计算过程准确度及精密度
实验室基本实验技术-标准差与标准误的计算-精密度与准确度
具体内容:
(1)顶部装载式(Sartorius MP8型)感量0.01克,最大 称量1600克。随机选取生长 一致的小麦苗4(?)株,洗净, 吸去附着水分,分别称重, 计算单株平均重和标准差 (X±SD) (结论?)。 (2) Sartorius-GMDH: 感量 0.0001克,最大称量160克。 准确称取一定量 (0.6585g??)的铁氰化钾, 配制100ml 0.02mol/L 铁氰 化钾溶液(铁氰化钾的 Mw=329.25)。
• •
(2)调零
• • (1)将拉杆推入最底部 关盖; 将拉杆推入最底部,关盖 将拉杆推入最底部 关盖; (2)按橙色“MODE”键,使“%T”处红灯 按橙色“ 按橙色 键 处红灯 亮; (3)按蓝色“%T”键,显示“0.0”。 按蓝色“ 按蓝色 键 显示“ 。
•
(3)调“100%”: 100% :
实验内容: 实验内容:用紫外吸收法测定细胞内物质的外渗
(1)取生长一致的植物叶片约1克,剪成0.5cm见 方的小块,在蒸馏水中洗涤两次,用滤纸吸干后 备用。 (2)各取0.2克放入4支试管中,其中2支放入冰箱 冷冻室内进行冰冻处理,另2支放在室温下作对照。 2 (3)约0.5小时左右后各加8ml 蒸馏水,轻轻摇匀, 再静置10分钟以上。 (4)取上清液,在264nm 波长下,用紫外/可见分 光光度计测定定外渗液的光密度值。 (5)计算并比较二者膜伤害的程度(结论?)。
实验内容
(1)以水为对照,取 1ml 0.02 mol/L铁氰 化钾溶液于100ml容 量瓶中,定容至 100ml。 (2)用9100型分光光 度计测定该铁氰化钾 溶液的吸收光谱,波 长在420nm,记录结 果。
(三)加液的精密度(或重现性)和准确度检验 加液的精密度(或重现性)
精密度与精确度的名词解释
精密度与精确度的名词解释在各个领域中,无论是科学研究还是工程技术,准确度和精确度都是至关重要的概念。
准确度意味着测量结果能够接近真实值,而精确度则表示测量结果的重复性和可靠性。
虽然这两个概念看似相似,却有着细微的区别。
本文将深入解释精密度与精确度的含义,并探讨它们在不同领域的应用和重要性。
1. 精密度的解释精密度是指一组测量结果的离散程度。
它描述了同样的测量在不同实验或不同测量方法下的变异程度。
精密度高的结果说明测量的变异幅度相对较小,更接近真实值。
简言之,精密度衡量了测量过程的稳定性和可重复性。
要准确定量精密度,统计学中的标准差通常被用来衡量测量结果的离散程度。
标准差越小,测量结果的精密度越高。
例如,一组连续测量的结果中,标准差为0.1的结果比标准差为0.5的结果更具精密度。
2. 精确度的解释精确度提供了测量结果与目标值之间的接近程度。
它反映了测量结果的准确性和无偏性。
精确度高的结果表示测量系统趋向于接近真实值,能够提供可信的数据。
为了衡量精确度,常用的统计指标是偏差。
偏差是指测量结果与目标值之间的差异。
偏差越小,测量结果的精确度越高。
例如,在一次试验中,目标值为10,测量结果分别为9.8、9.9和10.1。
偏差为0的结果比偏差为0.5的结果更具精确度。
3. 精密度与精确度的关系尽管精密度和精确度有着不同的定义,但它们两者之间是相互关联的。
在理想情况下,我们希望测量结果既具有高的精密度又具有高的精确度。
因为只有在测量结果的变异性较小且接近真实值的情况下,我们才能获得可靠且准确的数据。
然而,在实际测量过程中,很难同时达到高精密度和高精确度。
当我们追求更高的精密度时,可能会牺牲精确度。
例如,使用更昂贵的仪器或更复杂的方法可以减小测量结果的离散程度,提高精密度。
但这并不一定能够改善测量结果与目标值之间的接近程度。
4. 精密度与精确度的应用精密度和精确度在各个领域都有广泛的应用。
在科学研究中,准确的测量和实验结果是构建理论模型和验证假设的基础。
准确度和精密度以及提高准确度办法
绝对偏差(d)=x-x _
x-x 相对偏差(d%)= —— ×100%
_ x
绝对偏差:单项测定与平均值的差值。 相对偏差:绝对偏差在平均值所占百分率或千分 率。
2022/3/24
