空间四面体翻滚机器人运动学分析及仿真实验

空间四面体翻滚机器人运动学分析及仿真实验
空间四面体翻滚机器人运动学分析及仿真实验

机器人实验报告

智能机器人实验报告1 学院:化学与材料科学学院 学号: 2015100749 姓名:朱巧妤 评阅人:评阅时间:

实验1 电驱动与控制实验 (一)实验目的 熟悉和掌握机器人开发环境使用,超声传感器、碰撞传感器、温度传感器、颜色传感器等常见机器人传感器工作原理与使用方法,熟悉机器人平台使用与搭建;设计一个简单的机器人,并采用多种程序设计方法使它能动起来。 (二)仪器工具及材料 计算机、机器人实验系统、机器人软件开发平台、编程下载器等设备。 (三)内容及程序 实验内容: (1)碰撞传感器原理与应用; (2)颜色传感器原理与应用; (3)测距传感器原理与应用; (4)温度传感器原理与应用; (5)熟悉开发环境使用与操作;设计一个简单轮式移动机器人,并使用图形化编程方式实现对机器人的控制,通过该设计掌握机器人开发平台的结构设计、程序设计等基本方法。 实验步骤: 1)首先确定本次要做的机器人为货架物品颜色辨别的机器人。 2)根据模型将梁、轴、插销、螺丝等零件拼装成一个货架台 3)将货架台安装上可识别颜色的摄像头,并装在控制器上方,将两个摄像头的连接线分 别插入控制器的传感器接口,将显示器连接线插入传感器接口。 4)拼装完成后将控制器连接电脑,在电脑上运用Innobot软件对机器人进行颜色识别动 作的编程,拖动颜色传感器模块,对应选择数码管接口以及两个摄像头的接口,使机器人能将货架台上物品的颜色反应到数码管上。 5)将所编程序进行上传。测试看机器人是否能将颜色反映到显示器上完成所编动作。

(四)结果及分析 使用梁和轴以及螺钉拼装出货架台。 将拼装好的货架台装到传感器上。

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

机器人实验报告

一、机器人的定义 美国机器人协会(RIA)的定义: 机器人是一种用于移动各种材料、零件、工具或专用的装置,通过可编程序动作来执行种种任务的、并具有编程能力的多功能机械手。 日本工业机器人协会(JIRA—Japanese Industrial Robot Association):一种带有存储器件和末端执行器的通用机械,它能够通过自动化的动作替代人类劳动。(An all—purpose machine equipped with a memory device and an end—effector,and capable of rotation and of replacing human labor by automatic performance of movements.) 世界标准化组织(ISO):机器人是一种能够通过编程和自动控制来执行诸如作业或移动等任务的机器。(A robot is a machine which can be programmed to perform some tasks which involve manipulative or locomotive actions under automatic control.) 中国(原机械工业部):工业机器人是一种能自动定位控制、可重复编程、多功能多自由度的操作机,它能搬运材料、零件或夹持工具,用以完成各种作业。 二、机器人定义的本质: 首先,机器人是机器而不是人,它是人类制造的替代人类从事某种作业的工具,它能是人的某些功能的延伸。在某些方面,机器人可具有超越人类的能力,但从本质上说机器人永远不可能全面超越人类。

六轴工业机器人实验报告

六轴工业机器人模块 实验报告 姓名:张兆伟 班级:13 班 学号:2015042130 日期:2016年8月25日

六轴工业机器人模块实验报告 一、实验背景 六自由度工业机器人具有高度的灵活性和通用性,用途十分广泛。本实验是在开放的六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人的运动控制。通过示教程序完成机器人的系统标定。学习采用C++编程设计语言编写机器人的基本控制程序,学习实现六自由度机器人的运动控制的基本方法。了解六自由度机器人在机械制造自动化系统中的应用。 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。 二、实验过程 1、程序点0——开始位置 把机器人移动到完全离开周边物体的位置,输入程序点 0。按下手持操作示教器上的【命令一览】键,这时在右侧弹出指令列表菜单如图: 按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。修改指令参数为需要的参数,设置速度,使用默认位置点 ID 为 1。(P1 必须提前示教好)。按下手持操作示教器上的【插入】键,这时插入绿色灯亮起。然后再按

