方程38132ax xx --=-的解是负整数,∴7032a+是负整数,∴231a +=-或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,∴满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键.11.如图所示,以O 为端点画六条射线OA ,OB ,OC ,OD ,OE ,OF ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8 ,那么所描的第2022个点在()A.射线OA 上B.射线OC 上C.射线OF 上D.射线OE 上C【分析】根据图形和数字变化规律,每6个数一次循环,用2022除以6取余数即可求解【详解】∵在射线OA ,OB ,OC ,OD ,OE ,OF 上的点依次记为1,2,3,4,5,6,7,8 ,∴每6个数一次循环,∵20226337÷=,∴所描的第2022个点所在的射线和6所在射线一样,∴所描的第2022个点在射线OF 上.故选:C【点睛】本题考查了数字类规律探索和图形类规律探索,根据图形特点,判断出每6个数字为一个循环组是解题的关键12.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是()A .1个B.2个C.3个D.4个D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=,1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=,2422-=-=,220-=,为最小值,故③正确;按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,k 的最大值为10,设b 为较大数字,当1a =时,2110a b b --=-=,解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=,则210a b --=-,即8b a -=故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确;故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力.二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“绿水青山就是金山银山!”江西浮梁凭借得天独厚的绿色资源和生态保护机制,被授予2021年度“中国天然氧吧”称号,浮聚县林业用地约3240000亩,森林覆盖率达81.4%,将3240000用科学记数法表示为_______.63.2410⨯【分析】用科学计数法将3240000表示为63.2410⨯即可【详解】∵63240000 3.2410=⨯,∴3240000用科学记数法表示为:63.2410⨯,故答案为:63.2410⨯【点睛】本题考查用科学记数法表示绝对值大于1的数,科学计数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 和n 的值是解决问题的关键14.单项式2125R π-的系数是_________.125π-【分析】根据单项式的系数的概念求解.单项式中数字因数叫做单项式的系数.【详解】根据单项式系数的定义,可知单项式2125R π-的系数是125π-,故答案为:125π-.【点睛】本题考查了单项式的系数的概念.熟记单项式的系数是指单项式中的数字因数是解题的关键.注意π不是字母,而是数字.15.若3018A ∠=︒',则A ∠的补角是______.14942'︒【分析】由补角的定义即可得出答案.【详解】∵3018A '∠=︒,∴A ∠的补角为:180301814942''︒-︒=︒;故答案为:14942'︒.【点睛】本题考查了补角的定义以及度分秒的换算,熟练掌握补角的定义是解题的关键.16.请写出一个能与35x y -合并成一项的单项式______.3x y (答案不唯一)【分析】直接利用合并同类项法则判断得出答案.【详解】一个能与35x y -合并的单项式为:3x y (答案不唯一).故答案为:3x y (答案不唯一).【点睛】此题主要考查了同类项,正确掌握同类项才可以合并是解题关键.17.若3x =-是方程()321x a -=-的解,则=a ________.4【分析】把3x =-代入()321x a -=-,即可求解.【详解】解:∵3x =-是方程()321x a -=-的解,∴()3321a --=-,解得:4a =.故答案为:4【点睛】本题主要考查了一元一次方程的解,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.18.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.110.【分析】根据角平分线的意义,设DOE x ∠=,根据150AOB ∠=︒,40COD ∠=︒,分别表示出图中的各个角,然后再计算2BOE BOD ∠-∠的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°.故答案为:110.【点睛】考查角平分线的意义,利用代数的方法解决几何的问题也是常用的方法,有时则会更简捷.19.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是________.4【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1113++=个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有314+=个.故答案为∶4.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.20.有5个正整数1a ,2a ,3a ,4a ,5a .某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①1a ,2a ,3a 是三个连续偶数(123a a a <<),②4a ,5a 是两个连续奇数(45a a <),③12345a a a a a ++=+.该小组成员分别得到一个结论:甲:取26a =,5个正整数不能同时满足上述3个条件;乙:取212a =,5个正整数能同时满足上述3个条件;丙:当2a 满足“2a 是4的倍数”时,5个正整数能同时满足上述3个条件;丁:若5个正整数1a ,2a ,3a ,4a ,5a 同时满足上述3个条件,则534a k =+(k 为正整数);戊:5个正整数满足上述3个条件,则1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是10p (p 为正整数);以上结论正确的是______同学.甲乙丙丁戊【分析】根据每个结论,分别利用题中的3个条件,表示出1a ,2a ,3a ,4a ,5a ,5个数,通过各自的特点与要求进行求解.【详解】∵1a ,2a ,3a 是三个连续偶数,且123a a a <<,∴12323a a a a ++=.∵4a ,5a 是两个连续奇数,且45a a <,∴452a a =-,∴45522a a a +=-.∵12345a a a a a ++=+,∴25322a a =-.当26a =时,53622a ⨯=-,∴510a =,不满足条件,故甲正确.当212a =时,531222a ⨯=-,∴519a =,满足条件,故乙正确.∵偶数2a 是4的倍数,∴设24a k =(k 为正整数).∵25322a a =-,即53422k a ⨯=-,∴561a k =+,满足条件,故丙正确.设12a k =(k 是正整数),则222a k =+,324a k =+,由条件②得542a a =+,由条件③得4566a a k +=+,解得534a k =+,故丁正确.由5个正整数满足上述3个条件,∴25322a a =-,∴52312a a =+,若22a k =(k 是正整数),则5231312a a k =+=+,当k 为奇数时,5a 为偶数,与题设矛盾,当k 为偶数时,5a 为奇数,符合题意,∴不妨设2k p =(p 是正整数),即24a p =,∴偶数2a 是4的倍数,∴24a p =(p 为正整数),则561a p =+,∴1232312a a a a p ++==,4552212a a a p +=-=,∴1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是12121032p pp +=(p 是正整数),故戊正确.故答案为:甲乙丙丁戊【点睛】本题考查了数字类规律题,求平均数,整式的加减,根据题意得出个数之间的关系是解题的关键.三、解答题:(本大题9个小题,其中20−25小题8分,26−28每小题10分,29小题8分共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算:(1)()137.742 5.75410⎛⎫----+ ⎪⎝⎭(2)()21350215⎛⎫-+÷-⨯-- ⎪⎝⎭(1)0;(2)12-.【分析】(1)根据有理数的加减混合运算,求解即可;(2)根据有理数的绝对值、乘方以及四则运算,求解即可.【小问1详解】解:()137.742 5.75410⎛⎫----+ ⎪⎝⎭77172323104104=-+-+1010=-+0=【小问2详解】解:()21350215⎛⎫-+÷-⨯-- ⎪⎝⎭11350145⎛⎫=+⨯⨯-- ⎪⎝⎭5312=--12=-【点睛】此题考查了有理数的乘方以及四则运算,解题的关键是熟练掌握有理数的有关运算法则.22.化简:(1)()()22325a a a a --+;(2)()()22332222x xy x xy ---+-.(1)227a a-(2)2552x xy --【分析】(1)先去括号,再合并同类项即可(2)先去括号,再合并同类项即可【小问1详解】解:()()22325a a a a --+22325a a a a --=-227a a =-【小问2详解】解:()()22332222x xy x xy ---+-22936424x xy x xy =----+2552x xy =--【点睛】本题考查整式的加减,熟练掌握运算法则是化简的关键23.解方程:(1)()4356x x --=(2)2151136x x +--=(1)3x =;(2)3x =-.【分析】(1)依次去括号、移项、合并同类项、系数化为1即可求解;(2)依次去分母、去括号、移项、合并同类项、系数化为1即可求解.【详解】解:(1)去括号得:41536x x -+=,移项得:43615x x +=+,合并同类项得:721x =,系数化为1得:3x =;(2)去分母得:2(21)(51)6x x +--=,去括号得:42516x x +-+=,移项得:45621x x -=--,合并同类项得:3x -=,系数化为1得:3x =-.【点睛】本题考查解一元一次方程.熟练掌握解一元一次方程的基本步骤并能灵活运用是解题关键.24.先化简,再求值:222213222x y xy xy x y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦,其中2x =,13y =-.22232x y xy xy +-;23-【详解】解:222213222x y xy xy x y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦222213222x y xy xy x y xy ⎛⎫=+--- ⎪⎝⎭2222342x y xy xy x y xy =+---22232x y xy xy =+-当2x =,13y =-时原式22111223222333⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯⨯--⨯⨯- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭864393=-++2433=-23=-.【点睛】本题考查了整式的加减以及化简求值,正确的计算是解题的关键.25.已知点D 为线段AB 的中点,点C 在线段AB 上.(1)如图1,若8cm,6cm AC BC ==,求线段CD 的长;(2)如图2,若2BC CD =,点E 为BD 中点,18cm AE =,求线段AC 的长.(1)1cm ;(2)16cm .【分析】(1)利用线段的和差关系可以先求出AB 的长,再利用中点的定义求出AD ,即可求出CD 的长;(2)根据线段中点的定义结合已知求出AB ,进而可得AD 和BD 的长,然后根据2BC CD =求出CD 即可解决问题.【小问1详解】解:∵8cm,6cm AC BC ==,∴8614cm AB AC BC =+=+=,∵点D 为线段AB 的中点,∴17cm 2AD AB ==,∴871cm CD AC AD =-=-=;【小问2详解】解:∵点E 为BD 中点,∴12DE BD =,∵点D 为线段AB 的中点,∴12AD BD AB ==,∴14DE AB =,∴11318cm 244AE AD DE AB AB AB =+=+==,∴24cm AB =,∴112cm 2AD BD AB ===,∵2BC CD =,∴14cm 3CD BD ==,∴12416cm AC AD CD =+=+=.【点睛】本题主要考查线段的和差计算,熟练掌握中点的定义和线段的和差关系是解题的关键.26.将一副直角三角板ABC ,AED ,按如图1放置,其中B 与E 重合,45BAC ∠=︒,30BAD ∠=︒.(1)如图1,点F 在线段CA 的延长线上,求FAD ∠的度数;(2)将三角板AED 从图1位置开始绕A 点逆时针旋转,AM ,AN 分别为BAE ∠,CAD ∠的角平分线.如图2,当AE 旋转至BAC ∠的内部时,求MAN ∠的度数.(1)165FAD ∠=︒(2)37.5MAN ∠=︒【分析】(1)根据邻补角的定义求解即可(2)根据角平分线的性质、30DAE ∠=︒、45BAC ∠=︒,即可求得MAN ∠的度数【小问1详解】∵45BAC ∠=︒,30BAD ∠=︒,∴15CAD BAC BAD ∠=∠-∠=︒,∵180FAD CAD ∠+∠=︒,∴180165FAD CAD ∠=︒-∠=︒【小问2详解】∵AM ,AN 分别为BAE ∠,CAD ∠的角平分线,∴12CAN CAD ∠=∠,12MAE BAE ∠=∠,∵30DAE ∠=︒、45BAC ∠=︒,∴30CAD CAE ∠+∠=︒,45CAE BAE ∠+=︒,∴30CAD CAE ∠=︒-∠,45CAE BAE ∠=︒-,∴MAN CAN CAE MAE∠=∠+∠+∠1122CAD BAE CAE =∠+∠+()130452=︒+︒37.5=︒【点睛】本题考查了根据旋转的性质说明线段或角相等、邻补角的定义、角平分线的性质,熟悉直角三角板的角度是解决问题的关键27.一个四位数100010010m a b c d =+++(其中1a ≤,b ,c ,9d ≤且均为整数),若()a b k c d +=-,且k 为整数,称m 为“k 型数”.例如,4675:()46575+=⨯-,则4675为“5型数”;3526:()35226+=-⨯-,则3526为“2-型数”.(1)判断1731与3213是否为“k 型数”,若是,求出k ;(2)若四位数m 是“3型数”,3m -是“3-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数m ',m '也是“3型数”,求满足条件的所有四位数m .(1)1731是“k 型数”,4k =;3213不是“k 型数”(2)8440、7551和6662【分析】(1)根据“k 型数”直接求解即可;(2)根据题目中的要求进行整式的加减运算,分情况讨论即可.【小问1详解】解:∵一个四位数100010010m a b c d =+++(其中1a ≤,b ,c ,9d ≤且均为整数),若()a b k c d +=-,且k 为整数,称m 为“k 型数”,∴1731:()17431+=⨯-,则1731为“4型数”,即4k =;3213:()532132+=-⨯-,由于52-不是整数,则3213不是“k 型数”;【小问2详解】解:设四位数100010010m a b c d =+++,∵四位数m 是“3型数”,∴()3a b c d +=-,则c d>3m -是“3-型数”,则十位数与个位数的差是个负数,∴3c d <-,或1103c d -<+-,当3c d <-时,3c d -<-,与c d >矛盾,舍去,当1103c d -<+-时,8c d <+,∴d 可取0、1、2三个数,则()()()3110338a b c d c d +=---+-=---⎡⎤⎣⎦,将m 的百位数字与十位数字交换位置,得到新四位数100010010m a c b d '=+++,m '也是“3型数”,则()3a c b d +=-,联立上述式子得:()()()3383a b c d a b c d a c b d ⎧+=-⎪+=---⎨⎪+=-⎩,则①当0d =时,()3383a b c a b c a c b +=⎧⎪+=--⎨⎪+=⎩,解得844a b c =⎧⎪=⎨⎪=⎩,则四位数8440m =;②当1d =时,()()()313931a b c a b c a c b ⎧+=-⎪+=--⎨⎪+=-⎩,解得755a b c =⎧⎪=⎨⎪=⎩,则四位数7551m =;③当2d =时,()()()3231032a b c a b c a c b ⎧+=-⎪+=--⎨⎪+=-⎩,解得666a b c =⎧⎪=⎨⎪=⎩,则四位数6662m =;∴满足条件的所有四位数m 有8440、7551和6662.