人教版七年级数学上册《几何图形初步》测试题及答案
人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(包含答案解析)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个 5.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm6.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .167.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 8.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 9.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 10.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.14.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.15.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.16.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.17.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.18.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.22.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)23.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.24.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.25.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.26.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB =90°,∠AOC =30°,∴∠COB =60°,∴OB 的方位角是北偏西60°,故选:B ..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.3.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.6.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口. 7.C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.9.C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.10.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时②当C 在线段AB上时根据线段的和差可得答案【详解】①当C在线段BA的延长线上时∵点D是线段AB的中点点A与点B的距离是8cm∴DA=4c解析:2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时,②当C在线段AB上时,根据线段的和差,可得答案.【详解】①当C在线段BA的延长线上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4+2=6cm;②当C在线段BA上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4-2=2cm;综上所述:AC=6 cm或2cm.【点睛】本题考查了两点间的距离,利用线段的中点是解题关键,要分类讨论,以防遗漏.14.两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故答案为两点确定一条直线【点睛】本题考查了两点确定一条直线的公理难度适中解析:两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.15.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 16.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.17.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.18.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.19.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB 据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB ,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB 转化成∠COD+∠AOB 是解决本题的关键.20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒,又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.22.(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.23.(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.24.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.25.(1),;(2);(3)①t= 或16s;②48. 【解析】【分析】(1)由OA=2OB ,OA+OB=24即可求出OA 、OB .(2)设OC=x ,则AC=16-x ,BC=8+x ,根据AC=CO+CB 列出方程即可解决.(3)①分两种情形①当点P 在点O 左边时,2(16-2t )-(8+t )=8,当点P 在点O 右边时,2(2t-16)-(8+x )=8,解方程即可.②点M 运动的时间就是点P 从点O 开始到追到点Q 的时间,设点M 运动的时间为ts 由题意得:t (2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB ,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为. 由题意,得. 解得. 所以的长为.(3)①当点P 在点O 左边时,2(16−2t)−(8+t)=8,t=, 当点P 在点O 右边时,2(2t−16)−(8+t)=8,t=16,∴t= 或16s 时,2OP−OQ=8.②设点M 运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M 运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.26.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》检测(含答案解析)
一、选择题1.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 2.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . 3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒- 4.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个6.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个7.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 8.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 9.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n 10.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-111.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个 D .1个12.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.14.如图,记以点A为端点的射线条数为x,以点D为其中一个端点的线段的条数为y,-的值为________.则x y15.如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD16.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;17.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____18.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .19.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.20.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.