运动仿真技术经验

精心整理 一SW 运动仿真 1.简介 二十世纪八十年代以来,设计工程中首次使用计算机辅助工程(CAE )方法后,有限元分析(FEA )就成了最先被广泛采用的模拟工具。多年来,该工具帮助设计者在研究新产品的结构性能时节约了大量时间。 由于机械产品日渐复杂,不断加剧的竞争加快了新设计方案投入市场的速度。设计者迫切感到必须使模拟超出FEA 的局限范围,除使用FEA 模拟结构性能外,还需要在构建物理原型之前确定新产品的运动学和动力学性能。 用。 2.装配当几何体发生改变时,可在几秒内更新所有结果。图4为急回机构中滑杆和驱动连杆之间的干涉。 图4急回机构中滑杆和驱动连杆之间的干涉 运动模拟可在短时间内对任何复杂程度的机构进行分析,可能包含刚性连接装置、弹簧、阻尼器和接触面组。如雪地车前悬架、健身器、CD 驱动器等的运动。 图5复杂机构的运动仿真 除机构分析外,设计者还可通过将运动轨迹转换成CAD 几何体,将运动模拟用于机构合成。例如,设计一个沿着导轨移动滑杆的凸轮,用运动仿真生成该凸轮的轮廓。首先将所需滑杆位置表达为时间和滑杆在旋转凸轮上移动轨迹的函数,然后将轨迹路径转换为CAD 几何体,以创建凸轮轮廓。 图6滑杆沿导轨移动的位移函数

图7滑杆沿旋转盘移动绘制的凸轮轮廓 设计者还可将运动轨迹用于很多用途,例如,验证工业机器人的运动、测试工具路径以获取选择机器人大小所需的信息,以及确定功率要求。 图8工业机器人在多个位置之间的移动 运动模拟的另外一项重要应用是模拟零部件之间的碰撞和接触,以研究零部件之间可能形成的缝隙,得出机构的精确结果。例如,通过模拟碰撞和接触,可以研究阀提升机构中凸轮和曲线仪(摇杆)之间可能形成的缝隙。 3.将运动仿真与FEA结合 想了解运动仿真和FEA在机构仿真中如何结合使用,首先要了解每种方法的基本假设。 FEA是一种用于结构分析的数字技术,已成为研究结构的主导CAE方法。它可以分析任何固定支撑的弹性物体的行为,此处弹性是指物体可变性。如图8所示托架,在静态载荷作用下会变形, 形。FEA FEA (1 点反作用力和惯性力。在此步骤中,所有机构连接装置均视为刚性实体。图13中的曲线为曲柄转动一周连杆上接点的反作用力。 图13曲柄转动一周连杆上接点的反作用力 (2).找出与连杆接点上最大反作用力相对应的机构位置。因为施加最大载荷情况下进行的分析将得到连杆所承受的最大应力。如有必要,可选择多个位置进行分析。 图14与连杆上最大反作用力相对应的位置 (3).将这些反作用力载荷以及惯性载荷从CAD装配体传输到连杆CAD零件模型。 (4).作用于从装配体分离出来的连杆上的载荷包括接点反作用力和惯性力,如图15所示。

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

机器人实验与技术实验报告

机器人技术课程实验报告 题目:机器人灭火 专业:自动化 班级: 101 姓名及学号: 2013年10 月 成都信息工程学院控制工程学院 一、设计目的: 1、通过本课程的学习和训练,了解有关机器人技术方面的基本知识,掌握机器人学所涉及的技术的基本原理和方法,得到机器人技术开发的实践技能训练。