大量资料 天天更新
二、精密度与偏差
2.算术平均偏差
_
_ 算术平均偏差d
=
∑ | xi-x | ——————
(
大量资料 天天更新
二、精密度与偏差
精密度:相同条件下几次重复测定结 果彼此相符合的程度。
精密度大小由偏差表示。 偏差愈小,精密度愈高。
2022/3/24
大量资料 天天更新
二、精密度与偏差
偏差 算术平均偏差 偏差的表示 标准偏差 极差 公差
2022/3/24
大量资料 天天更新
二、精密度与偏差
2022/3/24
大量资料 天天更新
二、精密度与偏差
在一般分析中,通常多采用平均偏差来表示测 量的精密度。
对于一种分析方法所能达到的精密度的考察, 一批分析结果的分散程度的判断以及其它许多 分析数据的处理等,最好采用相对标准偏差等 理论和方法。
用标准偏差表示精密度,可将单项测量的较大 偏差和测量次数对精密度的影响反映出来。
实验数据分析结果: 第一组:精密度很高,但平均值与标准样品数值相
差很大,说明准确度低。 第二组:精密度不高,准确度也不高。 第三组:精密度高,准确度也高。
2022/3/24
大量资料 天天更新
三、准确度与精密度的关系
准确度高必须精密度高, 精/24
大量资料 天天更新
4.极差 R=测定最大值-测定最小值
_
相对极差=(R / x)×100%
方法准确度和精密度的计算公式
方法准确度和精密度的计算公式
方法准确度和精密度是衡量分析方法可靠性的重要指标,准确度指分析结果与真实值的接近程度,精密度指分析结果的重复性。
计算方法如下:
准确度计算公式:
准确度(%)=(实验值的平均值-标准值)/标准值×100%
其中,实验值的平均值是多次实验结果的平均值,标准值是标准物质的真实值。
精密度计算公式:
相对标准偏差(%)=标准偏差/实验值平均值×100%
其中,标准偏差是多次实验结果的标准偏差。
可以通过多次实验得到实验值的平均值和标准偏差,然后根据上述公式计算出方法的准确度和精密度。
这些指标可以帮助评价分析方法的可靠性,指导实验操作,并优化实验流程。
- 1 -。
过程能力CPK的计算方法
过程能力CPK的计算方法
Cpk是一种用于量化制程水平的指数,它可以通过一个数
值来反映制程的合格率。
Cpk的计算公式为Cpk=Cp(1-|Ca|),
其中Ca代表制程准确度,Cp代表制程精密度。
需要注意的是,在计算Cpk时,样本数据至少应有20组,并且数据要具有一
定代表性。
根据Cpk值的大小,可以将制程分为不同的等级。
A+级
表示制程水平非常高,Cpk值大于等于1.67;A级表示状态良好,Cpk值在1.33到1.67之间;B级表示需要改进,Cpk值
在1.0到1.33之间;C级表示制程不良较多,Cpk值在0.67到1.0之间;D级表示制程能力较差,Cpk值小于0.67.
在制程规格方面,可以分为单边规格和双边规格。
单边规格只有规格上限或规格下限,数据越接近上限或下限越好;双边规格有上下限与中心值,数据越接近中心值越好。
其中,USL代表规格上限,LSL代表规格下限,C代表规格中心。
制程准确度Ca用于衡量“实际平均值”与“规格中心值”的一致性。
对于单边规格,不存在规格中心,因此也就不存在Ca;对于双边规格,Ca的等级评定和处理原则与Cp类似。
制程精密度Cp衡量的是“规格公差宽度”与“制程变异宽度”之比例。
对于只有规格上限和规格中心的规格、只有规格下限和规格中心的规格以及双边规格,Cp的等级评定和处理原则也有所不同。
总之,Cpk是一个非常重要的制程能力指数,可以帮助企业量化制程水平,进而采取相应的措施来提升制程能力。
如果需要计算Cpk值,可以使用免费的CPK计算工具。
什么是误差、不确定度、精密度、准确度、偏差、方差
前言如何评价分析测试数据的质量,或者说明其测定数据在多大程度上是可靠的,一直是分析工作者和管理者关心和希望解决的问题。
在日常分析测试工作中,测量误差、测量不确定度、精密度、准确度、偏差、方差等是经常运用的术语,它直接关系到测量结果的可靠程度和量值的准确一致。
传统的方法多是用精密度和准确度来衡量。
但是,通常说的准确度和误差只是一个定性的、理想化的概念,因为实际样品的真值是不知道的。
而精密度只是表示最终测定数据的重复性,不能真正衡量其测定的可靠程度。