【点睛】本题是一个新定义阅读题,主要考查整式的加减,考查了学生阅读、归纳材料的能力;重点是理解题目意思,熟练掌握整式的加减28.黑马铃薯又名“黑金刚”,它富含碘、硒等多种微量元素,特别是含有花青素、花青原素,素有“地下苹果”之称.老李今年种植了5亩A 品种黑马铃薯,10亩B 品种黑马铃薯,其中A 品种的平均亩产量比B 品种的平均亩产量低20%,共收获两个品种黑马铃薯28000千克(1)求老李收获A,B两个品种黑马铃薯各多少千克?(列一元一次方程解答)(2)某蔬菜商人分两次向老李收购完这些黑马铃薯.收购方式如下:A、B两个品种各自独立装箱,A品种每箱50千克,B品种每箱100千克,每箱A的收购价200元,每箱B的收购价300元,老李给出如下优惠:收购A或B的数量(单位:箱)不超过30箱超过30箱优惠方式收购总价打九五折收购总价打八折第一次收购了两个品种共60箱,且收购的B品种箱数比A品种箱数多;受某些因素影响,蔬菜商人第二次收购时做出了价格调整:每箱A的收购价不变,每箱B的收购价比第一次的收购价降低16,优惠方式不变.两次收购完所有的黑马铃薯后,蔬菜商人发现第二次支付给老李的费用比第一次支付给老李费用多41000元,求蔬菜商人第一次收购A品种黑马铃薯多少箱?(1)A品种黑马铃为8000千克,B品种黑马铃薯为20000千克(2)20【分析】(1)设B品种的平均亩产量为x千克,那么A品种的平均亩产量为x(1-20%)千克,列出关于x的一元一次方程,即可求解;(2)先求出A、B两个品种各自箱数,然后设蔬菜商人第一次收购A品种黑马铃薯x箱,那么第一次收购B品种黑马铃薯(60-x)箱,第二次收购A品种黑马铃薯(160-x)箱,第二次收购B品种黑马铃薯(200-60+x)箱,根据题意得到x的一元一次方程,即可求解.【小问1详解】解:设B品种的平均亩产量为x千克,那么A品种的平均亩产量为x(1-20%)千克,根据题意得:10x+5x(1-20%)=28000,解这个方程得:x=2000那么A品种的平均亩产量为:2000×(1-20%)=1600,A品种黑马铃为:1600×5=8000(千克),B品种黑马铃薯为:2000×10=20000(千克);【小问2详解】∵A品种黑马铃8000千克,A品种每箱50千克,∴A品种共:8000÷50=160(箱)∵B品种黑马铃20000千克,B品种每箱100千克,∴B品种共:20000÷100=200(箱)设蔬菜商人第一次收购A品种黑马铃薯x箱,那么第一次收购B品种黑马铃薯(60-x)箱,第二次收购A品种黑马铃薯(160-x)箱,第二次收购B品种黑马铃薯(200-60+x)箱,根据题意得:200×0.8×(160-x )+300×(1-16)×0.8×(200-60+x )-41000=200×0.95x +300×0.8×(60-x )解这个方程得:x =20∴蔬菜商人第一次收购A 品种黑马铃薯20箱.【点睛】本题考查了一元一次方程的应用,做题的关键是找等量关系,列出方程.29.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b |,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB =_______,线段AB 的中点C 表示的数为_______;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为_______;(2)求当t 为何值时,12PQ AB =;(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.(1)①10,3;②23t -+,82t -;(2)1或3;(3)不变,5.【分析】(1)①根据题目所给的两点距离公式以及两点中点公式进行求解即可;②根据数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,进行求解即可得到结果;(2)由(1)②得t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,则510PQ t =-,再由152PQ AB ==,可得5105t -=,由此求解即可;(3)根据两点中点公式,分别求出点M 表示的数,点N 表示的数,即可得出线段MN 的长度.【小问1详解】解:①由题意得:2810AB =--=,线段AB 的中点C 为2832-+=,故答案为:10,3;②由题意得:t 秒后,点P 表示的数为:23t -+,点Q 表示的数为:82t -;故答案为:23t -+,82t -;【小问2详解】解:∵t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,∴(23)(82)510PQ t t t =-+--=-,又∵1110522PQ AB ==⨯=,∴5105t -=,解得:t =1或3,∴当t =1或3时,12PQ AB =;【小问3详解】解:不发生变化,理由如下:∵点M 为PA 的中点,点N 为PB 的中点,∴点M 表示的数为2(23)3222t t -+-+=-,点N 表示的数为8(23)3322t t +-+=+,∴3323522t t MN ⎛⎫⎛⎫=--+= ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,数轴上两点之间的中点表示方法,解题的关键在于理解题意,能够熟练掌握数轴上两点的距离计算公式.。
(完整word版)重庆市重庆一中初一上学期期末考试数学(含答案)
![(完整word版)重庆市重庆一中初一上学期期末考试数学(含答案)](https://img.taocdn.com/s3/m/582a7dc7f111f18582d05a86.png)
重庆一中初20XX级13—14学年度上期期末考试数学试题(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共40分)1.—2013的相反数是() A.1 2013B.12013C.3102 D.20132. 如图是由几个相同的小正方体搭成的一个几何体,它的左视图为()(第2题图) A B C D3. 下列去括号正确的是()A.()a b c a b c--=--B。
[]22()x x y x x y---+=-+C.2()2m p q m p q--=-+D.(2)2a b c d a b c d+--=+-+4。
为了了解20XX年重庆市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )A.20XX年重庆市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10005。
2449x yπ的系数与次数分别为()A.94,7 B。
π94,6 C。
π4,6D. π94,46。
已知x=2是方程02232=-ax的一个根,则2a-1的值是( )A。
3 B. 4 C. 5 D. 67。
下列说法错误..的是()A。
直线没有端点 B.两点之间的所有连线中,线段最短C. 0。
5°等于30分D.角的两边越长,角就越大8. 如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,设∠GFH的度数是α,则()A.90180α<<B.090α<<C.90α=D.α随折痕GF位置的变化而变化9。
某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x个零件,则所列方程为( )A。
()13121060x x=++B.()12101360x x+=+C.60101312x x+-=D.60101213x x+-=10。
初中数学重庆一中七年级数学上学期期末考试考试题考试卷及答案.docx
![初中数学重庆一中七年级数学上学期期末考试考试题考试卷及答案.docx](https://img.taocdn.com/s3/m/c6738ebf79563c1ec4da7178.png)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-2的相反数是().A.B . 2 C. D.试题2:如图是由4个大小相同的正方体搭成的几何体,其主视图是().A. B. C. D.试题3:下面各式中正确的是().A. B. C. D.试题4:下列调查方式中,应采用“普查”方式的是().A.调查某品牌手机的市场占有率B.调查我市市民实施低碳生活的情况评卷人得分C.对我国首架歼15战机各个零部件的调查D.调查某型号炮弹的射程试题5:未来三年,我国将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿用科学记数法表示为().A. 0.845×104亿元 B. 8.45×103亿元 C. 8.45×104亿元 D. 84.5×102亿元试题6:为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是().A. 2000名运动员是总体 B.每个运动员是个体C. 100名运动员是抽取的一个样本 D.抽取的100名运动员的年龄是样本试题7:计算等于( ) .A.B.C.D.试题8:若x2-x-m=(x-m)(x+1)且x≠0,则m等于().A.-1 B. 0 C. 1 D. 2试题9:某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,共卖得金额87元.若设铅笔卖出x支,则依题意可列出的一元一次方程为().A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D. 2×0.9x+1.2×0.8(60﹣x)=87试题10:已知,,则的值是().A.8 B. 2 C .11 D.13试题11:下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为().A. 84 B. 108 C. 135 D. 152试题12:甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发( )小时后,三辆车第三次同时汇合于A地.A. 50 B. 51 C. 52 D. 53试题13:单项式的系数是.试题14:如图(1)所示,点,在线段上,且,,是线段的中点,则线段为.试题15:的积不含x的二次项,则m的值是.试题16:钟面上3点40分时,时针与分针的夹角的度数是度.试题17:某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是.试题18:﹣(﹣3)试题19:+(﹣3)2﹣×试题20: 计算试题21:试题22:试题23:先化简,再求值(10分),其中、满足.试题24:重庆一中渝北分校积极组织学生开展课外阅读活动,为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求这次抽查的学生总数是多少人,并求出x的值;(2)将不完整的条形统计图补充完整;(3)若该校共有学生3600人,试估计每周课外阅读时间量满足2≤t<4的人数.试题25:甲、乙两人同时从相距25千米的A地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B 地返回A地,在途中遇见乙,这时距他们出发的时间恰好 3小时,求两人的速度各是多少?试题26:如图,直线AB与CD相交于点O,.(1)如图1,若OC平分,求的度数;(2)如图2,若,且OM平分,求的度数.试题27:某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2014年 10月前奖励办法以下表计算奖励金额,2014年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A型和B型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A型和B型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%.2014年10月前奖励办法:销售量(x台)每台奖励金额(元)0<x≤ 100 200100<x≤300 500x>300 1000(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?(2)在新办法出台前一个月,该经销商销售的A型和B型汽车分别为多少台?(3)若A型汽车每台售价为10万元,B型汽车每台售价为12万元.新奖励办法是:每销售一台A型汽车按每台汽车售价的给予奖励,每销售一台B型汽车按每台汽车售价的给予奖励.新奖励办法出台后的第二个月,A型汽车的销售量比出台后的第一个月增加了;而B型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求的值.试题1答案:B试题2答案:A试题3答案:C试题4答案:C试题5答案:B试题6答案:D试题7答案:D试题8答案:D试题9答案:B试题10答案:C试题11答案:BC试题13答案:试题14答案:23试题15答案:试题16答案:130试题17答案:45%试题18答案:解:原式=-6-6+3 .........3分=-9 ..........5分试题19答案:解:原式=5+9-1×4÷(-1) ..........5分=14+4=18试题20答案:解:原式==解:..试题22答案:解:3x=16试题23答案:解:...........2分...........8分试题24答案:解:(1)调查的总人数=90÷45%=200(人),...........2分∵x%+15%+10%+45%=1,∴x=30; ...........4分(2)∵调查的总人数是200人∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),如图:...........8分(2)3600×(10%+30%)=1440(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1440人 ..........10分试题25答案:解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,则 (6)分 3x+9x-2x=5010x=50x=53x=15(千米/小时)答:甲的速度为15千米/小时,乙的速度为5千米/小时.......10分试题26答案:解(1)即的度数为1350 .............5分(2)∵∠BOC=4∠NOB∴设∠NOB=x0,∠BOC=4x0∴∠CON=∠COB-∠BON=4x0-x0=3x0∵OM平分∠CON∴∠COM=∠MON=∠CON=∵x=36∴∠MON==即∠MON的度数为540 .............10分试题27答案:解(1)413×1000=413000(元).................4分(2)设新办法出台前一个月销售A型x台,则B型(413-x)台则25%x+(413-x)20%=510-4135x+4(413-x)=97×205x+1652-4x=1940x=288413-288=125(台)答:新办法出台前一个月销售A型288台,B型125台 ........8分新办法出台第一个月销量:A型288(1+25%)=360(台)B型125(1+20%)=150(台)由题意:54000a-720a=35568-360053280a=31968a=0.6答:a值为0.6。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
![重庆市一中人教版(七年级)初一上册数学期末测试题及答案](https://img.taocdn.com/s3/m/60454509a98271fe910ef9b4.png)