2、巩固相关理论知识,了解机器人技术的基本概念以及有关电工电子学、单片机、传感器等技术。 3、通过使用机器人模型,编程处理机器人运动过程,分析机器人的控制原理,通过对其具体结构的了解。 4、培养自学能力和独立解决问题的能力,熟悉MT-UROBOT图形界面的编程与调试方法,熟练掌握平台的输入输出口进行控制。 二、设计任务: 使机器人能在迷宫内自主行走,能自己编写程序,让机器人完成相应的任务。 三、设计要求: 1、认真阅读教材中第1章和第2章的内容,学会工程项目的建立,应用程序的仿真与调试。 2、利用I/O口和传感器对机器人进行控制。(实验步骤和参考程序可参照使用说明中的第3章及第四章4.3节) 四、系统设计: 1、介绍所使用的硬件情况及工作原理: MT-UROBOT是一种供教学和研究的新型移动智能机器人。开关按钮控制MT-URO MT-UROBOT结构(如下:) OT 电源开关的按钮,按此按钮可以打开或关闭机器人电源。“电源”指示灯按下 MT-UROBOT 的开关后,这个灯会发绿光,这时可以与机器人进行交流了!“充电”指示灯当你给机器人充电时,“充电”指示灯发红光。“充电口”将充电器的相应端插入此口,再将另一端插到电源上即可对机器人充电。“下载口”“充电口”旁边的“下载口”用于下载程序到机器人主板上,使用时只需将串口连接线的相应端插入下载口,另一端与计算机连接好,这样机器人与计算机就连接起来了。“复位/MTOS”按钮这是个复合按钮,用于下载操作系统和复位。当串口通信线接插在下载口上时,按击此按钮,机器人系统默认为此操作为下载操作系统;如果你想使用其复位功能则需要将通信线拔下,按击此按钮,机器人系统认为此操作为系统复位。“RUN”键打开电源后,按击“RUN”键,机器人就可以运行内部已存储的程序,按照你的“指令”行动。“通信”指示灯“通信”指示灯位于机器人主板的前方,在给 MT-UROBOT 下载程序时,这个黄灯会闪烁,

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.360docs.net/doc/582384582.html,

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

高考力学实验运动学试验

力学实验专题复习 实验1、研究匀变速直线运动 1、在做“研究匀变速直线运动”的实验时,某同学得到一条用打点计时器打下的纸带,如图所示,并在其上取了A 、B 、C 、D 、E 、F 、G 等7个计数点,每相邻两个计数点间还有4个点图中没有画出.打点计时器接频率为f=50Hz 的交流电源. (1)每两个相邻的计数点的时间间隔为 s ,打点计时器使用的是 (选填“交流”或“直流”)电源. (2)打下E 点时纸带的速度v E = (用题中给定字母表示); (3)若测得d 6=65.00cm ,d 3=19.00cm ,物体的加速度a= m/s 2; (4)如果当时电网中交变电流的频率f >50Hz ,但当时做实验的同学并不知道,那么测得的加速度值比真实值 (选填“偏大”或“偏小”). 【参考答案】(1)0.1,交流; (2) 53 10 d d - f ; (3)3.0; (4)偏小. 【名师解析】(1)使用打点计时器来分析物体运动情况的实验中,打点计时器使用的是交流电源,若电源频率为50HZ ,则打点计时器打相邻两点的时间间隔是 0.02s . 每相邻两个计数点间还有4个点,图中没有画出,所以相邻的计数点之间的时间间隔为T=5×1/f=0.1s . (2)利用匀变速直线运动的推论得:v E = 532d d T -=53 10 d d -f 。 (3)根据匀变速直线运动的推论公式△x=aT 2可得a=63329d d d T --=2 0.650.190.1990.1 --? m/s 2=3.0m/s 2 ; (4)如果在某次实验中,交流电的频率f >50Hz ,那么实际打点周期变小, 根据运动学公式△x=at 2 得:真实的加速度值就会偏大,所以测量的加速度值与真实的加速度值相比是偏小. 2、如图是某同学在做匀变速直线运动实验中获得的一条纸带 (1)已知打点计时器电源频率为50 Hz ,则纸带上打相邻两点的时间间隔为________; (2)选取ABCD 纸带上四个点,从图中读出A 、B 两点间距s =________ cm ;C 点对应的速度是________ m/s ,匀变速直线运动的加速度为________ m/s 2 (计算结果保留两位有效数字)