作为一名分析测试人员,这些术语是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所云。
下面小编就带大家看一下它们的区别在哪里。
测量误差测量误差表示测量结果偏离真值的程度。
真值是一个理想的概念,严格意义上的真值通过实际测量是不能得到的,因此误差也就不能够准确得到。
在实际误差评定过程中,常常以约定真值作为真值来使用,约定真值本身有可能存在误差,因而得到的只能是误差的估计值。
此外,误差本身的概念在实际应用过程中容易出现混乱和错误理解。
按照误差的定义,误差应是一个差值。
当测量结果大于真值时,误差为正,反之亦然。
误差在数轴上应该是一个点,但实际上不少情况下对测量结果的误差都是以一个区间来表示(从一定程度上也反映了误差定义的不合理),这实际上更像不确定度的范围,不符合误差的定义。
在实际工作中,产生误差的原因很多,如方法、仪器、试剂产生的误差,恒定的个人误差,恒定的环境误差,过失误差,不可控制或未加控制的因素变动等。
由于系统误差和随机误差是两个性质不同的量,前者用标准偏差或其倍数表示,后者用可能产生的最大误差表示。
数学上无法解决两个不同性质的量之间的合成问题。
因此,长期以来误差的合成方法上一直无法统一。
这使得不同的测量结果之间缺乏可比性。
不确定度测量不确定度为“表征合理地赋予被测量之值的分散性,与测量结果想联系的参数”。
定义中的参数可能是标准偏差或置信区间宽度。
分析结果的准确性和精密度
分析结果的精密度可以用单次测量结果的平均偏差表示。平均偏差没有 正负号。用这种方法求得的平均偏差成为算术平均偏差。 平均偏差的另一种表示方式为标准偏差。
相对标准偏差(RSD),也称为变异系数,可按下式计算:
标准偏差较平均偏差有更多的统计意义。因为单次测定的偏差平方后, 较大的偏差更显著地反映出来,能更好的说明数据的分散程度。因此, 在考虑一种分析方法的精密度时,通常用相对标准偏差来表示。
其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL
本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不 一致,则应折算为一致的质量。
回收率的范围一般控制为70%-90%,根据项目的不同,由实验室技术 指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。
8.标准曲线的回归
目的是为了确定未知浓度,其原理是测量值与标准值成比例,可构造二 元一次方程。
感谢下 载
感谢下 载
3.分析结果的报告 (1)例行分析
(2)多次测定结果 以算术平均值或中位置报告结果,并报告平均偏差及相对平均偏差。 中位值是指一组测定值按大小顺序排列时中间项的数值。
四、提高分析精确度的方法
食品定量分析中的误差,分为系统误差和随机误差。
系统误差是有固定原因造成的,在测定过程中按一定的规律重复出现,, 一般有一定的方向性,即测定值总是偏高或总是偏低。这种误差的大小 是可测的。并且可以通过对照试验,空白试验、仪器校正等方法加以矫 正。根据来源,系统误差可以分为方法误差、仪器误差、实际误差和操 作误差四大类
计量基础知识讲座 第三部分 量值传递、精密度、正确度、精确度相关概念
计量检定系统表《 计量法》及有关法规、计量检定系统表、计量检定规程、 计量技术规范等为量值传递工作提供了法制保证和技术文件依据。计量检定系统 表是国家对计量基准到各等级计量标准直至工作计量器具的主从检定关系所作的 技术规定。它由国家计量行政部门组织制定、修订、批准颁布。基本上一项国家 计量基准对应一个计量检定系统表。
计量保证方案(MAP)是一种新型的量值传递方式,是一个闭环式的传递过 程,其主要特点是通过“传递标准”完成对参加者实验室的测量系统(包括标准 、方法、人员、环境、设备等)进行全面考核,并直接溯源到国家基准。通过“ 核查标准”,使量过程始终处于连续的统计控制之中,以保证测量不确定度的有 效性。
中国进行MAP方案的研究已多年,近几年,在中温、活度、微波功率、衰减、 量块、维氏硬度、电阻、直流电压、磁性材料测量等方面进行试点并取得了一定 的成绩。计量保证方案的实施,必将进一步完善国家的量值传递工作。