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠2.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .43.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=4.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查 5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A.1个B.2个C.3个D.4个7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.08.在下边图形中,不是如图立体图形的视图是()A.B.C.D.9.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.810.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=011.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.12.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1 C.6,2 D.﹣6,213.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥14.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱15.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.=38A ∠︒,则A ∠的补角的度数为______.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
重庆市2023-2024学年七年级上学期期末数学试题(含答案)
![重庆市2023-2024学年七年级上学期期末数学试题(含答案)](https://img.taocdn.com/s3/m/997e0770f011f18583d049649b6648d7c0c7085f.png)
乌江教育协作体2023-2024学年(上)期末学业质量联合调研抽测初一数学试题(分数:150分,时间:120分钟)一、选择题1.地球与月球平均距离约为384 000千米,将数字384 000用科学记数法表示为( )A .3.84×106B .3.84×105C .38.4×104D .38.4×1052.计算||+1的结果是( )A .B .1C .D .3.4月18日,国际统计局在国新办发布会上公布2023年一季度国民经济运行情况,初步核算,一季度国内生产总值284997亿元,按不变价格计算,同比增长4.5%,比上年年四季度环比增长2.2%,将数据“284997亿”用科学记数法表示为( )A .B .C .D .4.娄底市针对城区中小学日益突出的“大班额”问题,决定自2012年起启动《中心城区化解大班额四年(2012年~2015年)行动计划》,计划投入资金8.71亿元,力争新增学位3.29万个.3.29万用科学记数法表示为( )A .3.29×105B .3.29×106C .3.29×104D .3.29×1035.整理一批图书,由一个人做要40小时完成,现在计划先由x 人做4小时后,再增加2人和他们一起8小时,共完成这项工作的,假设每个人的工作效率相同,则列方程正确的是( )A .B .C .D .6.如图 C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若AB=11,DB=8,则CB 的长为( )A .3B .4C .5D .67.下列各对数中,不是互为相反数的是( )A .与B .与(-3)²C .与(-10)²D .与8.如图,在同一平面内,,,点为反向延长线上一点(图中所有角均指小于180°的角).下列结论:①;②;③;④若绕点顺时针旋转一周,其它条件都不变,若,则或15°,其中结论一定正确的有( )个.34-7414-1452.8499710⨯82.8499710⨯122.8499710⨯132.8499710⨯34()82414040x x ++=()824340404x x ++=()82414040x x -+=()824340404x x -+=()3--3--23-100-3(2)-32-90AOB COD ∠=∠=︒COE BOE ∠=∠F OE AOE DOE ∠=∠180AOD COB ∠+∠=︒90COB AOD ∠-∠=︒OA O :1:6FOD EOC ∠∠=18FOD ∠=︒A .4个B .3个C .2个D .1个9.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( )A .40分钟B .42分钟C .44分钟D .46分钟10.已知数轴上两点、对应的数分别为-1,3,点为数轴上一动点,其对应的数为,当到点、的距离之和为7时,则对应的数的值为( )A.B .和C .和D .和二、填空题11.若与是同类项,则的值为.12.一个圆柱的底面半径为,高为,若它的高不变,将底面半径增加了,体积相应增加了3.则厘米.13.将两个三角尺按图所示的位置摆放,已知,则.14.后屯小学2010年有图书3200套,2011年比2010年新增了,2011比2010年新增了套图书.15.三个互不相等的整数的积为15,则这三个数的和的最大值等于 .16.下列说法:①若,则x 为负数;②若不是负数,则a 为非正数;③;④若,,则.其中正确的结论有.(填序号)17.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017= ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=.18.下图是我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”A B P x P A B x 9292-5292-52-9252-12m a b +312na b n m cm R 6cm 2cm 192cmπR=36α∠=︒β∠=180x x +=a -()22a a -=-a b =-b b =a b =这个三角形给出了 的展开式的系数规律(按的次数由大到小的顺序),请依据上述规律,写出展开式中含有项的系数是三、解答题19.已知.(1)化简和;(2)试比较的值与的大小.20.在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,,,,13,,,.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?21.如图,数轴上有A 、B 、C 三个点,A 、B 、C 对应的数分别是a 、b 、c,且满足,点C 在原点右侧距离原点10个单位,动点P 从A 出发,以每秒1个单位的速度向终点C 运动,设运动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点的距离是点P 到B 点的距离的2倍,求点P 对应的数;(3)当点P 运动到B 点时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.22.符号表示一种新运算,运算示例如下:,,,,……符号g 表示另一种新运算,运算示例如下:,,,,…….利用以上新运算,完成下列问题是:()n a b +(1,2,3,4...)n =a 20172x x ⎛⎫- ⎪⎝⎭2015x ()()()22223013,34231x a a a y a a a a ⎡⎤=+--=----⎣⎦x y x y -09-8+7-6-12+5-24100a b +++=f ()2213f -=--=-()1112f -=--=-()0011f =-=-()1110f =-=1(3)3g =-1()33g -=1(2)2g =-1(22g -=(1)分别求、的值;(2)用含的代数式表示与,并比较与的大小;(3)先化简,再求值:,其中,.23.某市对居民生活用电实行阶梯电价,具体收费标准如下表:档次月用电量电价(元/度)第1档不超过240度的部分第2档超过240度但不超过400度的部分第3档超过400度的部分已知10月份该市居民老李家用电200度,交电费120元;9月份老李家交电费183元.(1)表中的值为________;(2)求老李家9月份的用电量;(3)若8月份老李家用电的平均电价为元/度,求老李家8月份的用电量.24.已知,(1)如图甲,已知O 为直线上一点,,且位于直线上方①当平分时,度数为 ;②点F 在射线上,若射线绕点O 逆时针旋转,.请判断和的数量关系并说明理由;(2)如图乙,是一个小于的钝角,,从边与边重合开始绕点O 逆时针旋转(旋转到的反向延长线上时停止旋转),当时,求的值()10f ()10g -x ()f x ()g x ()f x -1()g x 222211()2()32f x f xy y g g x xy y ⎛⎫⎛⎫--++ ⎪ ⎪--⎝⎭⎝⎭2x =-4y =a0.650.3a +a 0.762AOC BOC ∠=∠AB 80DOE ∠=︒DOE ∠AB OD AOC ∠EOB ∠OB OF ()060n n ︒<<3FOA AOD ∠=∠FOE ∠EOC ∠AOB ∠108︒12∠=∠DOE AOB DOE ∠OE OB OD OB 32AOD EOC BOE ∠+∠=∠:COD BOD ∠∠乌江教育协作体2023-2024学年(上)期末学业质量联合调研抽测初一数学答案1.B 2.A 3.D 4.C5.B6.C7.D8.C9.C 【详解】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .10.D 【详解】分三种情况讨论:①当点P 位于点A 、B 之间时,P 到A 、B 之间的距离之和为4,不满足条件;②当点P 位于点A 左边时,2PA +AB =7,∴2(-1-x )+4=7,解得:x =;③当点P 位于点B 右边时,AB +2PB =7,∴4+2(x -3)=7,解得:x =;综上所述:x 或x .故选D .11.412.713.14.40015.916.②③④17. 1 ;495018.19.(1),;,,;(2)∵,∵,∴的值比小.20.(1)解:∵,∴B 地在A 地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;千米;千米;千米;千米;千米;千米;52-9252=-92=36︒4034-()()223013x a a a=+--22303033a a a =+-+233330a a =-+()2234231y a a a a ⎡⎤=----⎣⎦22342231a a a a =-+-+233334a a =-+()()223333033334x y a a a a -=-+--+2233330333344a a a a =-+-+-=-4<0-x y -01498713612520-+-+-+-=1495-=149813-+=149876-+-=149871319-+-+=1498713613-+-+-=149871361225-+-+-+=千米.∴最远处离出发点25千米;(3)这一天走的总路程为:千米,应耗油(升),故还需补充的油量为:(升).21.(1)解:,,,,;∵点C 在原点右侧距离原点10个单位,∴.(2)解:由题意得,点表示的数是,点到A 点的距离是点到点的距离的2倍,,即,解得或,当时,;当时,;点对应的数为4或;(3)解:设在点开始运动后第秒时,、两点之间的距离为4,当点在点的右侧,且点还没追上点时,,解得:;当点在点的左侧,且点追上点后时,,解得:;当点到达点后,且点在点左侧时,,解得:;当点到达点后,且点在点右侧时,,解得:;综上,当点开始运动后第5、9、、秒时,、两点之间的距离为4.22.(1)∵,,,,……∴,∴;∵,,,,……1498713612520-+-+-+-=1498713612574+++++++=740.537⨯=37289-=|24||10|0a b +++= 240a ∴+=100b +=24a ∴=-10b =-10010c =-=P 24t -+ P P B ()()242422410t t ∴-+--=-+--214t t =-28t =283t =28t =2424284t -+=-+=283t =2844242433t -+=-+=-∴P 443-Q a P Q P Q Q P 3414a a +=+5a =P Q Q P 3414a a -=+9a =Q C P Q 14433434a a +++-=12.5a =Q C P Q 14433434a a +-+-=14.5a =Q 12.514.5P Q ()2213f -=--=-()1112f -=--=-()0011f =-=-()1110f =-=()1f n n =-()101019f =-=1(3)3g =-1(33g -=1(2)2g =-1(22g -=∴,∴.(2)由(1)可得,,∴∵∴(3)∵,,,当,时,原式.23.(1)依题意得:,解得:.故答案为:.(2)设老李家9月份的用电量为x 度,∵(元),,∴.依题意得:,解得:.答:老李家9月份的用电量为300度.(3).∵三个档次的平均价格为(元),8月份老李家用电的平均电价为元/度,∴老李家8月份用电量一定超过400度,设老李家8月份的用电量为y 度,依题意得:,()1g n n=-()11101010g -=-=-()1f x x =-()1g x x=-()()11f x x x -=--=-+111()x g x x==--1x x -+>-()()1f x g x ->()1f x x =-()1g x x=-222211()2()32f x f xy y g g x xy y ⎛⎫⎛⎫--++ ⎪ ⎪--⎝⎭⎝⎭()()()()222212132x xy y x xy y =--------2222122236x xy y x xy y =--++-+-+27xy y =--+2x =-4y =()2244781671=--⨯-+=-+=-200120a =0.6a =0.60.6240144⨯=144183<240x >1440.65240183x +-=()300x =0.650.60.90.713++≈0.76()1440.654002400.60.34000.76y y +⨯-++-=()()解得:.答:老李家8月份的用电量为800度.24.(1)解:①∵,,∴,,∵当平分时,∴,∵,∴,.②当在的右侧,射线绕点O 逆时针旋转,∵,∴,∵,∴,∵,∴;当在的左侧,射线绕点O 逆时针旋转,如图,此时,而,则,则,不符合题意,舍去.(2)∵,,800y =2AOC BOC ∠=∠180AOC BOC ∠+∠=︒18020231AOC ∠=⨯︒=︒1180603BOC ∠=⨯︒=︒OD AOC ∠1602DOC AOC ∠=∠=︒80DOE ∠=︒806020COE ∠=︒-︒=︒602040BOE BOC COE ∠=∠-∠=︒-︒=︒OE OC OF ()060n n ︒<<120AOC ∠=︒120COD AOD ∠=︒-∠80DOE ∠=︒8012040COE DOE COD AOD AOD ∠=∠-∠=︒-︒+∠=∠-︒3FOA AOD ∠=∠EOF AOF AOE ∠=∠-∠()3AOD AOC COE =∠-∠+∠312040AOD AOD =∠-︒-∠+︒()240AOD =∠-︒2COE =∠OE OC OF ()060n n ︒<<40AOD ∠<︒3FOA AOD ∠=∠120FOA ∠<︒>60n ︒2AOC BOC ∠=∠()108AOB y y ∠=︒<∴,,∵,∴,当在内部时,如图,设,则,,,,∵,∴,解得:,∴,当,在内部时,如图,设,则,,,,∵,∴,23AOC y ∠=︒13BOC y ∠=︒12∠=∠DOE AOB 12DOE y ∠=︒OE BOC ∠BOE x ∠=︒13COE BOC BOE y x ∠=∠-∠=︒-︒111236COD DOE COE y y x y x ∠=∠-∠=︒-︒+︒=︒+︒211362AOD AOC COD y y x y x ∠=∠-∠=︒-︒-︒=︒-︒12BOD BOE DOE y x ∠=∠+∠=︒+︒32AOD EOC BOE ∠+∠=∠113232y x y x x -+-=215y x =1216617651633631625y x x xCOD y x BOD y x y x x x ++∠+====∠+++OE OD AOC ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒211362AOD y y x y x ∠=︒-︒-︒=︒-︒12BOD y x ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232y x x y x -+-=解得:,此时,即,则,故不符合题意,舍去,当在内部,在外部时,如图,设,则,,,,∵,∴,解得:,而,即,故不符合题意,舍去,当,都在外部,如图,设,则,,,,∵,∴,解得:,∴,9y x =>BOE BOC ∠∠1>3x y 3y x <OE AOC ∠OD AOC ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒121632AOD y x y x y ∠=︒+︒-︒=︒-︒12BOD y x ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232x y x y x -+-=35y x =BOE AOB ∠<∠y x >OD OE AOB ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒121632AOD y x y x y ∠=︒+︒-︒=︒-︒12BOD x y ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232x y x y x -+-=35y x =13661165193613625y x x xCOD y x BOD y x y x x x ++∠+====∠+++综上:的值为:或.:COD BOD ∠∠17311113。