两轮机器人实验报告

机电综合实验报告 两轮机器人 姓名:付文晖 班级:车辆工程二班 学号: 20110402216 同组成员:张彬 20110402203 平梦浩 20110402103 2014年12月

目录 一、实验目的.................................................. - 2 - 二、实验设备.................................................. - 2 - 三、实验内容.................................................. - 2 - 四、实验原理.................................................. - 2 - 4.1、实验平台——C51+AVR 控制板........................... - 2 - 4.2、开发平台——Keil μVision2........................... - 4 - 4.3、开发辅助工具——USBASP程序下载器软件................ - 5 - 4.4、机器人定速巡航与日字行走............................. - 6 - 4.5、机器人触须导航....................................... - 7 - 4.6、机器人红外导航....................................... - 8 - 五、实验过程及结果........................................... - 10 - 5.1、定速巡航与日字行走.................................. - 10 - 5.1.1、直线向前行走.................................. - 10 - 5.1.2、向左转1/4圈.................................. - 10 - 5.1.3、向右转1/4圈.................................. - 10 - 5.1.4、向后退........................................ - 11 - 5.1.5、日字行走...................................... - 11 - 5.2、触须导航............................................ - 12 - 5.2.1、实验准备...................................... - 12 - 5.2.2、安装胡须...................................... - 13 - 5.2.3、测试胡须...................................... - 14 - 5.2.4、触须导航程序.................................. - 14 - 5.3、红外导航............................................ - 16 - 5.3.1、搭建IR发射和探测器对......................... - 16 - 5.3.2、为何要使用三极管9013 ......................... - 17 - 5.3.3、测试红外发射探测器............................ - 17 - 5.2.4、红外导航程序.................................. - 18 - 六、实验心得................................................. - 22 -

3)机器人逆运动学实验

实验(3)机器人逆运动学实验 一、实验目的: 1)基于robotics机器人库构建机器人; 2)对构建的机器人进行逆运动学分析; 3)了解和熟悉机器人逆运动学的作用。 二、机器人连杆关系图: 图1 机器人连杆关系图 连杆变换矩阵: 参数含义:

三、基本函数介绍 (1)2连杆机器人实例 图2连杆机器人坐标系1)建立机器人DH参数表 2)根据D-H参数创建机器人连杆对象

3)根据连杆对象,建立机器人 4)观测建立机器人的情况 正运动学函数: 1)正运动学函数的使用 T=two_link.fkine([pi/4 pi/4]) T = 0.0000 -1.0000 0 0.7071 1.0000 0.0000 0 1.7071 0 0 1.0000 0 0 0 0 1.0000 2)观测计算结果的情况,三维显示 two_link.plot([pi/4 pi/4])

3)逆运动学函数 q=two_link.ikine(T,[0 0],[1 1 0 0 0 0]) q =0.7854 0.7854 ikine 函数的参数说明: Q = R.ikine(T, Q0, M, OPTIONS) Q0为求解的初始值; M 为自由度数,也就是有运动关节,对应有关节的为1。 (2)对于六自由度机器人求解的逆解,以puma560为例。 1)函数ikine6s 使用方法Q = R.ikine6s(T, CONFIG) 其中T 为机器人位姿矩阵。CONFIG 为臂型 'l' arm to the left (default) 'r' arm to the right 'u' elbow up (default) 'd' elbow down 'n' wrist not flipped (default) 'f' wrist flipped (rotated by 180 deg) X Y Z