三、解答题21.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?22.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.23.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.24.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.2.B解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.3.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.5.D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D .【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数. 6.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD ,故甲正确;乙∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD ,故乙正确;丙∠AOB=∠COD ,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B .【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.7.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 8.B解析:B【分析】先进行度、分、秒的乘法除法计算,再算减法.【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=-386415055︒︒''''-''='''363355︒=. 故选:B .【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.9.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.10.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.11.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 12.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A 折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B 、图C 和图D 中对面图案不相同;故选A .【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解 解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.15.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.16.(1)①正方体长方形;(2)②圆锥等腰三角形;(3)③圆柱圆;(4)④正方体长方形【解析】【分析】首先观察图形先判断出各个几何体的名称然后根据平面截几何体的方向和角度判断出截面的形状【详解】(1)图解析:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【解析】【分析】首先观察图形,先判断出各个几何体的名称,然后根据平面截几何体的方向和角度,判断出截面的形状.【详解】(1)图中几何体是正方体,截面垂直正方体底面,故截面是长方形;(2)图中几何体是圆锥,截面垂直圆锥底面,故截面是等腰三角形;(3)图中几何体是圆柱,截面平行圆柱底面,故截面是圆;(4)图中几何体是正方体,截面垂直正方体底面,故截面是长方形.故答案为:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【点睛】此题考查判断几何体的名称以及截面形状,需要利用常见几何体的特征和截面的知识进行解答.17.2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A 的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm , ∴AQ=12AC=5cm , PQ=AQ-AP=5-3=2cm .故答案为8cm 或2cm .【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.18.14【分析】线段AB 被点CD 分成2:4:7三部分于是设AC=2xCD=4xBD=7x 由于MN 分别是ACDB 的中点于是得到CM=AC=xDN=BD=x 根据MN=17cm 列方程即可得到结论【详解】解:线解析:14【分析】线段AB 被点C ,D 分成2:4:7三部分,于是设AC=2x ,CD=4x ,BD=7x ,由于M ,N 分别是AC ,DB 的中点,于是得到CM=12AC=x ,DN=12BD=72x ,根据MN=17cm 列方程,即可得到结论.【详解】 解:线段AB 被点C ,D 分成2:4:7三部分, ∴设2AC x =,4CD x =,7BD x =, M ,N 分别是AC ,DB 的中点,12CM AC x ∴==,1722DN BD x ==, 17MN cm =,74172x x x ∴++=, 2x ∴=,14BD ∴=.故答案为:14.【点睛】本题考查了两点间的距离,利用了线段的和差,利用中点性质转化线段之间的倍分关系是解题的关键.19.【分析】先求出∠CAB 及∠ABC 的度数再根据三角形内角和是180°即可进行解答【详解】∵C 岛在A 岛的北偏东60°方向在B 岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB 及∠ABC 的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB和∠ABC的度数是解题关键.20.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB的内部从O点引3条射线共有1452⨯⨯个角;4、结合作3条射线得到的角的个数,可以推出以O为顶点共有n条射线时,得到的角的个数为(1)(2)2n n++,继而将n=5、6、7代入即可.【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.22.∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.23.∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∠EFD=65°;∴∠HFD=12∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.24.第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).。
人教版初中数学七年级数学上册第四单元《几何图形初步》测试(含答案解析)
一、选择题1.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm2.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5B .9C .10D .163.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°4.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30° B .60° C .120° D .150° 7.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A .互余B .互补C .相等D .无法确定8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④9.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.610.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,111.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确12.用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球二、填空题13.若∠A=4817︒',则它的余角是__________;它的补角是___________。
人教版七年级数学上册第四章 几何图形的初步习题(含答案)