重庆第一中学人教版七年级上册数学期末测试题
![重庆第一中学人教版七年级上册数学期末测试题](https://img.taocdn.com/s3/m/29c11764d15abe23482f4dfb.png)
重庆第一中学人教版七年级上册数学期末测试题一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.﹣3的相反数是( )A .13-B .13C .3-D .3 4.下列因式分解正确的是() A .21(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=- D .22(2)(1)a a a a --=-+5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+=6.2(2)0y +=,则2015()x y +等于( ) A .-1B .1C .20143D .20143- 7.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式8.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =139.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 10.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b == C .1,3a b == D .2,2a b ==11.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.14.若523m x y +与2n x y 的和仍为单项式,则n m =__________.15.单项式﹣22πa b的系数是_____,次数是_____.16.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.17.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.21.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.22.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题 25.计算:(1)23(1)27|2|--+-(2)2311(6)()232-⨯--26.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.27.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示 品名甲种 乙种 进价(元/kg) 7 12售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)28.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.计算:(1)(﹣16+34﹣512)×36(2)(﹣3)2124÷×(﹣23)+4+22×8()3-四、压轴题31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.32.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?33.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】 把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】 解:A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可. 2.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.4.D解析:D【解析】【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案.【详解】解:A 、21x +无法分解因式,故此选项错误;B 、()am an a m n +=+,故此选项错误;C 、244m m +-无法分解因式,故此选项错误;D 、22(2)(1)a a a a --=-+,正确;故选:D .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D .【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 6.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1.故选A7.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键. 10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x 秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB 上;设乙再走y 秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC 上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD 上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA 上;乙在第5次追上甲时的位置又回到AB 上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD 上.故选:D .【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.14.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.15.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 16.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5, 第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy =x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入18.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 19.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.20.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.11cm.【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.22.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.三、解答题25.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.26.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)①租车方案有三种:方案一:小客车20辆、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②最省钱的是租车方案三,最少租金是4600元.【解析】【分析】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人根据题意可得等量关系:2辆小客车座的人数+1辆大客车座的人数=85人;3辆小客车座的人数+2辆大客车座的人数=150人,根据等量关系列出方程组,再解即可(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金300元,大客车每辆租金500元分别计算出租金即可【详解】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人,据题意;28532150x y x y +=⎧⎨+=⎩, 解得:2045x y =⎧⎨=⎩, 答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:2045400m n +=,∴8049m n -=, ∵m 、n 为非负整数, ∴200m n =⎧⎨=⎩或114m n =⎧⎨=⎩或28m n =⎧⎨=⎩, ∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300206000⨯=(元),方案二租金:3001150045300⨯+⨯=(元),方案三租金:300250084600⨯+⨯=(元),∴最省钱的是租车方案三,最少租金是4600元.【点睛】此题考查二元一次方程组的应用和二元一次方程的应用,解题关键在于列出方程27.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克;()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.28.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米.【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)6;(2)﹣283.【解析】【分析】第一题利用乘法分配律进行计算第二题按照混合运算的法则进行逐步计算【详解】(1)原式=135363636627156 6412-⨯+⨯-⨯=-+-=(2)原式=42883228 9444933333⎛⎫⎛⎫⨯⨯-++⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭【点睛】关于有理数的运算,运用运算律可以简便运算,对于混合运算,要严格按照运算的先后顺序进行运算.四、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.。
重庆市第一中学校2022—2023学年上学期七年级期末数学模拟测试题
![重庆市第一中学校2022—2023学年上学期七年级期末数学模拟测试题](https://img.taocdn.com/s3/m/d5e334052bf90242a8956bec0975f46526d3a747.png)
重庆一中初2025 级初一(上)期末模拟数学试题卷(时间:120 分钟,满分:150 分)一、选择题:(本大题14 个小题,每小题 3 分,共 42 分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的. 请将答题卡...上对应位置填写正确答案.1.3−的绝对值是( ▲ ) A.13B .13−C .3− D .32.单项式2ab 的次数是( ▲ ) A .1B .2C .3D .43.北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( ▲ ) A .50.1210⨯B .51.210⨯C .41.210⨯D .31210⨯4.如图,从左面看如图所示的几何体得到的平面图形是( ▲ )A .B .C .D .5.下列调查中,适合采用抽样调查的是( ▲ ) A .了解全市中学生每周使用手机的时间 B .对乘坐飞机的乘客进行安全检查C .调查我校初一某班的视力情况D .检查“北斗”卫星重要零部件的质量6.下列运算正确的是( ▲ ) A .347x y xy +=B .232x x x −=C .22234xy xy xy −=−D .220y y −−=7.如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( ▲ ) A .两点之间,线段最短 B .两点确定一条直线C .连接A 、B 两点的线段的长度叫两点之间的距离D .线段AB 和线段BA 是同一条线段8.如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ▲ )A .北偏东35︒B .东偏北35︒C .北偏东55︒D .北偏西55︒ 9.设x 、y 、c 是有理数,则下列说法错误的是( ▲ ) A .若x y =,则22x c y c +=+ B .若x y =,则a cx a cy −=−C .若x y =,则x y c c=D .若23x y=,则32x y =8题图4题图7题图10.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有3个黑色三角形,第②个图案中有7个黑色三角形,第③个图案中有11个黑色三角形,……,按此规律排列下去,则第⑧个图案中黑色三角形的个数为( ▲ )A .27B .31C .33D .3511按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( ▲ )A .3B .0C .1−D .3−12.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲乃发长安,问几何日相逢?意思是:甲从长安出发,5天到齐国;乙从齐国出发,7天到长安.现在乙先出发2天,甲再从长安出发,那么甲经过多少天与乙相逢?设甲经过x 天与乙相逢,由题意可列方程( ▲ ) A.7512x x+=+ B .2175x x++= C .2175x x+−= D .275x x+= 13.有一张长方形纸片ABCD (如图①),6BC =,将纸片折叠,使BC 落在CD 边上,B '为B 的对应点,折痕为CE (如图②),再将长方形ADB E '以'B E 为折痕向右折叠,若点D 落在B C '的三等分点上,则CD 的长为( ▲ )A .8B .10C .8或10D .8或1214. 若关于x 的方程2163mx x x −+−=有正整数解,则所有满足条件的整数m 的值之和为( ▲ ) A .24− B .5− C .5 D .24二、填空题:(本大题13个小题,每小题2分,共26分)请将每小题的答案直接填在答题卡...中对应的横线上. 15.2n a 与3a −是同类项.则常数n 的值为 ▲ .16.在数轴上,将表示4的点沿数轴向左移动 ▲ 个单位长度得到的点表示的数是2−.17. 若过某多边形一个顶点的所有对角线将这个多边形分成5个三角形,则这个多边形是 ▲ 边形.13题图18.如图,若要使图中的平面展开图折叠成正方体后,相对面上两个数互为相反数,则x y −= ▲ .19.若关于x 的方程3752x x−=+的解与关于y 的方程4378y a a +=−的解互为倒数,则a 的值为 ▲ . 20.若223a b −+=,则642a b −+的值为 ▲ .21.日历表的样式如图,若另一张相同样式的日历表中,前三个星期一的日期的数字之和是30,则第三个星期一的日期的数字是 ▲ .22. 定义新运算:2a b a b ab Ω=+−,例如:()()21221211−Ω=⨯−+−−⨯=−,当123x x Ω=+时,x = ▲ .23.