运动学实验

运动学实验 预习报告要求 1.无需画原理图 2.归纳简述实验内容与步骤(不要全抄讲义) 3.绘制数据记录表格 4.预习要求 1、了解超声波接收器运动速度与接频率之间的关系,验证多普勒效应,并由f-v关系直线的斜率求声速。 2、了解如何利用多普勒效应测量物体运动过程中多个时间点的速度,由显示屏显示v-t关系图,或调阅有关测量数据,即可得物体在运动过程中的速度变化情况,可研究:(1)自由落体运动,并由v-t关系直线的斜率求重力加速度。 (2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 3、列出测量数据记录表。 预习思考当你在铁道旁看见火车由远及近时,你听到的声音频率有没有变化?怎么变化?为什么? 实验相关知识与内容 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线

高考物理力学,运动学实验题

课时作业(二十六)[第26讲本单元实验] 基础热身 1.在验证机械能守恒定律的实验中: (1)下列实验操作顺序正确合理的一项是________(填序号) A.先将固定在重物上的纸带穿过打点计时器,再将打点计时器固定在铁架台上 B.先用手提着纸带,使重物静止在打点计时器下方,再接通电源 C.先放开纸带让重物下落,再接通打点计时器的电源 D.先取下固定在重物上的打好点的纸带,再切断打点计时器的电源 (2)质量m=1kg的重锤自由下落,在纸带上打出了一系列的点,如图K26-1所示,相邻计数点时间间隔为0.02s,长度单位是cm,g取9.8m/s2.则(保留3位有效数字): ①打点计时器打下计数点B时,重锤的速度v B=__________m/s; ②从点O到打下计数点B的过程中,重锤重力势能的减少量ΔE p=______________J,动能的增加量ΔE k=__________________J; ③实验结论是________________________________________________________________________ ________________________________________________________________________. 图K26-1 2.在用如图K26-2所示的装置做“探究动能定理”的实验时,下列说法正确的是() 图K26-2 A.通过改变橡皮筋的条数改变拉力做功的数值 B.通过改变橡皮筋的长度改变拉力做功的数值 C.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度 D.通过打点计时器打下的纸速来测定小车加速过程中获得的平均速度 技能强化 3.2011·德州模拟关于“探究动能定理”的实验,下列叙述正确的是() A.每次实验必须设法算出橡皮筋对小车做功的具体数值 B.每次实验中,橡皮筋拉伸的长度没有必要保持一致 C.放小车的长木板应该尽量水平 D.先接通电源,再让小车在橡皮筋的作用下弹出 图K26-3 4.2010·安徽卷利用如图K26-3所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v0和下落高度h.某班同学利用实验得到的纸带,设计了以下四种测量方案. A.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v0 B.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度v0

《工业机器人》实验报告

北京理工大学珠海学院实验报告 实验课程:工业机器人实验名称:实验一:工业机器人认识 教师:时间:班级:姓名:学号: 一、实验目的与任务 了解6自由度工业机器人的机械结构,工作原理,性能指标、控制系统,并初步掌握操作。了解6自由度工业机器人在柔性制造系统中的作用。 二、实验设备 FMS系统(含6-DOF工业机器人) 三、实验内容与步骤 1、描述工业机器人的机械结构、工作原理及性能指标。 2、描述控制系统的组成及各部分的作用。

3、描述机器人的软件平台及记录自己在进行实际操作时的步骤及遇到的问题以及自己的想法。教师批阅:

北京理工大学珠海学院实验报告 实验课程:工业机器人实验名称:实验二:机器人坐标系的建立 教师:时间:班级:姓名:学号: 一、实验目的与任务 了解机器人建立坐标系的意义;了解机器人坐标系的类型;掌握用D-H方法建立机器人坐标系的方法与步骤。 二、实验设备 FMS系统(含6-DOF工业机器人) 三、实验内容与步骤 1、描述机器人建立坐标系的意义以及机器人坐标系的类型。 2、深入研究机器人机械结构,建立6自由度关节型机器人杆件坐标系,绘制机器人杆件坐标系图。