第四章几何图形的初步一、单选题1.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A.7B.8C.9D.103.下列几何中,属于棱柱的是()①①①①①①A.①①B.①C.①①①D.①①4.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形5.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OC到C7.若点P在线段AB上,PB=4,PA=12PB,则AB的长度是()A.3B.6C.12D.6或128.如图,点C、O、B在同一条直线上,①AOB=90°,①AOE=①DOB,则下列结论:①①EOD=90°;①①COE=①AOD;①①COE=①DOB;①①COE+①BOD=90°.其中正确的个数是()A.1B.2C.3D.49.如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则①CBD的度数是()A.85°B.90°C.95°D.100°10.如图,已知①AOC=90°,①COB=α,OD平分①AOB,则①COD等于()A .2a B .45°-2a C .45°-α D .90°-α二、填空题11.一个角的余角比这个角的补角的13还小10°,则这个角的度数是______ . 12.用度、分、秒表示52.36°的补角为_____.13.下图是一个正方体的表面展开图,若将其折叠成原来的正方体,则与点A 重合的两点应该是点________.14.如图,长度为12cm 的选段AB 的中点为,M C 为线段MB 上一点,且:1:2MC MB ,则线段AC 的长度为___cm .三、解答题15.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:120分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( ) A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球 C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是( )A.B.C.D.3.下列说法中,正确的是( )A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC ,则点B 为AC 的中点 4.与30︒的角互为余角的角的度数是( )A.30︒B.60︒C.70︒D.90︒ 5.如图,点A 在点B 的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30° 6.已知线段AB =15cm ,点C 是直线AB 上一点,BC =5cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A.10cmB.5cmC.10cm 或5cmD.7.5cm7.已知∠1=2824'︒,∠2=28.24︒,∠3=28.4︒,则下列说法中,正确的是( ) A.∠1=∠2<∠3 B.∠1=∠3>∠2 C.∠1<∠2=∠3 D.∠1=∠2>∠3 8.钟表在8:25时,时针与分针夹角的度数是( ) A.101.5︒ B.102.5︒ C.120︒ D.125︒9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是( )A.大B.伟C.国D.的10.如图,,C D 在线段BE 上,下列说法:直线CD 上以,,,B C D E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100︒,∠DAC=40︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若BC =2,CD DE ==3,点F 是线段BE 上任意一点,则点F 到点,,,B C D E 的距离之和的最大值为15,最小值为11.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…1l.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是____________.12.一个角的余角比这个角的补角的一半小40︒,则这个角为________.13.三条直线两两相交,最少有_______个交点,最多有_______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了________.(从点线、面的角度作答)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点,,A O B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有,,A B O三个小岛,在小岛O处观测到小岛A在其北偏东62︒的方向上,观测到小岛B在其南偏东3812'︒的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有_______种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是_______2cm.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)324548212514''''''︒+︒;(2)1123363'''︒⨯.22.点,,,A B C D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接DB,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________23.如图,已知线段AB =4.8cm ,点M 为AB 的中点,点P 在MB 上,N 为PB 的中点,且NB =0.8cm ,求AP 的长.24.如图,射线OA 的方向是北偏东15︒,射线OB 的方向是北偏西40°,∠AOB=∠AOC ,射线OD 是OB 的反向延长线. (1)射线OC 的方向是_______;(2)若射线OE 平分∠COD ,求∠AOE 的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC=60︒时,∠MON 的度数是多少? (2)如图②,当∠AOB=α,∠BOC=60︒时,猜想∠MON 与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0︒<αβ+<180︒)时,猜想∠MON 与,αβ的数量关系,并说明理由.参考答案一、1.答案:C 2.答案:B 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:B 8.答案:B 9.答案:D 10.答案:B 解析:以,,,B C D E 为端点的线段有,,,,,BC BD BE CE CD ED 共6条,故①正确;图中互补的角就是分别以,C D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE=100︒,∠CAD=40︒,可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100︒+100︒+100︒+40︒=340︒,故③错误;当点F 在线段CD 上时,点F 到点,,,B C D E 的距离之和最小,为FB FE FD FC +++=2+3+3+3=11,当点F和点E重合时,点F 到点,,,B C D E的距离之和最大,为803617FB FE FD FC +++=+++=,故④错误.故选B.……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…二、11.答案:两点确定一条直线 12.答案:80︒ 13.答案:1;3 14.答案:点动成线;线动成面 15.答案:4 16.答案:155︒ 17.答案:10012'︒ 18.答案:21;42 19.答案:45︒ 20.答案:30 三、21.答案:见解析解析:(1)324548212514''''''︒+︒=53706254112''''''︒=︒. (2)1123363'''︒⨯=3369108'''︒=341048'''︒. 22.答案:见解析 解析:如图.23.答案:见解析解析:解法一:因为N 为PB 的中点,所以2PB NB =.又知NB =0.8cm ,所以PB =2×0.8=1.6(cm ).所以 4.8 1.6 3.2AP AB PB =-=-=(cm ). 解法二:因为N是PB的中点,所以2PB NB=.而NB=0.8cm ,所以PB =2×0.8=1.6(cm ).因为M 为AB 的中点,所以12AM MB AB ==. 而AB =4.8cm ,所以AM BM ==2.4cm.又因为MP MB PB =-=2.4-1.6=0.8(cm ),所以AP AM MP =+=2.4+0.8=3.2(cm ).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点. (2)线段中点的表达形式有三种,若点C 是线段AB 的中点,则①AC =BC ;②AB =2AC =2BC ;③12AC BC AB ==.熟悉它的表达形式对以后学习几何的推理论证有帮助. 24.答案:见解析解析:(1)北偏东70︒(2)因为∠AOB=40︒+15︒=55︒,∠AOB=∠AOC ,所以∠BOC=110︒.又因为射线OD 是OB 的反向延长线,所以∠BOD=180︒. 所以∠COD=180︒-110︒=70︒.又因为OE 平分∠COD ,所以∠COE=35︒. 又因为∠AOC=55︒, 所以∠AOE=55︒+35︒=90︒. 25.答案:见解析解析:由题意得该工件的形状为圆锥,圆锥的底面直径为6cm ,高为4cm ,所以圆锥的体积为()231(62)412cm 3ππ⨯÷⨯=.故此工件的体积为312cm π. 26.答案:见解析解析:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC )=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12AOC-∠BOC )=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=111()222αββα+-=.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:100分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.