已知221A x x =++,1B mx =+,若关于x 的多项式A B +不含一次项,则常数m = ▲ . 24.表示有理数a ,b ,c 的点在数轴上的位置如图所示,请化简2a b a c c a b +−−+−+= ▲ . 25.已知点C 在直线AB 上,2BC AB =,点D 为线段AC 的中点,若4BD =cm ,则线段AB = ▲ cm . 26.如图,从O 点引出6条射线OA 、OB 、OC 、OD 、OE 、OF ,且85AOB ∠=︒,155EOF ∠=︒,OE 、OF 分别是AOD ∠、BOC ∠的平分线.则COD ∠的度数为 ▲ 度.27.腊味食品是川渝人民的最爱,去年12月份,某销售商出售腊肠、腊舌、腊肉的数量之比为3:5:3,腊肠、腊舌、腊肉的单价之比为3:3:2.今年1月份,该销售商将腊肠单价上调20%,腊舌、腊肉的单价不变,并加大了宣传力度,预计今年1月份的营业额将会增加,其中腊肉增加的营业额占总增加营业额的14,今年1月份腊肉的营业额将达到今年1月份总营业额的730.若腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,则今年1月份出售腊肠与腊肉的数量之比是 ▲ .Oacb24题图21题图26题图18题图三、计算题:(本大题4个小题,28题、29题每题8分,30题10分,31题8分,共34分)解答时每小题必须给出必要的演算过程,请将解答过程书写在答题卡...中对应的位置上. 28.(8分)计算: (1)11()24|2|64−⨯+−; (2)3116(2)()(4)8÷−+−⨯−.29.(8分)化简:(1)5(36)x y x y −+−+; (2)22222222334()(45)8a b a b ab ab a b ++−+.30.(10分)解方程: (1)543(4)x x +=−; (2)4322153x x −−−=.31.(8分)先化简,再求值:()()2222355x y xy x y xy x y ⎡⎤−−−−⎣⎦,其中()21103x y ++−=.四、解答题:(本大题6个小题,32,33题每小题6分,34,35题每小题8分,36,37题每小题10分,共48分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 32.(6分)如图,在同一平面内有三个点A 、B 、C . (1)连接AC ,画出直线AB ,射线BC ;(2)尺规作图:在线段AC 上作一点D ,使得CD AB =.(不写作法,保留作图痕迹,要下结论)33.(6分)列一元一次方程解应用题:春节即将到来,老师组织了20位同学为社区写春联,28位同学写“福”字,根据需求情况,在总人数不变的情况下,要将写“福”字的人数调整为写春联人数的一半,问应从写“福”字的同学中调多少人去写春联?34.(8分)为了解某种小西红柿的挂果情况,科技小组从试验田随机抽取了部分西红柿秧进行了统计,按每株挂果的数量x 分成五组:A .1030x <,B .3050x <,C .5070x <,D .7090x <,E .90110x <.并根据调查结果给制了如下不完整的统计图.请结合统计图解答下列问题:(1)本次调查一共随机抽取了 ▲ 株西红柿秧;扇形统计图中D 组所对应的圆心角的度数为 ▲ 度; (2)补全频数分布直方图;(3)若该试验田共种植小西红柿3000株,请估计挂果数量在E 组的小西红柿株数.35.(8分)如图,点C 、D 是线段AB 上两点,:3:2AC BC =,点D 为AB 的中点.(1)如图1,若20AB =,求线段CD 的长.(2)如图2,若E 为AC 的中点,7ED =,求线段AB 的长.36.(10分)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“和谐数”.将一个“和谐数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()T n .例:若234n =,对调百位与十位上的数字得到324,对调百位与个位上的数字得到432,对调十位与个位上的数字得到243,这三个新三位数的和为324432243999++=,9991119÷=,所以(234)9T =.(1)计算:(345)T = ▲ ;(726)T = ▲ ;(2)若p 、q 都是“和谐数”,其中10024p x =+,120(19q y x =+,19y ,x 、y 都是正整数),当()()13T p T q +=时,求()()T p T q ⨯的值.37.(10分)如图1,点O 为直线AB 上一点,将两个含︒60角的三角板MON 和三角板OPQ 如图摆放,使三角板的一条直角边OM 、OP 在直线AB 上,其中OMN ∠=POQ ∠= 60°.(1)将图1中的三角板OPQ 绕点O 按逆时针方向旋转至图2的位置,使得边OP 在MON ∠的内部且平分MON ∠,此时三角板OPQ 旋转的角度为 ▲ 度;(2)三角板OPQ 在绕点O 按逆时针方向旋转时,若OP 在MON ∠的内部.试探究MOP ∠与NOQ ∠之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON 绕点O 以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ 绕点O 以每秒3°的速度按逆时针方向旋转,将射线OB 绕点O 以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB 记为OE ,射线OC 平分MON ∠,射线OD 平分POQ ∠,当射线OC 、OD 重合时,射线OE 改为绕点O 以原速按顺时针方向旋转,在OC 与OD 第二次相遇前,当︒=∠13COE 时,直接写出旋转时间t 的值.图2备用图Q PNM OB A NM OBA。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
![重庆市一中人教版(七年级)初一上册数学期末测试题及答案](https://img.taocdn.com/s3/m/4af16f0a65ce050877321340.png)
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.﹣3的相反数是( ) A .13-B .13C .3-D .33.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0B .1-C . 2.5-D .35.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个7.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .348.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 9.下列四个数中最小的数是( ) A .﹣1B .0C .2D .﹣(﹣1)10.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y11.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×212.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 13.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米14.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯C .70.1510⨯D .61.510⨯15.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 17.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.5535______.20.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.21.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元. 22.若方程11222m x x --=++有增根,则m 的值为____. 23.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.24.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.25.化简:2x+1﹣(x+1)=_____.26.当x= 时,多项式3(2-x )和2(3+x )的值相等.27.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.28.方程x +5=12(x +3)的解是________. 29.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 30.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.34.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.35.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.36.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.4.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D.本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.6.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.10.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.11.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.12.B解析:B【解析】【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.13.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.14.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.15.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 20.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE =∠B ′PE ,∠CPF =∠C ′PF ,∴2∠B ′PE+2∠C ′PF ﹣∠B ′PC ′=180°,即2(∠B ′PE+∠C ′PF )﹣∠B ′PC ′=180°,又∵∠EPF =∠B ′PE+∠C ′PF ﹣∠B ′PC ′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.21.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 22.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键23.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式24.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.25.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.26.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.27.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解30.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 33.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6,t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.34.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】 (1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】 此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.35.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-,。
重庆市第一中学校2022-2023学年七年级上学期期末数学试卷
![重庆市第一中学校2022-2023学年七年级上学期期末数学试卷](https://img.taocdn.com/s3/m/bb60417f3d1ec5da50e2524de518964bcf84d2c2.png)
(时间:120分钟满分:150分重庆一中初2025届2022-2023学年度上期期末试卷数学试题)2023.1一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题..卡.上题号右侧正确答案所对应的方框涂黑.1.2021-的相反数是(▲)A.2021- B.2021 C.20211 D.20211-2.下列调查中,适宜采用全面调查(普查)的是(▲)A.调查全国中学生平均每天做眼保健操的次数B.调查一批新生产的格力空调的寿命C.了解某电视台2021年元旦联欢晚会的收视率D.为保证“长征八号”运载火箭顺利升空,对其零部件进行检查3.如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的左视图是(▲)A. B. C. D.4.下列计算正确的是(▲)A.633aa a =+ B.239(2)8a a -=-C.222)(5)(3)8(ab b a a b -=--- D.42822aa a =÷5.下列说法错误..的是(▲)A.3245ab -是五次单项式 B.3321xy x y --是四次三项式C.a π-与不是同类项D.1x -不是代数式6.如果方程36-=-x 与关于x 的方程427=-k x 的解互为倒数,则k 的值为(▲)A.5B.5-C.14-D.147.若()()104223----x x 有意义,则x 取值范围是(▲)A .x ≠3B .x ≠2C .x ≠3且x ≠-2D .x ≠3且x ≠28.下列每一个图形都是由一些同样大小的三角形按一定的规律排列组成的,其中第①个图形中有5个小三角形,第②个图形中有10个小三角形,第③个图形中有16个小三角形,按此规律,则第⑨个图中小三角形的个数是(▲)A.69B.73C.77D.8311123题图14题图9.下列说法正确的有(▲)个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出(3)n -条对角线,这些对角线把这个n 边形分成了(2)n -个三角形.A.3 B.2 C.1 D.010.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲乃发长安,问几何日相逢?意思是:甲从长安出发,5天到齐国;乙从齐国出发,7天到长安.现在乙先出发2天,甲再从长安出发,那么甲经过多少天与乙相逢?设甲经过x 天与乙相逢,由题意可列方程(▲)A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x +=11.已知关于x 的方程2263ax x x --=-有非负..整数..解,则整数a 的所有可能的取值的和为(▲)A.32- B.32 C.34- D.3412.关于x 的三次三项式A d x c x b x a x x +-+-+-=+-=)1()1()1(10652323(其中a ,b ,c ,d 均为常数),关于x 的二次三项式B f x x ++=e 2均为非零常数)(f e ,,下列说法中正确的个数有(▲)①当A+B 为关于x 的三次三项式时,则10-=f ;②当多项式A 与B 的乘积中不含4x 项时,则6=e ;③9=++c b a ;A.0个B.1个C.2个D.3个二、填空题:(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡...中对应的横线上.13.