正电子发射成像pet简介
petct简介

PET/CTPET/CT是一种将PET(功能代谢显像)和CT(解剖结构显像)两种影像技术有机地结合的新型影像设备,是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT的优点,发挥出各自的最大优势。
中文名正电子发射断层显像/X 线计算机体层成像仪PET/CTPET/CT(positron emission tomography / computedtomography )全称为正电子发射断层显像/X 线计算机体层成像仪,是一种将PET(功能代谢显像)和CT(解剖结构显像)两种先进的影像技术有机地结合在一起的新型的影像设备. 它是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT 技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT 的优点,发挥出各自的最大优势[1] 。
PET/CT是PET和CT的组合体,将PET和CT设计为一体,由一个工作站控制[2] 。
单PET进行核医学显像时,有其它诊断设备无法比拟的早期发现灵敏性等优越特性,但因药物及其原理所限,其定位精度不够好,有厂商后来将PET和CT设计为一体,扫描时根据需求同时进行PET显像和CT显像[3] ,并由工作站将两种图像融合到一起,以达到更好的鉴别和定位。
2 发展历史编辑PET/CT近年来,影像诊断学的一个重要进展,就是图像融合技术的发展与应用。
图像融合包括硬件与软件,是一个全自动图像配准及多种图像的解读技术,它不仅具有全自动的功能与解剖图像的融合,还可以让具有不同特征的影像在同一平台显示、解读,对比与分析,为临床诊断与治疗之间架起了一座高速、流畅的桥梁。
正电子发射计算机断层扫描

(3)全身显像。PET一次性全身显像检查便可获得全身各个区域的图像。
(4)安全性好。PET检查需要的核素有一定的放射性,但所用核素量很少,而且半衰期很短(短的在12分 钟左右,长的在120分钟左右),经过物理衰减和生物代谢两方面作用,在受检者体内存留时间很短。一次PET全 身检查的放射线照射剂量远远小于一个部位的常规CT检查,因而安全可靠。
适用人群
适用人群
(1)肿瘤病人。目前PET检查85%是用于肿瘤的检查 ,因为绝大部分恶性肿瘤葡萄糖代谢高,FDG作为与葡 萄糖结构相似的化合物,静脉注射后会在恶性肿瘤细胞内积聚起来,所以PET能够鉴别恶性肿瘤与良性肿瘤及正 常组织,同时也可对复发的肿瘤与周围坏死及瘢痕组织加以区分,现
多用于肺癌、乳腺癌、大肠癌、卵巢癌、淋巴瘤,黑色素瘤等的检查,其诊断准确率在90%以上。这种检查 对于恶性肿瘤病是否发生了转移,以及转移的部位一目了然,这对肿瘤诊断的分期,是否需要手术和手术切除的 范围起到重要的指导作用。据国外资料显示,肿瘤病人术前做PET检查后,有近三分之一需要更改原订手术方案。 在肿瘤化疗、放疗的早期,PET检查即可发现肿瘤治疗是否已经起效,并为确定下一步治疗方案提供帮助。有资 料表明,PET在肿瘤化疗、放疗后最早可在24小时发现肿瘤细胞的代谢变化。
正常范围PET特别适用于在没有形态学改变之前,早期诊断疾病,发现亚临床病变以及评价治疗效果。PET在 肿瘤、冠心病和脑部疾病这三大类疾病的诊疗中尤其显示出重要的价值。
名称含义
名称含义
全称为:正电子发射型计算机断层显像(Positron Emission Computed Tomography) ,是核医学领域 比较先进的临床检查影像技术。
pet ct 简介

时间分辨率定义为:对已知好事例相对的两个探测器响应的时间差分布的半宽高。时间分辨率[18]是时间窗的选定主要依据,时间窗选择应比时间分辨率稍大,一般以时间分布曲线的1/10高宽来定。