教师批阅:

实验课程:工业机器人实验名称:实验三:机器人示教编程与再现控制 教师:时间:班级:姓名:学号: 一、实验目的与任务 了解机器人示教编程的工作原理,掌握6自由度工业机器人的示教编程与再现控制。 二、实验设备 FMS系统(含6-DOF工业机器人) 三、实验内容与步骤 1、描述机器人示教编程的原理。 2、详细叙述示教编程与再现的操作步骤,记录每一个程序点,并谈谈实验心得体会。教师批阅:

《运动学与动力学仿真》实验指导书

《运动学与动力学仿真》实验指导书适用专业:机械电子工程 上海电机学院 2014年10月

实验一虚拟样机几何建模 一、实验目的 1、了解虚拟样机建模的目的 2、掌握利用Adams/View 进行几何体建模的方法,熟悉典型几何体的建模命令和相关的属性调整方法 二、实验要求 实验前预习相关知识和实验内容。 三、实验原理 Adams/view 中的几何建模工具集如图1所示。 图1 几何建模工具集 调用几何建模工具通常有两种方法:使用主工具箱上的建模工具集选择工具图标,或通过菜单选择几何建模工具命令。 使用主工具箱建模方法: 1)在主工具箱中,用鼠标右键选择上部的几何建模按钮,屏幕弹出如图1所示的几何建模工具集; 2)用鼠标选择相应的建模工具集的图标; 3)在参数设置对话框,修改参数值。 4)按照屏幕下方状态栏的提示,绘制几何图形。

图形 图2 基本形体图库 四、实验设备 机房,adams软件 五、实验步骤 1)在几何建模工具集中选取所要建的三维实体建模工具图标; 2)在参数设置栏,设置所建立的几何体是新构件(New Part)、添加到现有构件(Add to Part)还是添加到地基上(On Ground); 3)在参数设置栏,选择输入有个尺寸参数。 4)按照屏幕下方状态栏的提示,用鼠标确定起始绘图点; 5)按住鼠标左键,拖动鼠标,屏幕出现所绘图形。可以在参数设置栏设置形体的尺寸; 6)释放鼠标,完成简单形体建模,绘图结束点定义了几何体的方向和部分形体。 六、实验注意事项 无 七、实验报告要求 1、根据原理和要求画出2个基本的形体

实验二约束类型及工具 一、实验目的 1. 了解运动学与动力学分析中常用的约束类型 2. 掌握 Adams/View中添加运动约束的方法 二、实验要求 实验前预习相关知识和实验内容 三、实验原理 ADANMS/View提供了12种常用的运动副工具。作用:可以将两个构件连接起来。条件:被连接的构件可以是刚体构件、柔性构件或者是点质量。常用运动副如图1所示。 图1 常用的运动副 1)在连接工具集或者在连接对话框,选择连接工具图标。