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0000012.0米,将数0000012.0用科学记数法表示为▲.14.有理数a ,b ,c 在数轴上所表示的点的位置如图所示,则化简=--+--+a c c b c b a 2▲.15.甲、乙两人从A ,B 两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知乙比甲每小时多行驶30千米,相遇后经1时乙到达A 地.则甲行驶的速度为▲km/h .16.南山植物园坐落在省级南山风景名胜区群山之中,与重庆主城区夹长江面峙,是一个以森林为基础,花卉为特色的综合性公园,备受重庆人民的喜爱;每到春季,上山赏花的人络绎不绝;一植物园附近的市民嗅到了商机,开办了植物花卉门市;将A 、B 、C 三种花卉包装成“如沐春风”、“懵懂少女”、“粉色回忆”三种不同的礼盒进行销售;用A 花卉2支、B 花卉4支、C 花卉10支包装成“如沐春风”礼盒;用A 花卉2支、B 花卉2支、C 种花卉4支包装成“懵懂少女”礼盒;用A 花卉2支、B 花卉3支、C 花卉6支包装成“粉色回忆”礼盒;包装费忽略不计,且每支B 花卉的成本是每支C 花卉成本的4倍,每盒“如沐春风”礼盒的总成本是每盒“懵懂少女”礼盒总成本的2倍;该商家将三种礼盒均以利润率50%进行定价销售;某周末,该门市为了加大销量,将“如沐春风”、“懵懂少女”两种礼盒打八折进行销售,且两种礼盒的销量相同,“粉色回忆”礼盒打九折销售;销售完毕后统计发现,三种礼盒的总成本恰好为总利润的4倍,则该周末“粉色回忆”礼盒的总利润与三种礼盒的总利润的比值为▲.“最想打卡重庆一中本部景点”人数条形统计图“最想打卡重庆一中本部景点”人数扇形统计图三、解答题:(本大题7个小题,17—20题每题8分,21—23题每小题10分,共62分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.17.计算(每小题4分,共8分)(1)⎪⎭⎫ ⎝⎛-÷⨯⎪⎭⎫ ⎝⎛-÷-8910361125;(2)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+--241613212512024.18.解一元一次方程(每小题4分,共8分)(1)2569x x -=+;(2)225353x x x ---=-.19.(8分)如图,已知线段AB =12cm ,点C 为AB 的中点,点D 为BC 的中点,在线段AC 上取点E ,使CE =31AC ,求线段DE 的长.补全下列解题过程.解:∵AB =12cm ,点C 为AB 的中点,∴AC =BC =21=6cm∵点D 为BC 的中点,∴CD =21BC =cm .∵CE =31AC =cm ,∴DE =CD +CE =cm .20.(8分)先化简,再求值:()()()22843228mn n m mn n m n m n m ++--+-+-,其中()02122=-++n m .21.(10分)2021年4月21日是重庆一中建校90周年的校庆日,90载砥砺奋进,90年春华秋实.数以万计的学子在重庆一中求学问道,成长成才;一大批高级将领、两院院士、学界泰斗、杏坛大师、商业精英、艺术才俊、企业英雄......各级各类的人才和骨干从重庆一中走出.桃李满五洲,校友遍四海,真可谓“学府一流名高巴渝,贤才万数惠泽千秋”,引得莘莘学子都念想去本部参观,现随机抽取初一年级部分学生进行“你最想打卡重庆一中本部的哪个景点?”的问卷调查,参与调查的学生需从E D C B A 、、、、五个选项(:A 项家书院;:B 校训壁;:C 四二一广场;:D 红领巾林;:E 尊师亭)中任选一项(必选且只选一项).根据调查结果绘制了如下两幅不完整的统计图,请根据图中提供的信息完成以下问题:(1)参加本次调查的一共有名学生;在扇形统计图中,“D ”所在扇形圆心角的度数是;(2)请你补全条形统计图;(3)已知重庆一中初一年级共有2400名学生,请你根据调查结果,估计初一年级最想打卡“四二一广场”的学生有多少人?22.(10分)如图1,已知 160=∠AOC ,OB 是AOC ∠内的射线,且BOC AOB ∠=∠53,射线OD 、OE 将AOC ∠分割,使得3:2:1::=∠∠∠COE BOD AOD .(1)求DOE ∠.(2)如图2,作BOD ∠,EOC ∠的平分线OM ,ON .求MON ∠的值.23.(10分)对于任意一个三位正整数,百位上的数字加上个位上的数字之和恰好等于十位上的数字,则称这个三位数为“牛转乾坤数”.例如:对于三位数451,514=+,则451是“牛转乾坤数”;对于三位数110,101=+,则110是“牛转乾坤数”.(1)求证:任意一个“牛转乾坤数”一定能被11整除;(2)在一个“牛转乾坤数”的十位与百位之间添加1得到一个新的四位数M ,若M 的各位数字之和为完全平方数,求所有满足条件的“牛转乾坤数”.图1图2四、解答题:(本大题2个小题,各12分,共24分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.24.(12分)今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元.(1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元?(3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示;乙生产厂家:格力取暖器出厂价为每台50元,当出厂总金额达一定数量后还可按下表返现金.已知该商场在甲生产厂家购买格力取暖器共支付8610元,在乙生产厂家购买格力取暖器共支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?一次性购买的数量不超过150台的部分超过150台的部分折扣数打九折打八五折出厂总金额不超过7000元超过7000元,但不超过10000元超过10000元返现金金额0元直接返现200元先返现出厂总金额的2%,再返现296元25.(12分)如图,在数轴上A 点表示的数为a ,B 点表示的数为b ,C 点表示的数为c ,b 是最大的负整数,且a ,c 满足()0932=-++c a .点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ▲,=b ▲,=c ▲.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13=++PC PB PA ,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接..写出所有满足条件的t 的值.。
重庆市第一中学2022-2023学年七年级上学期数学 期末试题
![重庆市第一中学2022-2023学年七年级上学期数学 期末试题](https://img.taocdn.com/s3/m/f1accb36c4da50e2524de518964bcf84b8d52d72.png)
重庆市第一中学2022-2023学年上学期七年级期末试题(全卷共四个大题,满分 150 分,考试时间 120 分钟)一、选择题:(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案写在答题卷相应位置.)1.如果将175cm 作为标准身高,高于标准身高3cm 记作+3cm ,那么身高170cm 应记作()A .﹣3cm B .﹣5cm C .+5cm D .﹣170cm2.在﹣8,﹣3.14,π,0.3070809,722中,有理数有()A .2个B .3个C .4个D .5个3.下列各式中,运算正确的是()A .3a +2b =5ab B .2a 3﹣a 3=a 3C .a 2b ﹣ab =a D .a 2+a 2=2a 44.钟表上的时间指示为两点半,这时时针和分针之间的夹角为()A .120°B .105°C .100°D .90°5.已知2a ﹣ab ﹣1=0,则代数式6a ﹣3ab ﹣2的值是()A .﹣5B .﹣1C .﹣3D .16.若x 2=9,|y |=2,且x <y ,则x ﹣y 的值为()A .±5B .±1C .﹣5或﹣1D .5或17.下列平面图形经过折叠后,不能围成正方体的是()A.B.C.D.8.按如图所示的程序运算:当输入的数据为﹣1时,则输出的数据是()A .2B .4C .6D .88题图9.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,那么可列方程为()A .10x +3(5﹣x )=30B .3x +10(5﹣x )=30C .533010=-+x x D .510303=-+x x 10.已知关于x 的方程12338-=--x ax x 有负整数解,则所有满足条件的整数a 的值之和为()A .﹣11B .﹣26C .﹣28D .﹣3011.如图所示,以O 为端点画六条射线OA ,OB ,OC ,OD ,OE ,OF ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2022个点在()A .射线OA 上B .射线OC 上C .射线OF 上D .射线OE上12.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x 1,只显示不运算,接着再输入整数x 2后则显示|x 1﹣x 2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是()A .1个B .2个C .3个D .4个二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“绿水青山就是金山银山!”江西浮梁凭借得天独厚的绿色资源和生态保护机制,被授予2021年度“中国天然氧吧”称号,浮聚县林业用地约3240000亩,森林覆盖率达81.4%,将3240000用科学记数法表示为.11题图14.单项式2512R π-的系数是.15.若∠A =30°18′,则∠A 的补角是.16.请写出一个能与﹣5x 3y 合并成一项的单项式.17.若x =﹣3是方程3(x ﹣a )=﹣21的解,则a =.18.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为°.19.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是.20.有5个正整数a 1,a 2,a 3,a 4,a 5,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①a 1,a 2,a 3是三个连续偶数(a 1<a 2<a 3),②a 4,a 5是两个连续奇数(a 4<a 5),③a 1+a 2+a 3=a 4+a 5.该小组成员分别得到一个结论:甲:取a 2=6,5个正整数不满足上述3个条件;乙:取a 2=12,5个正整数满足上述3个条件;丙:当a 2满足“a 2是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数a 1,a 2,a 3,a 4,a 5满足上述3个条件,则a 5=3k +4(k 为正整数);戊:5个正整数满足上述3个条件,则a 1,a 2,a 3的平均数与a 4,a 5的平均数之和是10p (p 为正整数);以上结论正确的个数为同学.三、解答题:(本大题9个小题,其中20-25小题8分,26-28每小题10分,29小题8分共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(﹣7.7)﹣(﹣414)﹣1032+5.75;(2)|﹣3|+50÷(﹣2)2×(51-)﹣1.22.化简:(1)(3a 2﹣2a )﹣(a 2+5a );(2)3(3x 2﹣xy ﹣2)﹣2(2x 2+xy ﹣2).23.解方程:(1)4x ﹣3(5﹣x )=6;(2)1615312=--+x x .19题图18题图24.先化简,再求值:222221223xy y x xy xy y x -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+,其中x =2,31-=y .25.已知点D 为线段AB 的中点,点C 在线段AB 上.(1)如图1,若AC =8cm ,BC =6cm ,求线段CD 的长;(2)如图2,若BC =2CD ,点E 为BD 中点,AE =18cm ,求线段AC 的长.26.将一副直角三角板ABC ,AED ,按如图1放置,其中B 与E 重合,∠BAC =45°,∠BAD =30°.(1)如图1,点F 在线段CA 的延长线上,求∠FAD 的度数;(2)将三角板AED 从图1位置开始绕A 点逆时针旋转,AM ,AN 分别为∠BAE ,∠CAD 的角平分线.如图2,当AE 旋转至∠BAC 的内部时,求∠MAN 的度数.27.一个四位数m =1000a +100b +10c +d (其中1≤a ,b ,c ,d ≤9,且均为整数),若a +b =k (c ﹣d ),且k 为整数,称m 为“k 型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.(1)判断1731与3213是否为“k 型数”,若是,求出k ;(2)若四位数m 是“3型数”,m ﹣3是“﹣3型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数m ′,m ′也是“3型数”,求满足条件的所有四位数m .28.黑马铃薯又名“黑金刚”,它富含碘、硒等多种微量元素,特别是含有花青素、花青原素,素有“地下苹果”之称.老李今年种植了5亩A 品种黑马铃薯,10亩B 品种黑马铃薯,其中A 品种的平均亩产量比B 品种的平均亩产量低20%,共收获两个品种黑马铃薯28000千克(1)求老李收获A ,B 两个品种黑马铃薯各多少千克?(列一元一次方程解答)(2)某蔬菜商人分两次向老李收购完这些黑马铃薯.收购方式如下:A 、B 两个品种各自独立装箱,A 品种每箱50千克,B 品种每箱100千克,每箱A 的收购价200元,每箱B 的收购价300元,老李给出如下优惠:收购A 或B 的数量(单位:箱)不超过30箱超过30箱优惠方式收购总价打九五折收购总价打八折第一次收购了两个品种共60箱,且收购的B 品种箱数比A 品种箱数多;受某些因素影响,蔬菜商人第二次收购时做出了价格调整:每箱A 的收购价不变,每箱B 的收购价比第一次的收购价降低61,优惠方式不变.两次收购完所有的黑马铃薯后,蔬菜商人发现第二次支付给老李的费用比第一次支付给老李费用多41000元,求蔬菜商人第一次收购A 品种黑马铃薯多少箱?29.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b |,线段AB 的中点表示的数为2b a .【问题情境】如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点C 表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为;(2)求当t 为何值时,PQ =21AB ;(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
精品解析:重庆市第一中学校2023-2024学年七年级上学期期末英语试题-A4答案卷尾
![精品解析:重庆市第一中学校2023-2024学年七年级上学期期末英语试题-A4答案卷尾](https://img.taocdn.com/s3/m/63e34ca9900ef12d2af90242a8956bec0975a5e8.png)
重庆一中2023-2024学年七年级上学期期末英语试卷(解析版)Ⅱ. 语法填空。