已知1∠和2∠互为余角,且2∠与3∠互补,160∠=︒,则3∠为( ) A.120︒ B.60︒ C.30︒ D.150︒2.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( ) A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线3.如图所示,点B 在点O 的北偏东60︒,射线OB 与射线OC 所成的角是110︒,则射线OC 的方向是( )A.北偏西30︒B.北偏西40︒C.北偏西50︒D.西偏北50︒ 4.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.5.11点40分,时钟的时针与分针的夹角为( )A.140︒B.130︒C.120︒D.110︒ 6.如图为一个正方体纸盒的展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0 7.如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O ,若28DOC ∠=︒,则AOB ∠的度数为()A.62︒B.152︒C.118︒D.无法确定8.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的( )……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…A. B. C. D.9.已知160,3AOB AOC AOB ∠=︒∠=∠,射线OD 平分BOC ∠,则COD ∠的度数为()A.20︒B.40︒C.20︒或30︒D.20︒或40︒ 10.如图,C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A.4B.6或8C.6D.8 二、填空题(每小题3分,满分24分)11.为全面实施乡村电气化提升工程,改造升级农村电网,今从A 地到B 地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB 架设,这样做的理由是__________.12.我国“神舟”十号载人飞船的成功发射,标志着我国航空航天事业已步入世界的领先水平,如图是“神舟”十号顺利变轨后的飞行示意图,用数学的观点解释图中飞船飞行后留下的弧形彩带现象:__________.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图为某几何体的展开图,该几何体的名称是_________.15.一副三角尺按如图方式摆放,且1∠的度数比2∠的度数大50︒,则2∠的大小为________度.16.如图所示,,,A O B三点在同一条直线上,AOC ∠与AOD ∠互余,已知110BOC ∠=︒,则AOD ∠=________°.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________17.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉_______个小立方块.18.2021年是中国共产党成立100周年,小花打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“一百周年党庆”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是_________.三、解答题(共46分)19.(8分)如图,已知四点,,,A B C D .请用尺规作图完成(保留痕迹). (1)画直线AB ; (2)画射线AC ;(3)连接BC 并反向延长BC 到E ,使得2CB CE =; (4)画点P ,使PA PB PC PD +++的值最小.20.(6分)如果一个锐角的补角比这个角的余角的2倍还多40︒,那么这个角的余角是多少度?21.(8分)计算: (1)131********︒'-︒'''; (2)583827474240︒'''+︒'''; (3)342533542︒'⨯+︒'; (4)22533107455︒'⨯+︒'÷.22.(8分)如图,已知O 为直线AD 上一点,AOC ∠与AOB ∠互补,,OM ON 分别是,AOC AOB ∠∠的平分线,72MOC ∠=︒.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)求AON ∠的度数.23.(8分)将一张长方形纸片按如图所示的方式折叠,EF 为折痕,点A 落在点G 处,EH 平分FEB ∠.(1)如图1,若EG 与EH 重合,求FEH ∠的度数; (2)如图2,若34FEG ∠=︒,求GEH ∠的度数;(3)如图3,若()FEG 6090αα∠=︒<<︒,求GEH ∠的度数(用α的式子表示).……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…24.(8分)(2021・广东期中)如图,P是线段AB上任一点,12AB=厘米,,C D 两点分别从,P B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若8AP=厘米.①运动1秒后,求CD的长;②当D在线段PB上运动时,试说明2AC CD=;(2)如果2t=秒时,1CD=厘米,直接写出AP的值是_____厘米.参考答案1.答案:D2.答案:D3.答案:C4.答案:D5.答案:D6.答案:A7.答案:B8.答案:A9.答案:D 10.答案:B 11.答案:两点之间,线段最短12.答案:点动成线13.答案:圆锥14.答案:五棱柱15.答案:20 16.答案:20 17.答案:118.答案:党19.答案:见解析解析:(1)如图,直线AB即为所求.(2)如图,射线AC即为所求.(3)如图,线段CE即为所求,(4)如图,点P即为所求.20.答案:见解析解析:设这个角为x︒,则其余角为(90)x-︒,补角为(180)x-︒,所以1802(90)40x x-=-+,所以40x=,所以9050x-=.答:这个角的余角是50度.21.答案:见解析解析:(1)13128513215795545︒'-︒'''=︒''';(2)583827474240106217︒'''+︒'''=︒''';(3)342533542103153542︒'⨯+︒'=︒'+︒'13857=︒';(4)2253310745568392133︒'⨯+︒'÷=︒'+︒'9012=︒'.22.答案:见解析解析:(1)COD AOB∠=∠.理由如下:因为点O在直线AD上,所以180AOC COD∠+∠=︒,又因为AOC∠与AOB∠互补,所以180AOC AOB∠+∠=︒,所以COD AOB∠=∠;(2)因为,OM ON分别是,AOC AOB∠∠的平分线,…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________所以12,2AOC COM AON AOB ∠=∠∠=∠,因为72MOC ∠=︒,所以2144AOC COM ∠=∠=︒, 所以18036AOB COD AOC ∠=∠=︒-∠=︒, 所以136182AON ∠=⨯︒=︒.23.答案:见解析解析:(1)由折叠可知AEF FEH ∠=∠,因为EH 平分FEB ∠,所以FEH BEH ∠=∠, 所以AEF FEH BEH ∠=∠=∠, 因为180AEF FEH BEH ∠+∠+∠=︒, 所以60FEH ∠=︒;(2)由折叠可知AEF FEG ∠=∠, 因为34FEG ∠=︒,所以34,18034146AEF FEB ∠=︒∠=︒-︒=︒, 因为EH 平分FEB ∠,所以1732FEH BEH FEB ∠=∠=∠=︒,所以733439GEH FEH FEG ∠=∠-∠=︒-︒=︒; (3)由折叠可知AEF FEG ∠=∠,因为FEG α∠=, 所以,180AEF FEB αα∠=∠=︒-,因为EH 平分FEB ∠,所以119022FEH BEH FEB α∠=∠=∠=︒-,所以13909022GEH FEG FEH ααα⎛⎫∠=∠-∠=-︒-=-︒⎪⎝⎭. 24.答案:见解析 解析:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=,因为8cm,12cm AP AB ==, 所以4(cm)PB AB AP =-=,所以2433(cm)CD CP PB DB =+-=+-=, ②因为8,12AP AB ==,所以4,82BP AC t ==-, 所以43DP t =-,所以4324CD DP CP t t t =+=-+=-, 所以2AC CD =;(2)当2t =时,224(cm)CP =⨯=,326(cm)DB =⨯=, 当点D 在C 的右边时,如图所示: 由于1cm CD =,所以CB CD DB 7(cm)=+=, 所以5(cm)AC AB CB =-=, 所以9(cm)AP AC CP =+=,当点D 在C 的左边时,如图所示:所以6(cm)AD AB DB =-=, 所以11(cm)AP AD CD CP =++=, 综上所述,9AP =或11.答案为9或11.。
七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版