保障计量单位制的统一和实现量值的准确可靠是计量工作的核心 。量值不仅要在国内统一,而且还要达到国际上的统一。
“量值传递”及其逆过程“量值溯源”是实现量值统一的主要途 径与手段。它为工农业生产、国防建设、科学实验、贸易结算、环境 保护以及人民生活、健康、安全等方面提供了计量保证。 量值传递 是通过对计量器具的检定或校准,将国家基准所复现的计量单位量值 通过各级计量标准传递到工作计量器具,以保证对被测量值的准确和 一致。即保证全国在不同地区,不同场合下测量同一量值的计量器具 都能在允许的误差范围内工作。 二,量值溯源
准确度_与精密度
准确度与精密度一 准确度与误差1、准确度:是指测得值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量,即误差越小,准确度越高,误差越大,准确度越低。
2、真实度:物质中各组分的真实含量。
它是客观存在的,但不可能准确知道,只有在消除系统误差之后,并且测定次数趋于无穷大时,所得算术平均值才代表真实值。
市售标准物质,它给出的标准值可视为真实值,可用它来校正仪器和评价分析方法等。
3、误差的表示方法——绝对误差和相对误差 绝对误差=测得值(X )- 真实值(T ) 绝对误差(E )=测得值(X )- 真实值(T )相对误差(RE )由于测定值可能大于真实值,也可能小于真实值,所以绝对、相对误差有正负之分。
二 精密度与偏差1、精密度:指在相同条件下N 次重复测定结果彼此相符合的程度。
精密度大小=绝对误差 ×100%真实值(T )用偏差表示,偏差越小,精密度越高。
2、绝对偏差和相对偏差:它只能用来衡量单项测定结果对平均值偏离程度。
绝对偏差:只单次测定值与平均值的偏差。
绝对偏差(d )=X i -X相对偏差=绝对偏差和相对偏差都有正负之分,单次测定的偏差之和等于零。
3、算术平均偏差:指单次值与平均值的偏差(绝对值)之和,除以测定次数。
它表示多次测定数据整体的精密度。
代表任一数值的偏差。
算术平均偏差(d )相对平均偏差=算术平均偏差和相对平均偏差不计正负。
4、标准偏差:它是更可靠的精密度表示法,可将单次测量的较大偏差和测量次数对精密度的影响反映出来。
X i -X×100%X(i=1.2.3······n )nd×100% X标准偏差S=例:分析铁矿中铁含量,得如下数据:37.45% ,37.50% ,37.30% ,37.25%计算此结果的平均值、平均偏差和标准偏差。
解:X=各次测量偏差分别是:d1=+0.11% ,d2=-0.14% ,d3=+0.16% ,d4=-0.04% ,d5=0.09%d= =S= =三 准确度与精密度的关系37.45%+37.20%+37.50%+37.30%+37.25%= 37.34%5(0.11+0.14+0.04+0.16+0.09)% = 0.11%5(0.11)2+(0.14)2+(0.04)2+(0.16)2+(0.09)2% = 0.13%5-1第一组测定结果:精密度很高,但平均值与标准值相差很大。
准确度与精确度
准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示.它用来表示系统误差的大小.在实际工作中,通常用标准物质或标准方法进行对照试验,在无标准物质或标准方法时,常用加入被测定组分的纯物质进行回收试验来估计和确定准确度.在误差较小时,也可通过多次平行测定的平均值作为真值μ的估计值.测定精密度好,是保证获得良好准确度的先决条件,一般说来,测定精密度不好,就不可能有良好的准确度.对于一个理想的分析方法与分析结果,既要求有好的精密度,又要求有好的准确度.精密度是指多次重复测定同一量时各测定值之间彼此相符合的程度.表征测定过程中随机误差的大小.精密度是表示测量的再现性,是保证准确度的先决条件,但是高的精密度不一定能保证高的准确度.准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示。
精密度是指多次重复测定同一量时各测定值之间彼此相符合的程度,表征测定过程中随机误差的大小。