能量分辨率
能量甄别是排除散射事例的有力依据。因为散射事例中至少有一个光子经过了康普顿散射,能量部分损失,因而可以根据被测光子的能量大小决定好坏事例的取舍。系统能量分辨率的大小决定着能量窗的选择,好的能量分辨率可以选择较小的能量窗。
CT的基本原理
CT的全称是:计算机断层扫描显像(computedtomography,简称CT),利用人体各种组织对X线的吸收能力不等的特性,X线通过人体衰减,经重建计算获得图像矩阵。CT对组织的密度分辨率较高。
PET/ CT的工作原理
PET主要根据示踪剂来选择性地反映组织器官的代谢情况,从分子水平上反映人体组织的生理、病理、生化及代谢等改变,尤其适合人体生理功能方面的研究。但是图像解剖结构不清楚;CT功能有:采用X线对PET图像进行衰减校正,大大缩短了数据采集时间,提高了图像分辨率;利用CT图像对PET图像病变部位进行解剖定位和鉴别诊断。所以PET/ CT从根本上解决了核医学图像解剖结构不清楚的缺陷,同时又采用CT图像对核医学图像进行全能量衰减校正,使核医学图像真正达到定量的目的并且提高诊断的准确性,实现了功能图像和解剖图像信息的互补。
在1998~2001年间,在这台原型机上做了300余例肿瘤病人,并获得很好的效果。这一工作还获得一系列的荣誉:其中一幅图像被评为1999年美国核医学年会最佳图像。[
3成像原理编辑
PET的基本原理
PET/ቤተ መጻሕፍቲ ባይዱT
PET其全称是:正电子发射型计算机断层扫描显像仪(positron emission tomography,简称PET)由探头、数据处理系统、图像显示及检查床组成。PET使用正电子示踪剂,核素衰变过程中正电子从原子核内放出后很快与自由电子碰撞湮灭,转化成一对方向相反、能量为511 keV的γ光子。在这光子飞行方向上对置一对探测器,便可以几乎在同时接受到这两个光子,并可推定正电子发射点在两探头间连线上,通过环绕360°排列的多组配对探头,得到探头对连线上的一维信息,将信号向中心点反投射并加以适当的数学处理,便可形成断层示踪剂分布图像。凡代谢率高的组织或病变,在PET上呈明确的高代谢亮信号,凡代谢率低的组织或病变在PET上呈低代谢暗信号。
PETCT简介简版

PET/CT简介Contents1.概述 (2)1.1 PET、CT、PET/CT概念 (2)1.2 PET/CT技术发展和应用过程简述 (3)2.PET原理及结构 (4)2.1 PET原理 (4)2.2 PET结构 (6)3.CT原理及结构 (7)3.1 CT原理 (7)3.2 CT结构 (8)4.PET/CT原理及结构 (9)5.PET/CT软件结构及功能 (12)6.PET/CT操作过程概述 (14)6.1 PET/CT扫描操作基本采集概述 (15)6.2 PET、CT图像融合操作概述 (15)7.PET/CT临床应用检查流程概述 (15)8.PET/CT图像质量注意事项 (18)9.PET/CT市场情况简介 (18)9.1 PET/CT市场保有量统计 (18)9.2 PET/CT市场保有量国别结构统计 (19)9.3 PET/CT市场保有量品牌结构统计 (20)1.概述1.1 PET、CT、PET/CT概念PET是正电子发射计算机断层显像(Positron Emission computed Tomography)的英文缩写。
将标有带正电子化合物的放射性核素注射到受检者体内,让受检者在PET的有效视野范围内进行PET扫描,放射核素发射出的正电子与组织中的负电子结合发生湮灭辐射,产生两个能量相等(511 KeV)、方向相反的γ光子。