七年级数学上册《第四章几何图形初步》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列几何体中,三棱锥是()A.B.C.D.2.在下面的图形中,不是正方体的展开图的是()A.B.C.D.3.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.4.如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.5.已知线段AB=8,BC=3,且A,B,C三点在同一条直线上,则AC的长是()A.5 B.11 C.5或11 D.246.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线D.图中有直线3条,射线2条,线段1条7.如图,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=102°,则B地在A地的()A.南偏西57°方向B.南偏西67°方向C.南偏西33°方向D.西南方向8.已知∠2是∠1的余角,且∠1=35∘,则∠2的补角等于()A.145∘B.125∘C.115∘D.65∘二、填空题9.34.37°=34°′′′.10.如图,用一个平面去截一个三棱柱,截面的形状可能是.①三角形②四边形③五边形④六边形11.已知∠A与∠B互余,且∠A=37°则∠B的补角是度.BC那么AC=.12.点A,B,C在同一条直线上,如果BC=8,AB=1413.如图所示的网格是正方形网格,点 A,B,C,D,O 是网格线交点,那么∠AOB∠COD三、解答题CB,求线段CD和BD的长. 14.如图AB=24,点C为AB的中点,点D在线段AC上,且AD=1315.如图,点O在直线AB上,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°求∠AOD 的度数.16.如图是一个正方体的表面展开图,每一个面上都写有一个整数,并且相对两个面上所写的两个互为相反数,求−b a+2ac的值.17.如图,AB是直线OD,OE分别是∠AOC,∠BOC的平分线.(1)∠BOC=72°20′求∠1,∠2,∠DOE的度数.(2)若∠BOC=α,求∠DOE.18.如图1,OC平分∠AOB,OD是∠BOC内部从点O出发的一条射线,OE平分∠AOD.(1)[基础尝试]如图2,若∠AOB=120°,∠COD=10°,求∠DOE的度数;(2)[画图探究]设∠COE=x°,用x的代数式表示∠BOD的度数;(3)[拓展运用]若∠COE与∠BOD互余,∠AOB与∠COD互补,求∠AOB的度数.参考答案1.C2.D3.D4.B5.C6.D7.A8.B9.22;1210.①②③11.12712.6或10或10或613.>或大于14.解:∵点C为AB的中点AB=12∴AC=BC=12CB∵AD=13×12=4∴AD=13∴CD=AC−AD=8∴BD=BC+CD=2015.解:∵∠AOE=∠COD∴∠AOE−∠DOE=∠COD−∠DOE即∠AOD=∠COE∵射线OC平分∠BOE∴∠BOC=∠COE,则∠AOD=∠BOC=∠COE∵∠EOD=30°∴3∠AOD+30°=180°∴∠AOD=50°.16.解:∵a与−3相对,b与2相对,c与1相对,相对两个面上所写的两个互为相反数∴a=3 b=−2 c=−1∴−b a+2ac=−(−2)3+2×3×(−1)=2.故答案为:2.17.(1)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∠BOC=72°20′∴∠1=∠EOB=12∠BOC=36°10′∴∠DOC=∠AOD=12∠AOC=12(180°−∠BOC)=12(180°−72°20′)=53°50′∴∠DOE=∠1+∠2=36°10′+53°50′=90°;(2)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∴∠1=∠EOB=12∠BOC∴∠DOC=∠AOD=12∠AOC∴∠DOE=∠1+∠2=12∠AOC+12∠BOC=90°.18.(1)解:∵∠AOB=120°,OC平分∠AOB ∴∠AOC=∠COB=60°∵∠COD=10°∴∠AOD=60°+10°=70°∵OE平分∠AOD∴∠DOE=35°;(2)解:设∠COD=a∵∠COE=x°∴∠EOD=x°+a∵OE平分∠AOD∴∠AOD=2∠COD=2(x°+a) =2x°+2a∴∠AOC=2x°+a∵OC平分∠AOB∴∠BOC=∠AOC=2x°+a∴∠BOD=∠BOC-∠COD=2x°;(3)解:由上题得∠BOD=2x°∵∠COE与∠BOD互余∴x+2x=90°解得x=30 .∵∠AOB与∠COD互补∴4x+2a+a=180°4×30°+3a=180°a= 20°∴∠AOB=160°。
七年级数学上册《第四章 几何图形初步》单元检测题带答案(人教版)
七年级数学上册《第四章几何图形初步》单元检测题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.两边成一直线的角是平角B.一条射线是一个周角C.两条射线组成的图形叫做角D.平角是一条直线2.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个3.用量角器测量∠AOB的度数,操作正确的是()A.B.C.D.4.如果在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()A.100°B.70°C.180°D.140°5.已知点M在线段AB上,点N是线段MB的中点,若AN=6,则AM+AB的值为()A.10 B.8C.12 D.以上答案都不对6.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10 B.5 C.﹣10 D.﹣57.如图,已知∠MOQ是直角,∠QON是锐角,OR平分∠QON,OP平分∠MON,则∠POR的度数为()A.45°+ 1∠QON B.60°2∠QONC.45°D.128.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33分米2B.24分米2C.21分米2D.42分米2二、填空题:(本题共5小题,每小题3分,共15分.)9.已知∠α=53°27′,则它的余角等于10.现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是.11.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD= °.12.如下图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.13.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).三、解答题:(本题共5题,共45分)14.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段AK的长.15.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A和点B分别表示两个水质监测站,监测人员上午6时在A处完成采样后,测得实验室P在A点北偏东60°方向.随后监测人员乘坐监测船继续向东行驶,上午9时到达B处,同时测得实验室P在B点北偏西30°方向,其中监测船的行驶速度为20km/ℎ.(1)在图中画出实验室P的位置;(2)已知A、B两个水质监测站的图上距离为3cm.①请你利用刻度尺,度量监测船在B处时到实验室P的图上距离;②估计监测船在B处时到实验室P的实际距离,并说明理由.16.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)与∠AOE互补的角是.(2)若∠AOC=72°,求∠DOE的度数;(3)当∠AOC=x时,请直接写出∠DOE的度数.17.如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?18.已知点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若DE=10cm,则AB=cm.(2)当点C是线段AB的中点时,且AD=6cm,求DE的长. (3)若AB=acm,求DE的长(用含a的式子表求) .1.A 2.C 3.C 4.A 5.C 6.C 7.C 8.A9.36°33′10.36πcm3或48πcm311.11012.1013.314.解:设AC=3x,则CD=4x,DB=5x∵AB=AC+CD+DB=60∴AB=3x+4x+5x=60.∴x=5.∵点K是线段CD的中点.CD=10.∴KC=12∴AK=KC+AC=25.15.(1)解:如图,点P即为所求;(2)解:①度量监测船在B处时到实验室P的图上距离为1.5cm;②由题意∠PAB=90°−60°=30°,∠PBA=90°−30°=60°∴∠APB=180°−30°−60°=90°∵AB=3×20=60(km)×60=30(km).∴B处时到实验室P的实际距离为:1216.(1)∠BOE、∠COE(2)解:∵OD、OE分别平分∠AOC、∠BOC,∠AOC=72°∠BOC∴∠COD=∠AOD=36°,∠COE=∠BOE= 12∴∠BOC=180°﹣72°=108°∠BOC=54°∴∠COE= 12∴∠DOE=∠COD+∠COE=90°(3)解:当∠AOD=x°时,∠DOE=90°17.(1)解:与N重合的点有点H和点J.(2)解:∵长方体的底面为正方形由长方体展开图可知:AB=BC=3cm,而AH=5cm∴长方体的长、宽、高分别为:5cm,3cm,3cm∴长方体的表面积为:(5×3+5×3+3×3)×2=78cm2体积为:5×3×3=45cm3 .(2)解:∵点D是AC中点∴AC=2AD=12又∵D、E分别是AC和BC的中点∴AB=2AC=24∴DE=DC+CE=12AC+12BC=12AB=12故DE的长为12cm.(3)解:∵DE=DC+CE=12AC+12BC=12AB而AB=a∴DE=1 2 a故当AB=acm时,DE的长为12a。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
最新人教版初中数学七年级数学上册第四单元《几何图形初步》测试卷(包含答案解析)
【解析】
【分析】
车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.