在规定条件下所得独立试验结果间的符合程度。
准确度和精密度是两个不同的概念,但它们之间有一定的关系。
应当指出的是,测定的准确度高,测定结果也越接近真实值。
但不能绝对认为精密度高,准确度也高,因为系统误差的存在并不影响测定的精密度,相反,如果没有较好的精密度,就很少可能获得较高的准确度。
可以说精密度是保证准确度的先决条件。
精密度是表示测量的再现性,是保证准确度的先决条件,但是高的精密度不一定能保证高的准确度。
好的精密度是保证获得良好准确度的先决条件,一般说来,测量精密度不好,就不可能有良好的准确度。
反之,测量精密度好,准确度不一定好,这种情况表明测定中随机误差小,但系统误差较大。
准确度用来表示系统误差的大小。
在实际工作中,通常用标准物质或标准方法进行对照试验,在无标准物质或标准方法时,常用加入被测定组分的纯物质进行回收试验来估计和确定准确度。
反映系差的大小,指数据的均值偏离真值的程度。
对不同的规定条件,有不同的精密度的度量。
正确理解准确度和精密度
准确度等级在《VIM》及《JJF》中,准确度等级(accuracy class)指测量仪器符合一定的计量要求,使误差保持在规定极限以内的测量仪器的等别、级别。
等(order)与级(class)在计量学中是两个不同的概念。
计量技术规范JJG1027-91《测量误差及数据处理》思考题2.1 正确理解准确度和精密度,误差和偏差的概念。
偏差表示测定结果与平均值之间的差值。
误差表示测定结果与真实值之间的差值。
偏差是衡量分析结果的精密度,准确度用误差表示。
精密度表示测定值之间的接近程度,准确度表示测定结果和真实值的接近程度。
精密度是保证准确度的先决条件,只有在消除系统误差的前提下,精密度高准确度也高,精密度差,则测定结果不可靠。
2.2 下列情况分别引起什么误差?如果是系统误差,应如何消除?(1)砝码被腐蚀;系统误差。
校正或更换准确砝码。
(2)天平两臂不等长;系统误差。
校正天平。
(3)容量瓶和吸管不配套;系统误差。
进行校正或换用配套仪器。
(4)重量分析中杂质被共沉淀;系统误差。
分离杂质;进行对照实验。
(5)天平称量时最后一位读数估计不准;随机误差。
增加平行测定次数求平均值。
(6)以含量为99%的邻苯二甲酸氢钾作基准物标定碱溶液;系统误差。
做空白实验或提纯或换用分析试剂。
2.3 用标准偏差和算术平均偏差表示结果,哪一个更合理?标准偏差。
2.4 如何减少偶然误差?如何减少系统误差?增加平行测定次数可以减少偶然误差。
通过对照实验、空白实验、校正仪器、提纯试剂等方法消除系统误差。
2.5 某铁矿石中含铁39.16%,若甲分析结果为39.12%,39.15%,39.18%,乙分析得39.19%,39.24%,39.28%。
试比较甲、乙两人分析结果的准确度和精密度。
甲:准确度高,精密度好。
(计算略)2.6 甲、乙两人同时分析同一矿物中的含硫量。
每次取样3.5 g,分析结果分别报告为甲:0.042%,0.041%乙:0.04199%,0.04201%哪一份报告是合理的?为什么?甲的分析报告是合理的。
正确理解准确度和精密度
准确度等级在《VIM》及《JJF》中,准确度等级(accuracy class)指测量仪器符合一定的计量要求,使误差保持在规定极限以内的测量仪器的等别、级别。
等(order)与级(class)在计量学中是两个不同的概念。
计量技术规范JJG1027-91《测量误差及数据处理》思考题正确理解准确度和精密度,误差和偏差的概念。
偏差表示测定结果与平均值之间的差值。
误差表示测定结果与真实值之间的差值。
偏差是衡量分析结果的精密度,准确度用误差表示。
精密度表示测定值之间的接近程度,准确度表示测定结果和真实值的接近程度。
精密度是保证准确度的先决条件,只有在消除系统误差的前提下,精密度高准确度也高,精密度差,则测定结果不可靠。
下列情况分别引起什么误差?如果是系统误差,应如何消除?(1)砝码被腐蚀;系统误差。
校正或更换准确砝码。
(2)天平两臂不等长;系统误差。
校正天平。
(3)容量瓶和吸管不配套;系统误差。
进行校正或换用配套仪器。
(4)重量分析中杂质被共沉淀;系统误差。