两个光子被两个探测器探测到并判断为一个符合事件,探测系统探测到大量的符合事件,对数据进行分类后,得出不同符合线方向上的事件量,通过电子计算机处理,重建出人体内正电子核素聚集分布的断层图像。
CT是电子计算机X射线断层成像系统(X-Ray computed tomography)的英文简称。
用X射线发生器发射的 X射线对人体投射,经探测器测定透射人体后的X放射量,对数据进行分类后,得出不同透射方向上的放射量,通过电子计算机处理,重建出人体组织密度和成分分布的断层图像。
pet的显像原理和基本结构

pet的显像原理和基本结构
PET(正电子发射断层扫描)的显像原理基于探测正电子湮没事件的发生。
正电子是一种带正电荷的基本粒子,在PET中常用放射性核素标记的化合物作为显像剂,例如18F-FDG(氟脱氧葡萄糖)。
当这些显像剂被引入体内后,它们参与人体组织器官在生理病理过程中的代谢活动,从而聚集分布。
当正电子湮没发生时,它会发射出两个方向相反、能量各为0.511MeV的光子。
这两个光子在PET中应用符合线路探测技术被探测到。
由于正电子湮没前的射程很短,仅为1~2mm,因此可以应用探测到的光子对体内发射正电子的放射性核素进行定位和定量。
PET的基本结构包括围绕病人成环形排列的探测器,通常包含数百对甚至数千对呈环形排列的探测器。
这些探测器可以从不同的方向采集到患者体内发射出来的成对光子,并应用计算机进行断层数据重建,从而获得放射性核素在体内空间分布的图像。
在临床应用中,通常利用移动患者的检查床并从环形探测器中通过进行全身断层显像,一般20min左右可以完成一次全身断层显像过程。
医学成像中的PET和SPECT技术原理

医学成像中的PET和SPECT技术原理医学成像是现代医疗领域不可或缺的一部分,它可以帮助医生了解患者的疾病状况,做出正确的诊断和治疗方案。
PET和SPECT技术是两种常见的分子影像技术,本文将详细介绍它们的原理及应用。
PET技术(正电子发射断层扫描技术)PET技术是一种分子影像技术,其原理基于放射性同位素的物理性质。
在PET过程中,放射性示踪剂被注入到患者体内,示踪剂会与特定的生物分子结合。
然后,PET扫描器会检测到这些示踪剂放出的正电子,从而生成3D图像。
PET扫描器由环形探测器和计算机控制系统组成。
环形探测器检测到正电子发出的伽马射线,并记录下它们的位置信息。
计算机根据这些信息生成3D图像,用来显示患者体内放射性同位素的分布情况。
PET技术广泛应用于肿瘤学、神经学、心血管学和药理学等领域。
在肿瘤学中,PET技术被用来检测和定位肿瘤,评估治疗的效果。
在神经学中,PET技术被用来研究大脑的生理和病理过程。
在心血管学中,PET技术被用来评估心脏的功能和代谢情况。
在药理学中,PET技术被用来研究新药分子的药代动力学。
SPECT技术(单光子发射计算机断层扫描技术)SPECT技术是另一种分子影像技术,其原理与PET类似。
在SPECT过程中,放射性示踪剂被注入到患者体内,示踪剂会与特定的生物分子结合。
然后,患者会被置于旋转的探测器上,探测器会记录下放射性示踪剂发出的光子,从而生成3D图像。
与PET技术不同的是,SPECT技术使用的是放射性同位素的伽马射线而不是正电子。
这意味着SPECT技术所使用的放射性同位素的选择范围更广,应用更为灵活。
SPECT技术广泛应用于心血管、神经和骨骼系统疾病的诊断中。
在心血管学中,SPECT技术被用来评估心肌缺血和心肌梗死。
在神经学中,SPECT技术被用来诊断帕金森病和癫痫等疾病。
在骨骼系统中,SPECT技术被用来评估骨折、骨转移和骨肿瘤等疾病。
总结PET和SPECT技术是两种常见的分子影像技术,它们在医疗领域中应用广泛。
petct的原理和应用