机器人实验报告

机器人实验报告 院系:电气信息工程学院班级:XX级电气X班 姓名:XXX 提交日期:201X年X月X日

前言 作为先进制造业中不可替代的重要装备和手段,工业机器人已经成为衡量一个国家制造水平和科技水平的重要标志。机器人的应用越来越广泛,需求越来越大,其技术研究与发展越来越深入,这将提高社会生产率与产品质量,为社会创造巨大的财富。本文将从工业机器的发展历史,现状及未来趋势进行阐述。机器人技术作为20世纪人类最伟大的发明之一,自20世纪60年代初问世以来,经历了近50年的发展已取得显著成果。走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。 一、发展历史 工业机器人诞生于20 世纪60 年代,在20 世纪90 年代得到迅速发展,是最先产业化的机器人技术.它是综合了计算机,控制论,机构学,信息和传感技术,人工智能,仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域.它的出现是为了适应制造业规模化生产,解决单调,重复的体力劳动和提高生产质量而代替人工作业.在我国,工业机器人的真正使用到现在已经接近20 多年了,已经基本实现了试验,引进到自主开发的转变,促进了我国制造业,勘探业等行业的发展.随着我国改革开放的逐渐深入,国内的工业机器人产业将面对越来越大的竞争与冲击,因此,掌握国内工业机器人市场的实际情况,把握 我国工业机器人的相关技术与研究进展,显得十分重要。 二、发展现状 在普及第一代工业机器人的基础上,第二代工业机器人已经推广,成为主流安装机型,第三代智能机器人已占有一定比重(占日本1998年安装台数的10%,销售额的36%) (1)机械结构:1) 已关节型为主流,80年代发明的使用于装配作业的平 面关节机器人约占总量的1/3.90年代初开发的适应于窄小空间,快节奏,360度全工作空间范围的垂直关节机器人大量用于焊接和上,下料.2)应3K 和汽车,建筑,桥梁等行业需求, 超大型机器人应运而生.如焊接树10米长,10吨以上大构件的弧焊机器人群,采取蚂蚁啃骨头的协作机构.3)CAD,CAE 等技术已普遍用于设计,仿真和制造中. (2)控制技术:1) 大多数采用32位CPU,控制轴数多达27轴,NC 技术,离线编程技术大量采用.2) 协调控制技术日趋成熟,实现了多手与变位机, 多机器人的协调控制, 正逐步实现多智能体的协调控制. 采用基于PC 的开放 结构的控制系统已成为一股潮3) 流,其成本低,具有标准现场网络功能. (3)驱动技术:1) 80年代发展起来的AC 侍服驱动已成为主流驱动技术用于工业机器人中.DD 驱动技术则广泛地用于装配机器人中.2) 新一代的侍服电机与基于微处 理器的智能侍服控制器相结合已由FANUC 等公司开发并用于工业机器人中, 在远程控制中已采用了分布式智能驱动新技术. (4)应用智能化的传感器:装有视觉传感器的机器人数量呈上升趋势,不少机器人装有两种传感器,有些机器人留了多种传感器接口. (5)通用机器人编程语言:在ABB 公司的20多个小型号产品中,采用了通用模化块语言RAPID.最近美国"机器人工作空间技术公司"开发了Robot Script V.10通用语言,运行于该公司的通用机器人控制器URC 的Win NT/95环境.该语言易学医用,可用于各种开发环境,与大多数WINDOWS 软件产品兼容. (6)网络通用方式:大部分机器人采用了Ether 网络通讯方式,占总量的41.3,其它采用RS-232,RA-422,RS-485等通讯接口. (7)高速,高精度,多功能化:目前,最快的装配机器人最大合成速度为16.5m/s. 位置重复精度为正负0.01mm. 但有一种速度竞达到80m/s; 而另一种并连机构的NC 机器人, 其位置重复精度大1微秒. (8)集成化与系统化:当今工业机器人技术的另一特点是应用从单机,单

最新运动学综合测试题

运动学综合测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟. 说明:所有答案均填写在答题纸上,否则不得分。 第Ⅰ卷(选择题共56分) 一、选择题(共14小题,每小题4分,共56分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.关于参考系的选择,下列说法正确的是() A.在空中运动的物体不能作为参考系 B.参考系必须选取与地面连在一起的物体 C.参考系的选择应该以能准确而方便地描述物体的运动为原则 D.对于同一个运动,选择的参考系不同,观察和描述的结果仍然相同 2.关于质点,下列说法正确的是() A.任何静止的物体都可以视为质点 B.研究电子自旋时,电子可以视为质点 C.在平直的高速公路上行驶的小汽车,可视为质点 D.质点是一个无大小形状的理想化模型 3.以下的计时数据指的是时间的是() A.列车在9时45分到达途中的南京站 B.在某场足球赛中,甲队于开赛10min后攻入1球 C.中央电视台的新闻联播节目于19时开播 D.某短跑运动员用11.5秒跑完了100m 4.一辆汽车从甲地驶向乙地以速度V行驶了2/3的路程,接着以20km/h的速度行驶到达乙 地,后以36km/h的速度返回甲地,则全程中的平均速度 v为() A.0 B.48km/h C.24km/h D.36km/h 5.关于位移和路程,下列说法错误的是() A.位移与运动路径无关,仅由初末位置决定 B.位移的大小等于路程 C.路程是标量,位移是矢量,位移的运算遵循平行四边行定则 D.位移是由初位置指向末位置的有向线段,路程是物体运动轨迹的长度 6.以下对于加速度和速度的认识中,错误的有() A.物体加速度的方向,就是物体速度方向 B.物体的速度为零,加速度可以不为零C.物体的速度很大,加速度可以为零 D.物体的速度变化越大,则加速度越大