分离杂质;进行对照实验。
(5)天平称量时最后一位读数估计不准;随机误差。
增加平行测定次数求平均值。
(6)以含量为99%的邻苯二甲酸氢钾作基准物标定碱溶液;系统误差。
做空白实验或提纯或换用分析试剂。
用标准偏差和算术平均偏差表示结果,哪一个更合理?标准偏差。
如何减少偶然误差?如何减少系统误差?增加平行测定次数可以减少偶然误差。
通过对照实验、空白实验、校正仪器、提纯试剂等方法消除系统误差。
某铁矿石中含铁%,若甲分析结果为%,%,%,乙分析得%,%,%。
试比较甲、乙两人分析结果的准确度和精密度。
甲:准确度高,精密度好。
(计算略)甲、乙两人同时分析同一矿物中的含硫量。
每次取样 g,分析结果分别报告为甲:%,%乙:%,%哪一份报告是合理的?为什么?甲的分析报告是合理的。
有效数字是两位。
精密度、精确度与准确度用同一测量工具与方法在同一条件下多次测量,如果测量值偶然误差小,即每次测量结果涨落小,说明测量重复性好,称为测量精密度好,因此,测量偶然误差的大小反映了测量的精密度.精确度是测量的准确度与精密度的总称,在实际测量中,影响精确度的可能主要是系统误差,也可能主要是偶然误差,当然也可能两者对测量精确度影响都不可忽略.在某些测量仪器中,常用精度这一概念,实际上包括了系统误差与偶然误差两个方面,例如常用的电工仪表(电流表、电压表等)就常以精度划分仪表等级.根据误差理论可知,当测量次数无限增多的情况下,可以使偶然误差趋于零,而获得的测量结果与真值偏离程度——测量准确度,将从根本上取决于系统误差的大小,因而系统误差大小反映了测量可能达到的准确程度.测量仪器准确度、最大允许误差和不确定度辨析国家计量技术规范JJF1033—2001《计量标准考核规范》对所采用的计量标准器具、配套设备以及所开展的检定/校准项目的准确度指标,要求填写“不确定度或准确度等级或最大允许误差”;JJF1069—2000《法定计量检定机构考核规范》要求填写检定/校准“准确度等级或测量扩展不确定度”;实验室国家认可的校准项目则是填写“不确定度/准确度等级”。
第一节 测量值的精密度和准确度
误差的分类
系统误差 偶然误差 过失误差
系统误差
定义:又称可定误差,是分析过程中由某些 固定原因造成的误差。
特点:a.重现性 b.单向性(都是正误差或都是负误差) c.大小存在一定规律 d.改变实验条件可以发现 e.可以校正消除
系统误差的来源
方法误差:方法不完善 仪器误差:仪器不准或未校正 试剂误差:试剂不纯 操作误差:个人操作问题
解:绝对误差 (1)0.0021 - 0.0020 = 0.0001(g) (2)0.5001 - 0.5000 = 0.0001(g) 相对误差 (1)0.0001/0.0020 100% =5.0% (2)0.0001/0.5000 100% =0.02%
说明:在制定标准时,低含量组分相对误差可
第一节 测量值的精密度和准确度
误差公理
实验结果都有误差,误差自始 至终存在于一切科学实验的过程之 中。测量结果只能接近于真实值,而 难以达到真实值。
一、准确度和误差 (accuracy and error)
准确度:表示分析结果(测量值)与真实 值接近的程度。 误差:即测定值与真实值之间的差异, 是用来表示准确度的数值。
(主观误差)
系统误差的表现方式
恒定误差:多次测定中系统误差的 绝对值保持不变 比例误差:系统误差的绝对值随样 品量的增大而成比例增大
偶然误差
又称随机误差或不可定误差,是由某些偶 然因素引起的误差。
偶然误差特点
a.方向不确定(误差时正时负) b.大小不确定(误差时大时小) c.符合统计规律
绝对值相等的正负误差出现概率基本相等 小误差出现的概率大,大误差出现的概率小
三、准确度与精密度的关系
1.精密度不高,准确度一般不高,故精密度高 是准确度高的前提; 2.精密度高,准确度不一定高; 3.在消除系统误差的前提下,精密度高,准确 度也会高; 只有精密度、准确度都高的数值,才可取。
准确度与精确度的概念
计量的精密度、正确度、精确度,是计量的几个基本概念(参见图1)1.精密度计量的精密度(precision of measurement),系指在相同条件下,对被测量进行多次反复测量,测得值之间的一致(符合)程度。