PET/CT的原理和应用1. 基本介绍正电子发射断层扫描技术(Positron Emission Tomography,简称PET)结合计算机断层扫描技术(Computed Tomography,简称CT),即PET/CT,是一种医学成像技术。
它通过追踪和测量人体内放射性示踪剂在组织中的分布和代谢,提供精确的生物功能信息和解剖结构信息的结合,为医生提供病灶定位、细胞功能评估和治疗监测等方面的重要信息。
2. PET原理PET技术基于正电子放射性同位素的原理。
正电子是一种带正电荷的基本粒子,它和电子具有相同质量,但电荷相反。
在核子反应中,由于质子数目增加或中子数目减少,原子核内的质子与中子的比例变化,使原子核变得不稳定。
当核子组合得不稳定时,核子可以通过放射性衰变来恢复稳定状态。
正电子放射性同位素是由原子核产生的。
放射性示踪剂中的正电子放射性同位素会不稳定地衰变,释放出正电子。
这些正电子与体内的电子相撞,互相湮灭,产生能量释放,释放能量的过程称为正电子湮灭。
湮灭的能量以两个相对的方向以及同一方向的两个伽马光子的形式释放出来。
PET设备会检测这两个相对方向的伽马光子,进而计算出它们的发射位置。
通过多次记录在各个位置的伽马光子对的数据,可以恢复出体内放射性示踪剂的分布情况。
3. CT原理CT技术是一种断层扫描成像技术,通过旋转的X射线束在人体内部进行扫描。
CT技术的原理是不同组织对X射线的吸收程度不同,通过测量射线通过人体各部位的吸收程度,可以获得人体内部不同组织的密度分布信息。
CT扫描过程中,X射线管和探测器围绕人体旋转一圈,记录每个角度的X射线透过人体时的吸收情况。
计算机会根据这些数据重建出人体内部的横截面图像。
多个横截面图像组合在一起,可以得到人体的三维图像。
4. PET/CT的应用PET/CT技术在临床应用中具有广泛的应用价值。
•肿瘤诊断和分期:PET/CT技术可以提供非常高的灵敏度和特异性,可以检测癌症病灶及其转移,辅助肿瘤的分期和评估治疗效果。
PET-CT 正电子发射计算机断层显像

PET-CTPET全称为正电子发射计算机断层显像(positron emission tomography PET),是反映病变的基因、分子、代谢及功能状态的显像设备。
它是利用正电子核素标记葡萄糖等人体代谢物作为显像剂,通过病灶对显像剂的摄取来反映其代谢变化,从而为临床提供疾病的生物代谢信息。
PET采用正电子核素作为示踪剂,通过病灶部位对示踪剂的摄取了解病灶功能代谢状态,可以宏观的显示全身各脏器功能,代谢等病理生理特征,更容易发现病灶。
CT可以精确定位病灶及显示病灶细微结构变化;PET/CT融合图像可以全面发现病灶,精确定位及判断病灶良恶性,故能早期,快速,准确,全面发现病灶。
作用PET的独特作用是以代谢显像和定量分析为基础,应用组成人体主要元素的短命核素如11C、13N、15O、18F等正电子核素为示踪剂,不仅可快速获得多层面断层影象、三维定量结果以及三维全身扫描,而且还可以从分子水平动态观察到代谢物或药物在人体内的生理生化变化,用以研究人体生理、生化、化学递质、受体乃至基因改变。
近年来,PET在诊断和指导治疗肿瘤、冠心病和脑部疾病等方面均已显示出独特的优越性。
原理一、PET显像的基本原理PET是英文Positron Emission Tomography的缩写。
其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。
让受检者在PET的有效视野范围内进行PET显像。
放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。
产生两个能量相等(511 KeV)、方向相反的γ光子。
由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。