【详解】
车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.
故答案为线动成面,面动成体.
【点睛】
22.如图,直线AB与CD相交于点O,∠AOE=90°.
(1)如图1,若OC平分∠AOE,求∠AOD的度数;
(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.
23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
5.A
解析:A
【分析】
根据C点为线段AB的中点,D点为BC的中点,可知AC=CB= AB,CD= CB,AD=AC+CD,又AB=4cm,继而即可求出答案.
【详解】
∵点C是线段AB的中点,AB=20cm,
∴BC= AB= ×20cm=10cm,
∵点D是线段BC的中点,
∴BD= BC= ×10cm=5cm,
∴AD=AB-BD=20cm-5cm=15cm.
故选A.
【点睛】
本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.
6.D
解析:D
【分析】
根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.
【详解】
∴图中互补的角有6对,故④正确,
正确的有4个,
故选:D.
人教版七年级上册数学第四章 几何图形初步单元测试卷附解析
人教版七年级上册数学第四章几何图形初步单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形2.(3分)以下哪个图形经过折叠可以得到正方体()A.B.C.D.3.(3分)下列各图中直线的表示法正确的是().A.B.C.D.4.(3分)下列说法正确的是()A.射线PA与射线AP是同一条射线B.射线OA的长度是12cmC.直线ab,cd相交于点MD.两点确定一条直线5.(3分)已知点A、B、C都是直线m上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或6cm C.8cm或2cm D.4cm6.(3分)下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C .D .7.(3分)下列图中的 ∠1 也可以用 ∠O 表示的是( )A .B .C .D .8.(3分)某测绘兴趣小组用测绘装置对一建筑的位置进行测量,测量前指针指向北偏东38°,测量后指针顺时针旋转了14周,则此时指针指向为( )A .北偏西52°B .南偏东52°C .西偏南42°D .东偏北42°9.(3分)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )A .120°B .60°C .30°D .150°10.(3分)如图,从点O 出发的5条射线,可以组成的锐角的个数是( )A .8B .9C .10D .11二、填空题(共5题;共15分)11.(3分)如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为 cm .12.(3分)已知线段AB=6cm ,点C 为直线AB 上一点,且BC=2cm ,则线段AC 的长是cm.13.(3分)将19.36°用度分秒表示为.14.(3分)钟表上显示8:30,时针与分针的夹角为。
七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)
七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列几何图形中,不能一笔画成的是()A. B. C. D.2.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定3.在数轴上与表示-2的点距离等于3的点所表示的数是()A.1 B.-1或5 C.-5 D.-5或14.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α5.如图所示,OA是北偏东60︒方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30︒B.北偏西60︒C.东偏北30︒D.东偏北60︒6.如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为()A.35°B.45°C.55°D.60°7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.全D.运8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A .BC=AB-CDB .BC= 12 (AD-CD)C .BC= 12AD-CD D .BC=AC-BD 二、填空题:9.计算:902648︒-︒'= .10.将一副三角板如图放置,若 20AOD ∠= ,则 BOC ∠ 的大小为 .11.如图,点B 在线段AC 上,已知9cm AB =,4cm BC =点O 是线段AC 的中点,则线段OB = cm.12.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数是 .13.如图,白纸上放有一个表面涂满染料的小正方体,在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形有 .(填序号)三、解答题:14.已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且 5AM cm = cm = 求线段AB 的长.15.如图是一个正方体的表面展开图,它的每一个面上都写有一个数,并且相对的两个面的数字互为相反数,求2a b c +-的值.16.如图,直线AB ,CD 相交于点O ,OE AB ⊥且OF 平分AOC ∠,且40BOD ∠=︒,求EOF ∠的度数.17.如图,OC AB ⊥于点O ,OD 平分BOC ∠,OE 平分AOD ∠(1)求BOD ∠的度数;(2)求COE ∠的度数.18.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.参考答案:1.C 2.C 3.D 4.A 5.A 6.C 7.A 8.B9.6312︒'10.160°11.5212.35°,60°,85°13.①③14.解: M 是线段AC 的中点,N 是线段BC 的中点5MC AM cm ∴== 和 3BN CN cm ==16AB AM MC CN NB cm ∴=+++=15.解:因为相对的两个面的两个数字互为相反数所以80a +=,40b +=和50c +=所以845a b c =-=-=-,,所以()()2842584102a b c +-=-+--⨯-=--+=-16.解:∵40BOD ∠=︒∴40AOC BOD ∠=∠=︒∵OF 平分AOC ∠ ∴1202AOF AOC ∠=∠=︒ ∵OE AB ⊥∴90AOE ∠=︒∴9020110EOF AOE AOF ∠=∠+∠=︒+︒=︒.17.(1)解:∵OC AB ⊥∴90BOC AOC ∠=∠=︒∵OD 平分BOC ∠ ∴1452BOD COD BOC ∠=∠=∠=︒ (2)解:由(1)可得9045135AOD AOC COD ∠=∠+∠=︒+︒=︒∵OE 平分AOD ∠ ∴167.52AOE AOD ∠=∠=︒ ∴9067.522.5COE ∠=︒-︒=︒18.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P 在AB 之间,AP=14×221+ = 283 -24+ 283 =- 443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。
人教版七年级上册数学第四章 几何图形初步含答案
人教版七年级上册数学第四章几何图形初步含答案一、单选题(共15题,共计45分)1、长方形纸板绕它的一条边旋转1周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球2、下列说法中:①若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直;②若,则是线段的中点;③在同一平面内,不相交的两条线段必平行;④两点确定一条直线.其中说法正确的个数()A.1B.2C.3D.43、如图,在灯塔O处观测到轮船A位于北偏西55°的方向,同时轮船B在南偏东18°的方向,那么∠AOB的大小为()A.163°B.145°C.143°D.153°4、已知,是的补角,则的余角的度数是()A. B. C. D.5、如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A.北B.京C.欢D.迎6、将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为()A.45°B.42°C.21°D.12°7、下列说法正确的是()A.0是最小的整数B.有公共顶点的两个角是对顶角C.两点之间,直线最短D.0是最小的非负数8、一艘轮船由海平面上A地出发向南偏西40°的方向行驶80海里到达B地,再由B地向北偏西20°的方向行驶80海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里9、如图所示,小于平角的角有()A.9个B.8个C.7个D.6个10、如图,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西62°,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是 ( )A.南偏西62°B.北偏东62°C.南偏西28°D.北偏东28°11、如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC ∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°12、制作一个底面直径6分米、长5分米的圆柱形通风管,至少要用( )平方分米的铁皮。
人教版七年级数学上册《第4章几何图形初步》单元测试题人教版(有答案)