机器人实验报告

机器人学基础 实验报告 中南大学机电工程学院机械电子工程系 2016年10月

一、实验目的 1.了解四自由度机械臂的开链结构; 2.掌握机械臂运动关节之间的坐标变换原理; 3.学会机器人运动方程的正反解方法。 二、实验原理 本实验以SCARA 四自由度机械臂为例研究机器人的运动学问题.机器人运动学问题包括运动学方程的表示,运动学方程的正解、反解等,这些是研究机器人动力学和机器人控制的重要基础,也是开放式机器人系统轨迹规划的重要基础。 机械臂杆件链的最末端是机器人工作的末端执行器(或者机械手),末端执行器的位姿是机器人运动学研究的目标,对于位姿的描述常有两种方法:关节坐标空间法和直角坐标空间法。 关节坐标空间: 末端执行器的位姿直接由各个关节的坐标来确定,所有关节变量构成一个关节矢量,关节矢量构成的空间称为关节坐标空间。图1-1是GRB400机械臂的关节坐标空间的定义。因为关节坐标是机器人运动控制直接可以操纵的,因此这种描述对于运动控制是非常直接的。 直角坐标空间: 机器人末端的位臵和方位也可用所在的直角坐标空间的坐标及方位角来描述,当描述机器人的操作任务时,对于使用者来讲采用直角坐标更为直观和方便(如图1-2)。 当机器人末端执行器的关节坐标给定时,求解其在直角坐标系中的坐标就是 正向运动学求解(运动学正解)问题;反之,当末端执行器在直角坐标系中的坐 图1-1 机器人的关节坐标空间 图1-2 机器人的直角坐标空间法

标给定时求出对应的关节坐标就是机器人运动学逆解(运动学反解)问题。运动学反解问题相对难度较大,但在机器人控制中占有重要的地位。 机器人逆运动学求解问题包括解的存在性、唯一性及解法三个问题。 存在性:至少存在一组关节变量来产生期望的末端执行器位姿,如果给定末端执行器位臵在工作空间外,则解不存在。 唯一性:对于给定的位姿,仅有一组关节变量来产生希望的机器人位姿。机器人运动学逆解的数目决定于关节数目、连杆参数和关节变量的活动范围。通常按照最短行程的准则来选择最优解,尽量使每个关节的移动量最小。 解法:逆运动学的解法有封闭解法和数值解法两种。在末端位姿已知的情况下,封闭解法可以给出每个关节变量的数学函数表达式;数值解法则使用递推算法给出关节变量的具体数值,速度快、效率高,便于实时控制。下面介绍D-H 变化方法求解运动学问题。 建立坐标系如下图所示 连杆坐标系{i }相对于{ i ?1 }的变换矩阵可以按照下式计算出,其中连杆坐标系D-H 参数为由表1-1给出。 齐坐标变换矩阵为: 其中描述连杆i 本身的特征;和描述连杆i?1与i 之间的联系。对于旋转关节,仅是关节变量,其它三个参数固定不变;对于移动关节,仅是关节变量,其它三个参数不变。

相关文档
最新文档