从测量误差的角度来说,精密度所反映的是测得值的随机误差。
精密度高,不一定正确度(见下)高。
也就是说,测得值的随机误差小,不一定其系统误差亦小。
2.正确度计量的正确度(correctness of measurement),系指被测量的测得值与其“真值”的接近程度。
从测量误差的角度来说,正确度所反映的是测得值的系统误差。
正确度高,不一定精密度高。
也就是说,测得值的系统误差小,不一定其随机误差亦小。
3.精确度计量的精确度亦称准确度(accuracy of measurement),系指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。
从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。
图1是关于计量的精密度1正确度和精确度的示意图。
设图中的圆心O为被测量的“真值”,黑点为其测得值,则图(a):正确度较高、精密度较差;图(b):精密度较高、正确度较差;图(c):精确度(准确度)较高,即精密度和正确度都较高。
通常所说的测量精度或计量器具的精度,一般即指精确度(准确度).,而并非精密度。
也就是说,实际上“精度”已成为“精确度”(准确度)的习惯上的简称。
至于精度是精密度的简称的主张,若仅针对精密度而言,是可以的;但若全面考虑,即针对精密度、正确度和精确度三者而言,则不如是精确度的简称或者本意即指精确度更为合适。
因为,在实际工作中,对计量结果的评价,多系综合性的,只有在某些特定的场合才对精密度和正确度单独考虑。
那么,为何不去简化(如果说是“简化”的话)一个常用术语,而偏要去简化一个不常用的术语呢!再说,就大多数计量领域和计量工作者来说,已经习惯于“精度”来表示“精确度”或准确度了,何不顺其自然呢?顺便说一下,本书中所用的“精度”,系指“精确度”(准确度),即精密度和正确度的综合概念。
仪器精密度的计算公式
仪器精密度的计算公式
精密度的计算公式是:X=A-B,其中X为精密度;A为单次测量的数值;B为这一系列数的平均值。
精密度表示的是所测得的一系列数据之间的接近程度。
精密度是表示测量的再现性,是保证准确度的先决条件,但是高的精密度不一定能保证高的准确度。
好的精密度是保证获得良好准确度的先决条件,一般说来,测量精密度不好,就不可能有良好的准确度。
反之,测量精密度好,准确度不一定好,这种情况表明测定中随机误差小,但系统误差较大。
准确度和精密度的计算公式
准确度和精密度的计算公式
准确度和精密度是在统计学和机器学习中常用的评估指标,用于衡量模型或实验结果的表现。
准确度(Accuracy)是指分类器正确分类的样本数占总样本数的比例,通常用以下公式表示:
准确度 = (TP + TN) / (TP + TN + FP + FN)。
其中,TP表示真正例(True Positive),即实际为正例且被分类器预测为正例的样本数;TN表示真负例(True Negative),即实际为负例且被分类器预测为负例的样本数;FP表示假正例(False Positive),即实际为负例但被分类器错误地预测为正例的样本数;FN表示假负例(False Negative),即实际为正例但被分类器错误地预测为负例的样本数。
而精密度(Precision)是指分类器预测为正例的样本中实际为正例的比例,通常用以下公式表示:
精密度 = TP / (TP + FP)。
精密度的计算侧重于分类器预测为正例的准确性,即在所有分
类器预测为正例的样本中,有多少是真正的正例。
这两个指标在评估分类器或模型性能时都非常重要。
准确度衡
量了分类器整体的分类准确性,而精密度则更加关注分类器在预测
为正例时的准确性。
在实际应用中,需要综合考虑准确度和精密度,以全面评估模型的性能表现。
实验室分析方法确认中正确度与精密度的实验方法与Excel计算
0
1 2
量方法正确度 的基本方法》 对实验物料的要求。 12 确定实验水平 .
一
1 2
p
0
般选择在分析方法线性范围的 1 0~9 % 范 0
围内选择 4~ 5个浓 度 的实验水 平 。 13 确定 重复 性实验 次 数 .