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题)1.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段3.已知A、B、C三点,过其中任意两点画直线,一共可以画多少条直线()A.1B.3C.3或1D.无数条4.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 5.将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是()A.B.C.D.6.下列图形中,不是正方体平面展开图的是()A.B.C.D.7.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面8.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC 为()A.70°B.65°C.55°D.45°9.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 10.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°二.填空题(共8小题)11.若∠A=52°16'32'',则∠A的补角为.12.班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米),则此长方体包装盒的体积为立方毫米(用含x、y的式子表示).13.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠COD=,∠BOC=,∠AOB=.14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为.17.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.18.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为.三.解答题(共8小题)19.(1)如图,已知点C在线段AB上,AC=8cm,BC=6cm,M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)题中,如果AC=acm,BC=bcm,其他条件不变,求此时线段MN的长度.20.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=25°,OD平分∠COE,(1)写出图中所有互补的角.(2)求∠COB的度数.21.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)22.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.25.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长参考答案与试题解析一.选择题(共10小题)1.解:根据题意可知,盒子里的水能形成的几何体是长方体,三棱柱,三棱锥;不可能是正方体.故选:A.2.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.3.解:如图最多可以画3条直线,最少可以画1条直线;.故选:C.4.解:最短的路线是A→F→E→B.故选:D.5.解:∵∠1+∠2+90°=180°,∴1+∠2=90°,即∠1和∠2互余,因此A选项符合题意;选项B中的∠1=∠2,因此选项B不符合题意;选项C中的∠1=∠2=135°,因此选项C不符合题意;可求出选项D中的∠1=45°,∠2=60°,因此选项D不符合题意;故选:A.6.解:根据正方体的展开图的特征可知,共有11种情况,可以分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,没有“1﹣2﹣3型”的,因此选项B不是正方体平面展开图,故选:B.7.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.8.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故选:C.9.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.10.解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.二.填空题(共8小题)11.解:∵∠A=52°16'32'',∴∠A的补角=180°﹣52°16'32''=127°43′28″,故答案为:127°43′28″.12.解:将展开图折叠,可得长、宽、高为y毫米、x毫米、65毫米的长方体,于是,体积为y•x×65=65xy立方毫米,故答案为:65xy.13.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=3×15°=45°,∠BOC=∠COD﹣∠BOD=45°﹣15°=30°,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=30°=∠AOB,∴∠AOB=60°,故答案为:45°,30°,60°.14.解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°﹣44°=36°,故答案为:36°.15.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.16.解:AC的长度有两种情况:①点C在线段AB的延长线时,如图1所示:∵AC=AB+BC,AB=1cm,BC=3cm,∴AC=1+3=4cm;②点C在线段AB的反向延长线时,如图2所示:∵AC=BC﹣AB,AB=1cm,BC=3cm,∴AC=3﹣1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.17.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.18.解:如图所示:∴AC=AB+BC,AB=20,BC=8,∴AC=20+8=28,又∵点O是线段AC的中点,∴AO=CO===14,又∵OB=OC﹣BC,∴OB=14﹣8=6,故答案为6.三.解答题(共7题)19.解:(1)∵AC=8cm,点M是AC的中点,∴CM=AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm;(2)∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∵AC=acm,BC=bcm,∴MN=(AC+BC)=cm.20.解:(1)∵点A,O,E在同一直线上,∴∠AOB+∠BOE=180°,∠AOC+∠COE=180°,∠AOD+∠DOE=180°,∵OD平分∠COE,∴∠COD=∠DOE,∴∠COD+∠AOD=180°.∴图中所有互补的角有:∠AOB与∠BOE,∠AOC与∠COE,∠AOD与∠DOE,∠COD 与∠AOD.(2)因为∠EOD=25°,OD平分∠COE,所以∠COE=2∠EOD=50°,所以∠COB=180°﹣∠AOB﹣∠COE,=180°﹣40°﹣50°=90°.21.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.22.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.25.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七上数学第四章图形的认识测试题
一、选择题(每题3分,共36分)
1.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )
A.∠1=∠2
B.∠1>∠ 2
C.∠1<∠2
D.以上都不对
2. 把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()
A.两点确定一条直线B.垂线段最短
C.两点之间线段最短D.三角形两边之和大于第三边
3.下列四个图形中, 能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()
4.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()
A.50° B.60° C.65° D.70°
5.如图所示,从A地到达B地,最短的路线是()
A.A→C→E→B
B.A→F→E→B
C.A→D→E→B
D.A→C→G→E→B
6.下列各图中,经过折叠能围成一个正方体的是()
7.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段BC的中点,那么线段AO的长度是()
A.8㎝
B.7.5㎝
C. 6.5㎝
D.2.5㎝
8.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上
的字是()
A.我B.中C.国D.梦
1乙甲N M P D C B A B ()D C A D C B A 9.如图所示的立体图形从上面看到的图形是( )
10.下列叙述正确的是( )
A.180°的角是补角
B.110°和90°的角互为补角
C.10°、20°、60°的角互为余角
D.50°的角互为余角的度数是唯一的
11.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )
A.∠1=∠3
B.∠1=1800-∠3
C.∠1=900
+∠3 D.以上都不对
12. 甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),
两人做法如下:
甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°, 对于两人的做法,下列判断正确的是( )
A.甲乙都对
B.甲对乙错
C.甲错乙对
D.甲乙都错
二、填空题(每题3分,共18分)
13.如图,AB⊥CD 于点B,BE 是∠ABD 的平分线,则∠CBE= 度.