即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正电子发射断层扫描技术
PET
●正电子发射断层成像(positron emission tomography,PET)
是核医学的一项技术,利用人体生命元素诸如18F、11C、15O、13N等正电子核素标记的药物,从体外无创、定量、动态地观察这些物质进入人体后随时间变化的生理、生化变化。
放射性药物在病人体内释出讯号,而被体外的PET扫瞄仪所接收,继而形成影像,可显现出器官或组织(如肿瘤)的化学变化,指出某部位的新陈代谢异于常态的程度。
●正电子(e+;又称β+粒子)
是与电子(负电子)相似的一种带电粒
子。
正电子带一个正电荷,有一定质量和
能量。
和物质中的自由电子(e-)结合,
正负电荷抵消,两个电子的静止质量转化
为2个能量相等(511keV)、方向相反的γ
光子而自身消失,即湮没辐射
( annihilation )。
●正电子的产生
正电子放射性核素通常为富质子的核
素,它们衰变时会发射正电子。
原子核中的
质子释放正电子和中微子并衰变为中子:
P n + β+
+ ν
正电子在人体组织内行进1-3mm后发生湮灭,产生互成180度的511 keV 的伽玛光子。
●PET的数据采集
正电子湮灭产生的γ光子同时击中探测器环上对称位置上的两个探测器。
每个探测器接收到γ光子后产生一个定时脉冲,这些定时脉冲分别输入符合线路进行符合甄别,挑选真符合事件
符合线路设置了一个时间常数很小的时间窗(通常≤15ns),同时落入时间窗的定时脉冲被认为是同一个正电子湮灭事件中产生的γ光子对,从而被符合电路记录。
排除了很多散射光子的进入。
●PET常用的正电子放射性核素选择
人体组织的基本元素
易于标记各种生命所必需的化合物及其代谢产物而不改变它们的生物活性,参与新陈代谢过程;
半衰期比较短
可给予较大剂量,提高了影像的对比度和空间分辨率;
来源
主要是通过医用回旋加速器得到,不便于长途运输,故一般都在医院内生产。
由于C 、N 、O 是人体组成的基本元素,而F 的生理行为类似于H ,故应用11C 、13N 、15O 、18F 等正电子核素标记人体的生理物质如糖、氨基酸和脂肪,可在不影响内环境平衡的生理条件下,获得某一正常组织或病灶的放射性分布(形态显示)、放射性标记药物浓集速率、局部葡萄糖氨基酸和脂肪代谢、血流灌注、受体的亲和常数、氧利用率以及其他许多活体生理参数等。
● 18F 标记的PET 药物
正电子核素
18F可通过取代有机化合物分子中的羟基、硝基或氢原子,实现药物的18F标记。
核素半衰期
18F 1.87 h 11C 20.4 min 13N 10 min 15O 122.5 s
• 18F-氟代脱氧葡萄糖 • 18F-硝基咪唑丙醇 • 18F-胸腺嘧啶核苷 • 18F-乙基胆碱 • 18F-L-多巴
18F-氟代脱氧葡萄糖
葡萄糖2位的羟基被放射性同位素18F取代。
是葡萄糖类似物,可通过葡萄糖载体蛋白运输到细胞内部,被己糖激酶磷酸化,但之后的代谢过程因为毕竟还是和葡萄糖有区别,没法继续发生转化,所以通过磷酸化物的形式滞留在细胞内。
大脑、心脏,肿瘤这样非常消耗葡萄糖的部位对18F-FDG的摄取比其他地方多,18F-FDG的磷酸化物的滞留增加非常明显,衰变时产生的γ射线被PET扫描仪记录下来,可对癌细胞准确定位。
18
F衰变之后,转变为无害、非放射性的重氧;O19从环境当中获取一个H+之后,FDG的衰变产物就变成了葡萄糖-6-磷酸,可按照普通葡萄糖的方式进行代谢。
●PET影像
PET/CT 联用
18F-FDG PET 正常影像
肺鳞状细胞癌
PET
CT PET CT PET/CT。