Dear friends in Macaw,I’m a student in Chongqing No. I Secondary School. We are happy to welcome you to come to our school. You will study and play with us in our class. I’m in Class Five, Grade Seven. Mike, Lucy and Mary 1 my classmates and good friends at school. Now let me tell you something about them. Mike is 2 years old. He loves sports. He loves basketball best. He likes 3 basketball on Monday, Wednesday, Friday and Sunday. And every time he plays it 4 about an hour. Then when he gets home, he does his homework first. He 5 play computer games in his free time, because they’re bad for his eyes.Lucy is 6 11-year-old girl. She always gives a hand to people in need. She likes listening to music after school. Why? Because she 7 it’s relaxing. She is good at singing. She goes to the school music club. Jay Chou is the name 8 her favorite star. Mary loves reading some 9 every day. It can help her know many things. The books are in 10 bookcase. She has three bookcases! This is us. Welcome! We want to see you here in Chongqing No. 1 Secondary School!Yours,Shang Benbu 1.A.are B.is C.am2.A.twelve B.twelfth C.twenty3.A.play B.plays C.playing4.A.for B.with C.under5.A.don’t B.doesn’t C.does6.A.the B.a C.an7.A.think B.thinks C.to think8.A.at B.in C.of9.A.book B.books C.a book10.A.her B.hers C.sheⅡ. 完形填空。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
![重庆市一中人教版(七年级)初一上册数学期末测试题及答案](https://img.taocdn.com/s3/m/dba0bd69360cba1aa911da8b.png)
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125° 3.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-2 4.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2275.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④7.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.36.35︒=__________.(用度、分、秒表示)16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00-10.17 转帐收入¥200.00+10.18 体育用品¥64.00-10.19 零食¥82.00-10.20餐费¥100.00-17.若3750'A ∠=︒,则A ∠的补角的度数为__________.18.如图,若12l l //,1x ∠=︒,则2∠=______.19.16的算术平方根是 .20.4是_____的算术平方根.21.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.先化简, 再求值.已知222213,222A x xy yB x y =-+=- ()1求2A B -()2当3,1x y时,求2A B -的值26.计算:(1)23(1)27|2|-+-+-(2)2311(6)()232-⨯--27.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由.(2)当,140A C ︒∠=∠∠=时,求D ∠的度数. 28.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时. ()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.四、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?33.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元.故选D .【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.7.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.8.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.16.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.17.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.18.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为420.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.21.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.26.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)AD//BC ,理由见解析;(2)80︒【解析】【分析】(1)根据BE 平分∠ABC 可得∠2=∠CBE ,再根据∠1=∠2,可得∠1=∠CBE ,可判断AD 与BC 平行;(2)根据∠1=40°,可得∠EBC =∠2=∠1=40°,由此可以求出∠C =∠A =100°,再根据四边形的内角和求得∠D =80°.【详解】解:(1)AD//BC ,理由:∵BE 平分∠ABC∴∠2=∠CBE∵∠1=∠2∴∠1=∠CBE∴AD//BC (内错角相等,两直线平行) ;(2)∵∠1=40°,∴∠EBC =∠2=40°,∴∠A =180°−∠1−∠2=100°,∵∠A =∠C ,∴∠C =∠A =100°,∴∠D =360°−∠A−∠2−∠EBC−∠C =360°−100°−40°−40°−100°=80°.【点睛】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.28.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A,P表示的数可找出点M表示的数,再结合点B表示的数可求出点M、B之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米. 【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .【解析】【分析】(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;(3)根据余角的性质,即可判定.【详解】(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522COD AOD AOC ∠=∠=∠=⨯︒=︒, ∵90DOE ∠=︒.∴902565COE DOE COD ∠=∠-∠=︒-︒=︒, 180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;(2)平分∵OD 平分AOC ∠, ∴12COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒∴∠DOC+∠COE=∠AOD+∠BOE=90°∴∠COE=∠BOE∴OE 平分BOC ∠;(3)由题意,得∠DOE=∠DOC+∠COE=90°∠AOD+∠BOE=90°,∠AOD=∠DOC∴与COD ∠互余的角有:COE ∠、∠BOE【点睛】此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.四、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.32.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
![重庆市一中人教版(七年级)初一上册数学期末测试题及答案](https://img.taocdn.com/s3/m/60454509a98271fe910ef9b4.png)
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠2.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .43.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=4.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查 5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A.1个B.2个C.3个D.4个7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.08.在下边图形中,不是如图立体图形的视图是()A.B.C.D.9.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.810.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=011.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.12.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1 C.6,2 D.﹣6,213.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥14.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱15.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.=38A ∠︒,则A ∠的补角的度数为______.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
![重庆市一中人教版(七年级)初一上册数学期末测试题及答案](https://img.taocdn.com/s3/m/3773bf52aeaad1f347933f58.png)
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题 1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1074.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .5.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1127.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120208.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣310.﹣3的相反数是( )A .13- B .13 C .3- D .311.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.把53°24′用度表示为_____.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 16.36.35︒=__________.(用度、分、秒表示)17.﹣30×(1223-+45)=_____. 18.计算:()222a -=____;()2323x x ⋅-=_____.19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.20.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;21.﹣225ab π是_____次单项式,系数是_____. 22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.当x 取何值时,式子13x -的值比x+12的值大﹣1? 26.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;(2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 27.今年秋季,斗门土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙,丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一士特产,且必须装满,设装运甲种士特产的汽车有x 辆,装运乙种特产的汽车有y 辆,根据下表提供的信息,解答以下问题:土特产种类 甲 乙 丙每辆汽车运载量(吨) 4 3 6 每吨土特产获利(元) 1000 900 1600(1)装运丙种土特产的车辆数为 辆(用含有x ,y 的式子表示);(2)用含有x ,y 的式子表示这10辆汽车共装运土特产的数量;(3)求销售完装运的这批土特产后所获得的总利润(用含有x ,y 的式子表示).28.计算题(1)()()()7410-+---(2)11312344⎛⎫⎛⎫-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (3)()()()()75901531-⨯--÷-+⨯-(4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭29.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.30.解方程:4x ﹣3(20﹣x )+4=0四、压轴题31.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.32.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)33.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A .【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形. 5.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 6.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .7.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .【点睛】本题考查了倒数的概念,熟练掌握是解题的关键. 8.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意.故选:C .【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.9.B解析:B【解析】【分析】将1x =-代入2ax x -=,即可求a 的值.【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.10.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.11.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.12.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;16.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.17.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 18.