2 2 单元均值 的计算 . 由式 ( ) 1 分别计算不 同实验水平、 同实 验批 不 次实验结果的均值。
1
2
A EA E) V R G (
p
歹 为某一水平下单元 内均值 的平均值 。
AEA E , V R G ()数据源为某一单元内均值 。 s 为某一水平下 单元 内均值 的的标准差 , 含可 疑离群值。
2 3 单元离散程度 一 . 方差的计算 由式 ( ) 2 分别计算不同实验水平 、 同实验批 不
2
25 2 二 个 离 群 值 的 格 拉 布 斯 ( r b ) .. Gu s b
检验
将需计算 2 个离群可疑值 的单元内均值 , 进行
() 3
c=
厶 1
排序后再计算 G值 。 1 为检验最大的两个观测值 的显著性 , ) 计算格
2
J ●
1
2
A R( V )
一
) , S y
y m
p
G
—
l - l 歹 )  ̄/ ( s
M X( A )
24 单元 内方差离群 值检验 一科 克伦 ( oha ) . C cr n
检验
G —
l
一 Is /
对表 3中各水平下的方差值分别用科克伦( o c. cr ) ha 检验进行离群值的检验 , n 将离群值剔除; 歧离 值保 留, 但在最后计算结果 中加以表述。
不确定度、准确度、精度定义及比较
一0102 03二01不确定度、准确度、精度定义及比较 不确定度、准确度、精度这三个名词在计量研究报告、测试报告及仪器性能说明中经常出现,许多人对这些常见的计量测试名词含义不清,出现错用的现象,搞清这些专业术语,了解其本质含义及区别,对从事计量测试的技术人员来说具有重要的现实意义。
不确定度、准确度、精度基本含义不确定度 不确定度定义为与测量结果相关联的参数,表征合理地赋予被测量值的分散性。
它可以是标准偏差,也可以是说明了置信水平的区间半宽度,经常用标准不确定度、合成不确定度、扩展不确定度来表示。
准确度 测量准确度定义为测量结果与被测量真值的一致程度。
真值在实际测量中是较难得到的,故准确度只是一个定性的概念,所谓定性意味着可以用准确度的高低、准确度为0.25级、准确度为3级、准确度符号XX标准等说法定性地表示测量质量。
精度 精度是用来表示测量结果中的随机误差大小的程度,反映的是在规定条件下各独立测量结果间的分散性。
在测量误差理论中,精度或精确度常出现,我国长时间以来一直习惯用精度这一名词,如在仪器性能表示中经常出现这一名词,它有时指精密度,有时指准确度,比较混乱,在计量测试报告中尽量回避精度这一提法。
不确定度、准确度、精度相互之间的区别不确定度、准确度、精度的内涵不同 准确度或精度是与测量误差相关联的,表示的是测量结果与真值的偏离量,因此是一个确定的值,在数轴上表示为一个点。
测量不确定度表示被测量之值的分散性,它是以分布区间的半宽度表示的,因此在数轴上是一个区间。
严格来说,准确度与精(密)度是有区别的,准确度是测量结果中系统误差与随机误差的综合表示,是一个定性的概念,而精度是表示测量结果中随机误差的大小。
一个仪器的精度高,不能就说它的准确度一定高,精度高只说明其测量的随机误差小,但是准确度高必须使随机误差与系统误差都小。
测量结果的不确定度表示在重复性或复现性条件下被测量之值的分散性,其大小只与测量方法有关,即测量原理、测量仪器、测量环境条件、测量程序、测量人员、以及数据处理方法等有关,而准确度或精度是与测量误差有关,而误差仅与测量结果及真值有关,而与测量方法无关。
实验的准确度与精密度
实验的准确度与精密度在生物化学分析工作中,无论怎样谨慎地操作,测定结果总会产生误差,因此,掌握精确度与精密度实验,是进行分析工作的基础。
一:实验误差在实际的分析工作中,由于仪器的性能,实验的技巧以及化学反应是否完全等原因,使测得的结果往往不是客观的真实值,只能是与真实值接近,所以称测得值为近似值。
测得的近似值与真实值之间的差别称为误差。
近似值比真实值大时误差为正,比真实值小时误差为负。
表示误差的方法有绝对误差和相对误差。
1:绝对误差测得值与真实值的差值称为绝对误差。
以A表示真实值,a表示近似值,r表示绝对误差,则r=a-A如,滴定读数为20.24ml,而其真实体积为20.23ml,则绝对误差为:r=20.24-20.23=+0.01ml;而另一滴定读数为 2.033ml,其真实体积为 2.023ml,其绝对误差为:r=2.033-2.023=+0.01ml。
两份测定的绝对误差均为0.01,但两份测定的体积相差10倍,可见r不能反映问题的全面,因此有另一种表示误差的方式。
2:相对误差绝对误差占真实值的百分数为相对误差。
相对误差用R表示,即:R(%)=a-AA×100=rA×100如上例滴定读数的相对误差为:0.05%;0.5%。
由此可见,两份滴定读数的绝对误差虽然相等,但当用相对误差表示时,第一份滴定比第二份滴定的准确度大10倍。
显然,当被测定的量较大时,R就越小,测定的准确度也就越高。
所以应该用相对误差来表示分析结果的准确度。
二:系统误差与回收率实验根据误差产生的原因和性质,可分为系统误差和偶然误差。
1:系统误差系统误差是有分析过程中经常性的原因造成的,在每次测定中都比较稳定的重复出现,它与分析结果的准确度有关,主要产生的原因有:⑴方法误差由于分析方法本身所造成的,如容量分析中等当点与滴定终点不完全符合等。
⑵仪器误差由于仪器不够精密,或未进行校正所造成的。
⑶试剂误差试剂或蒸馏水不纯。