14.如图,已知点O 是直线AD 上的点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次 相差25°,则这三个角的度数分别为 .
15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB = .
16.如图,OC⊥AB,OD⊥OE,图中与∠1 互余的角是 .
17.已知线段AB=8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC=_____ __.
18.火车往返于A 、B 两个城市,中途经过5个站点(共7个站点),不同的车站来往需要不同的车票.共有 种不同的车票.
三、解答题(共46分)
19.(6分)将下列几何体与它的名称连接起来.
20.(每小题3分,共6分)如图,根据下列语句,画出图形.
⑴已知四点A 、B 、C 、D.
①画直线AB ;
②连接AC 、BD ,相交于点O ;
③画射线AD 、BC ,交于点P.
⑵如图,已知线段a 、b ,画一条线段,使它等于2a b (不要求写画法).
21.计算题:(每小题6分,共12分)
⑴ (180°-91°32/24//)÷3 ; (2) 某角的余角比它的补角的
3
1还少20°,求此角.
22.(本大题6分)
如图是一个正方体的平面展开图,标注了数A 的是正方体的正面,如果正方体的左面与右面标注的式子相等.
⑴ 求x 的值;
⑵ 若A 与其相郊各面的数的和相等,求A.
23.(8分)如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=60°,∠AOC=58°.
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.
24.(8分)如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是线段AC、BC的中点.
(1)求线段MN的长.
(2)若C为线段AB上任意一点,其他条件不变,你能猜想出MN的长度吗?并说明理由. (3)若C在线段AB的延长线上,且满足,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?写出你的结论,并说明理由.
2015年秋七上数学第四章图形的认识测试题参考答案 1B 2C 3B 4D 5B 6A 7C 8D 9C 10D 11C 12A 13、1350 14、350 15、1800 16、∠DOC ,∠BOE 17、11cm 或5cm 18、42
19.解:
第19题答图 20.略
21.⑴. (180°-91°32/24//)÷3
=(179°+59/+60//-91°32/24//)÷3
=(88°+27/+36//)÷3
=(87°+87/+36//)÷3
=29°29/12//
⑵.设这个角为0x ,则这个角的余角为0(90)x -,补角为0(180)x -.
依题意,得19020(180)3
x x -+=
- 解得75x =
所以这个角是75°
22.解:(1) 正方体的左面标注的式子是x ,右面标注的式子32x -. 依题意有: 32x x =-
所以1x =
(2)A=3132x x +++-
=3+1+1+1
=6.
23.解:(1)∠AOB =∠BOC +∠AOC =60°+58°=118°,
其补角为180°-∠AOB =180°-118°=62°.
(2)∠DOC =∠BOC =12×60°=30°, ∠AOE =∠AOC =12×58°=29°. ∠DOE 与∠AOB 不互补.理由如下:
因为∠DOC =30°,∠AOE =29°,所以∠DOE =∠DOC +∠COE =∠DOC +∠AOE =59°. 所以∠DOE +∠AOB =59°+118°=177°,所以∠DOE 与∠AOB 不互补.
24.解:(1)如题图,
∵ AC = 8 cm ,CB = 6 cm ,∴ 8614(cm).AB AC CB =+=+=
又∵ 点M 、N 分别是AC 、BC 的中点,
∴ 11,,22MC AC CN BC =
= ∴ 1111()7(cm).2222
MN AC CB AC CB AB =+=+== 答:MN 的长为7 cm.
(2)MN 的长为7 cm.
理由是:如图∵ 点M 、N 分别是AC 、BC 的中点,
∴ 11,.22
MC AC CN BC == ∴ c 1111()AB=7 2222m.MN AC CB AC CB =
+=+= (3)MN 的长为7 cm.
理由是:如图∵ 点M 、N 分别是AC 、BC 的中点,
∴ 11,.22
MC AC CN BC == ∴111()=7 222cm.2AB MN MC CN AC CB AC CB =-=
-=-=。