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键19.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.20.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得:x11x132-⎛⎫-+=-⎪⎝⎭,即x11x132---=-,去分母得到:2(x﹣1)﹣6x﹣3=﹣6,去括号得:2x﹣2﹣6x﹣3=﹣6,移项合并得:﹣4x=﹣1,解得:x=0.25,则x=0.25时,13x-的值比12x+的值大﹣1.【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.26.(1)﹣2;(2)19°10′;(3)x=47.【解析】【分析】(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.【详解】解:(1)原式=﹣9+9﹣6+4,=﹣2;(2)原式=48°96′68″﹣30°27′8″,=18°69′60″,=19°10′;(3)3(4﹣x)﹣2(2x+1)=6,12﹣3x﹣4x﹣2=6,﹣7x=﹣4,x=47.【点睛】本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.27.(1)(10﹣x﹣y);(2)(60﹣2x﹣3y)吨;(3)(96000﹣5600x﹣6900y)元.【解析】【分析】(1)根据“装运丙种土特产的车辆数=总汽车辆数10-装运甲种土特产的车辆数-装运乙种土特产的车辆数”列式表达便可;(2)根据“装运甲种土特产的每辆车运载重量⨯装运甲种土特产的车辆数+装运乙种土特产的每辆车运载重量⨯装运乙种土特产的车辆数+装运丙种土特产的每辆车运载重量⨯装运丙种土特产的车辆数10=辆汽车共装运土特产的数量”列出代数式并化简便可;(3)根据“甲种土特产每吨利润⨯甲种土特产的总吨数+乙种土特产每吨利润⨯乙种土特产的总吨数+丙种土特产每吨利润⨯丙种土特产的总吨数=总利润”列出代数式,并化简便可.【详解】解:(1)由题意得,装运丙种土特产的车辆数为:10x y --(辆)故答案为:(10)x y --;(2)根据题意得,436(10)x y x y ++--436066x y x y =++--6023x y =--,答:这10辆汽车共装运土特产的数量为(6023)x y --吨;(3)根据题意得,10004900316006(10)x y x y ⨯+⨯+⨯--400027009600096009600x y x y =++--9600056006900x y =--答:销售完装运的这批土特产后所获得的总利润为(9600056006900)x y --元.【点睛】本题主要考查了列代数式和整式的加减应用,正确理解各种数量关系之间的运算关系是列代数式的关键所在.28.(1)-1;(2)49;(3)38;(4)7 【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.【详解】(1) 解:原式=7410--+=1-(2) 解:原式=443394⨯⨯=4 9(3) 解:原式=3563+-=38(4) 解:原式=11416 42-⨯+⨯=18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号. 29.(1)14个;(2)见解析;(3)33cm2【解析】【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.30.x=8【解析】【分析】按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.【详解】解:4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8.【点睛】本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1.四、压轴题31.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.32.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论,(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=12∠AOB试题解析:(1))∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;(2) 设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初 姓 名 考号 顺序号密 封 线 内 不 能 答 题数学重庆一中初2012级09—10学年度上期期末考试 数 学 试 题 2010·01·26(本卷共五个大题 满分150分 考试时间120分钟)时光荏苒,进入初中校园的你,已适应了初中的学习生活吧!特别是对初中数学的学习充满了兴趣和信心,让我们一起回顾本期所学的内容,验证你的能力!加油!一、精心选一选:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入下表. 题号1 2 3 4 5 6 7 8 9 10 答案1.2-的倒数是( )A .21- B .21C .-2D .22.下列各式符合代数式书写规范的是( ) A .baB .3⨯aC .12-m 个D .m 5213.下列事件中,必然事件是( ) A .中秋节晚上能看到月亮 B .今天考试小明能得满分 C .早晨的太阳从东方升起D .明天气温会升高4.如图是由几个小立方块所搭几何体的俯视图 ,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是( )A .B .C .D .5.下列说法错误..的是( ) A .平面内的直线不相交就平行 B .平面内三条直线的交点个数有1个或3个1 1 12 成功的关键是一步一个脚印!C .若a ∥b ,b ∥c ,则a ∥cD 6.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上与空白方砖上 的可能性相比较,下列结论正确的是( )A .停在空白方砖上的可能性大B .停在阴影方砖上的可能性大C .两者一样大D .无法判断7.已知代数式6632+-x x 的值为9,则代数式622+-x x 的值为( ) A .18 B .12 C .9 D .78.某服装店新开张,第一天销售服装a 件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了( )A .(2a +2)件B .(2a +24)件C .(2a +10)件D .(2a +14)件 9.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,增援后拔草人数是植树人数的2倍,求支援拔草和植树的人分别有多少人若设支援拔草 的有x 人,则下列方程中正确的是( )A .18231⨯=+xB .)38(231x x -=+C .)18(251x x +=-D .18251⨯=-x10.两年期定期储蓄的年利率为%,按国家规定,所得利息要缴纳5%的利息税。
某人于2007年9月存入银行一笔钱,2009年9月到期时,共得税后利息684元,则他2007年9月的存款额为( )A .20000元B .18000元C .16000元D .12800元二、细心填一填:(本大题共8个小题,每小题3分,共24分。
请将答案填写在横线上。
) 11.被称为“地球之肺”的森林正以每年公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 公顷.12.已知关于x 的方程132-=+a x 的解是1=x ,则=a . 13.若单项式212y xm --的次数是5,则m 的值是 .14.如下图,用边长为a 的正方形制作的七巧板拼成一只小猫,则小猫头部(图中阴影部分)的面积是 .(用a 的代数式表示)第6题图CDBA15.在某月内,李老师要参加三天的学习培训,现在知道这三天日期的数字之和是39.若培训时间是连续三周的周六,则培训的第一天...的日期是 . 16.如上图,OD ⊥OA ,∠AOB ∶∠BOC=1∶3,OD 平分∠BOC ,则∠AOC= . 17.某商场新进一批同型号的电脑,按进价提高40%标价(就是价格牌上标出的价格),此商场为了促销,又对该电脑打8折销售,每台电脑仍可盈利420元,那么该型号电脑每台进价为 元.18.时间为10:40时,时钟的时针与分针的夹角是 度. 19.假设有足够多的黑白围棋子,按照一定的规律排成一行:…… 请问第2010个棋子是黑的还是白的答: . 20.已知数,,a b c 的大小关系如图所示,则下列各式:①()0b a c ++->;②0)(>+--c b a ;③1=++cc bb aa ;④0>-a bc ;⑤b c a b c b a 2-=-++--.其中正确的有 .(请填写番号)三、用心做一做:(本大题8个小题,共60分)下列各题解答时必须给出必要的 演算过程或推理步骤 21.计算:(每小题5分,共10分) ⑴)21()1()2(439)4(2-÷-⨯-+÷-- ⑵2220102231)5.01(1-⨯⨯---22.化简下列各式:(每小题5分,共10分)第14题图第16题图ca0b第20题图顺序号不 能 答 题密 封 线 内 不 能 答 题⑴ab a ab a 32)(222+-- ⑵)2(3)3(2)2(2222xy y x xy y xy x -+---+-23.解下列方程:(每小题5分,共10分) ⑴x x x 26)3(23-=+- ⑵621321+-=-x x24.列方程解应用问题:某礼品制造工厂接受一批玩具熊的订货任务,按计划天数生产,如果每天生产20个玩具熊,则比订货任务少100个;如果每天生产23个玩具熊,则可以超过订货任务20个.请求出这批玩具熊的订货任务是多少个原计划几天完成任务(10分)25.先化简,再求值:ab b a ab ab b a 2)23(223222+⎥⎦⎤⎢⎣⎡---. 其中a 、b 满足0)42(132=-+++a b a (10分)26.为丰富学生的课余生活,陶冶学生的情趣和爱好,重庆一中初2012级开展了学生社团活动。
年级为了解学生分类参加情况,进行了抽样调查,制作出如下的统计图:请根据上述统计图,完成以下问题:⑴写出上述统计图中图1的名称是 ;⑵这次共调查了 名学生;参加文学类学生所占的百分比为 ; 在扇形统计图中,表示“书法类”所在扇形的圆心角是 度; ⑶请把统计图1补充完整;⑷若初2012级共有学生1100名,请估算有多少名学生参加文学类社团(8分)27.⑴如图,已知点C 在线段AB 上,且AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;⑵若点C 是线段AB 上任意一点,且AC=a ,BC=b ,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(用a 、b 的代数式表示)⑶在⑵中,把点C 是线段AB 上任意一点改为:点C 是直线..AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗若有变化,求出结果.(10分)1510第27题图28.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)据环保组织调查统计,全市至少有5106⨯个水龙头、4102⨯个抽水马桶漏水.若一万个漏水的水龙头一个月能漏掉a 立方米水;一万个漏水的马桶一个月漏掉b 立方米水,则全市一个月仅这两项所造成的水流失量是多少(2)针对居民用水浪费现象,市政府将制定居民用水标准:规定每个三口之家每月的标准用水量,超过标准部分加价收费.若不超标部分的水价为每立方米元;超标部分为每立方米元.某家庭某月用水12立方米,交水费元,请你通过列方程求出我市规定的三口之家每月的标准用水量为多少立方米.(3)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:每天8:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日8:00为用水低谷期,水价可定为每立方米元.若某三口之家按照此方案需支付的水费与(2)问所交水费相同,又知该家庭用水高峰期的用水量比低谷期少20%.请计算哪种方案下的用水量较少少多少(12分)重庆一中初2012级2009~2010学年度上期期末考试数 学 试 题 参 考 答 案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 AACDBADDBC二、填空题:11. 7105.1⨯ 12. 1- 13. 2 14.241a 日 ° 19.黑的 20.②③⑤ 三、解答题:21.⑴解:原式)2(234916-⨯+⨯-= 2分 ⑵解:原式231)21(12⨯⨯--= 3分41216--= 4分 611--= 4分0= 5分 67-= 5分 22.⑴解:原式=ab a ab a 322222+-- 3分 ab = 5分祝贺你完成答卷!但别放松,为了更好成绩再认真检查一下哟!⑵解:原式=xy y x xy y xy x 366222222-++--+- 4分 22535y xy x +-= 5分 23.⑴解:去括号,得: x x x 26623-=-- 2分 移项,得: 66223+=+-x x x 3分 合并同类项,得:123=x 4分 系数化1,得: 4=x∴4=x 是方程的解 5分⑵解:去分母,得:)2(6)21(2+-=-x x 1分 去括号,得:2642--=-x x 2分 移项,得: 2264--=+-x x 3分 合并同类项,得:23=-x 4分 系数化1,得: 32-=x∴32-=x 是方程的解 5分24.方法一:解:设原计划x 天完成任务,由题意得: 1分 202310020-=+x x 4分解得:40=x 6分∴90010020=+x 9分答:这批玩玩具熊的订货任务是900个,原计划40天完成任务. 10分 方法二:解:这批玩玩具熊的订货任务是x 个,由题意得: 1分232020100+=-x x 4分 解得:900=x 6分 ∴4020100=-x 9分答:这批玩玩具熊的订货任务是900个,原计划40天完成任务. 10分 25.解:∵012≥++b a 0)42(2≥-a 且0)42(132=-+++a b a ∴042=-a 且012=++b a∴2=a ,1-=b 3分 ∵原式=ab b a ab ab b a 2)322(3222++-- ab b a ab ab b a 23223222+-+-=ab ab 422+-= 7分 ∴当2=a ,1-=b 时 原式= )1(24)1(222-⨯⨯+-⨯⨯- )8(4-+-=12-= 10分 26.⑴折线统计图 1分⑵50;(1分) 30%;(1分) 72 (2分) 5分 ⑶补图略 7分 ⑷解:∵33011005015=⨯(名)∴估计有330名学生参加文学类社团. 10分 27.解:⑴∵AC=6cm , 点M 是AC 的中点 ∴CM=1/2AC=3cm∵BC=4cm , 点N 是BC 的中点∴CN=1/2BC=2cm ∴MN=CM +CN=5cm∴线段MN 的长度为5cm . 4分 ⑵2b a MN += 6分⑶线段MN 的长度会变化. 7分 当点C 在线段AB 上时,由⑵知2b a MN += 8分当点C 在线段AB 的延长线时,如图 则AC=a >BC=b∵AC= a 点M 是AC 的中点∴CM=1/2AC=1/2 a∵BC= b 点N 是BC 的中点∴CN=1/2BC=1/2 b∴MN=CM -CN= 2b a - 9分当点C 在线段BA 的延长线时,如图 则AC=a <BC=b同理可求:CM=1/2AC=1/2 aCN=1/2BC=1/2 b ∴MN=CN -CM=2ab - 10分 ∴综上所述,线段MN 的长度会变化,2b a MN +=,2b a -,2ab -28.解:⑴∵b a b a 26010102101064445+=⋅⨯+⋅⨯ ∴全市一个月仅这两项所造成的水流失量是)260(b a +立方米. 2分⑵∵5.3128.44> ∴该家庭该月用水量超过标准用水量 3分 设我市规定的三口之家的每月标准用水量为x 立方米,由题意得:8.44)12(2.45.3=-+x x 解得:8=x答:我市规定的三口之家的每月标准用水量为8立方米. 6分 ⑶设用水低谷期的用水量为y 立方米,则用水高峰期的用水量为y %)201(-立方米,由题意得: 8.44%)201(42.3=-⨯+y y 解得:7=y∴6.12%)201(=-+y y (立方米) ∵6.0126.12=-(立方米)∴问题⑵中的方案下的用水量较少,少0.6立方米. 10分NM。