信号与线性系统试题库3
东南大学信号与系统试题含答案
东 南 大 学 考 试 卷(A 、B 卷)(答案附后)课程名称 信号与线性系统 考试学期 03-04-3得分适用专业 四系,十一系考试形式闭卷考试时间长度 120分钟一、简单计算题(每题8分):1、 已知某连续信号()f t 的傅里叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进行取样得到离散时间序列()f k ,序列()f k 的Z 变换。
2、 求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。
3、 已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。
4、 已知某连续系统的特征多项式为:269111063)(234567+++++++=s s s s s s s s D试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的根各有几个?5、 已知某连续时间系统的系统函数为:3232642()21s s s H s s s s +++=+++。
试给出该系统的状态方程。
6、 求出下面框图所示离散时间系统的系统函数。
)(k二、(12分)已知系统框图如图(a ),输入信号e(t)的时域波形如图(b ),子系统h(t)的冲激响应波形如图(c)所示,信号()f t 的频谱为()jn n F j eπωω+∞=-∞=∑。
图(a)y(t))(t fe(t)图(b)h(t)图(c)试:1) 分别画出)(t f 的频谱图和时域波形;2) 求输出响应y(t)并画出时域波形。
3) 子系统h(t)是否是物理可实现的?为什么?请叙述理由;三(12分)、已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5.0)1(-=e y 。
分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。
L=2HC=1F+_四(12分)、已知某离散系统的差分方程为)1()()1(3)2(2+=++-+k e k y k y k y 其初始状态为6)2(,2)1(-=--=-zi zi y y ,激励)()(k k e ε=;求:1) 零输入响应)(k y zi 、零状态响应)(k y zs 及全响应)(k y ;2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。
信号与线性系统分析-(吴大正-第四版)第三章习题答案
第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。
3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。
1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。
(a)(c)3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。
3.14、求图所示系统的单位序列响应和阶跃响应。
3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。
3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。
3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。
(提示:利用卷积和的结合律和交换律,可以简化运算。
)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。
信号与线性系统分析试题及答案(10套)
信号与线性系统分析试题及答案(10套)标准答案(⼀)⼀、填空题(每空1分,共30分)1、⽆线电通信中,信号是以电磁波形式发射出去的。
它的调制⽅式有调幅、调频、调相。
2、针对不同的调制⽅式有三种解调⽅式,分别是检波、鉴频、和鉴相。
3、在单调谐放⼤器中,矩形系数越接近于1、其选择性越好;在单调谐的多级放⼤器中,级数越多,通频带越窄、(宽或窄),其矩形系数越(⼤或⼩)⼩。
4、调幅波的表达式为:uAM(t)= 20(1 +0.2COS100πt)COS107πt(V);调幅波的振幅最⼤值为24V,调幅度Ma为20℅,带宽fBW为100Hz,载波fc为5*106Hz。
5、在⽆线电技术中,⼀个信号的表⽰⽅法有三种,分别是数学表达式、波形、频谱。
6、调频电路有直接调频、间接调频两种⽅式。
7、检波有同步、和⾮同步检波两种形式。
8、反馈式正弦波振荡器按照选频⽹络的不同,可分为LC、RC、⽯英晶振等三种。
9、变频器可由混频器、和带通滤波器两部分组成。
10、列出三个常见的频谱搬移电路调幅、检波、变频。
11、⽤模拟乘法器⾮线性器件实现调幅最为理想。
⼆、选择题(每⼩题2分、共20分)将⼀个正确选项前的字母填在括号内1、下列哪种信号携带有调制信号的信息(C )A、载波信号B、本振信号C、已调波信号2、⼩信号谐振放⼤器的主要技术指标不包含(B )A、谐振电压增益B、失真系数C、通频带D、选择性3、丙类谐振功放其谐振回路调谐于( A )分量A、基波B、⼆次谐波C、其它⾼次谐波D、直流分量4、并联型⽯英晶振中,⽯英谐振器相当于(C )元件A、电容B、电阻C、电感D、短路线5、反馈式正弦波振荡器的起振条件为( B )A、|AF|=1,φA+φF= 2nπB、|AF| >1,φA+φF = 2nπC、|AF|>1,φA+φF ≠2nπD、|AF| =1,φA+φF ≠2nπ6、要实现集电极调制特性应使功放⼯作在(B )状态A、⽋压状态B、过压状态C、临界状态D、任意状态7、⾃动增益控制可简称为( B )A、MGCB、AGCC、AFCD、PLL8、利⽤⾮线性器件相乘作⽤来实现频率变换其有⽤项为( B )A、⼀次⽅项B、⼆次⽅项C、⾼次⽅项D、全部项9、如右图所⽰的电路是(D )A、普通调幅电路B、双边带调幅电路C、混频器D、同步检波器10、在⼤信号包络检波器中,由于检波电容放电时间过长⽽引起的失真是(B)A、频率失真B、惰性失真C、负峰切割失真D、截⽌失真三、判断题,对的打“√”,错的打“×”(每空1分,共10分)1、谐振放⼤器是采⽤谐振回路作负载的放⼤器。
信号与线性系统分析试卷(含答案11.04.28,09级期中考试试卷)
0
2
f1 (τ )
f 2 (−τ )
1
−1
2
3
0
1 τ
C
、信号 e
−2
−2( t −1)
ε (t − 1)
的频谱为( 、 −2e+ jω
−2
) 。
C
A
e 、 2+ jω
B
、 2e+ jω
− jω
D
、 −2e+ jω
−2
4
、若 f (t ) ↔ F ( jω ) ,则 f (at − b) 的傅里叶变换为(
5
分
1 + jω 0.5(0.5 + jω ) 0.25 0.25 = + = 0.5 + 1 + j 2ω 0.5 + jω 0.5 + jω 0.5 + jω
5
分
解法二:时域法
ic (t ) = C uc (t ) = duc (t ) dt
1 1 h(t ) = δ (t ) + e−0.5t u (t ) 2 4
5
2π 2π 1 2 2 1 2
、 Sa(ω + 4π ) * Sa(ω − 4π ) C、 Sa (ω + 4π ) 注: f (t ) = g (t ) ↔ 2Sa(ω )
A
2 1 2
、 Sa (ω − 4π ) D、 Sa (ω + 4π ) + Sa (ω − 4π )
B
2
f 2 (t ) = cos(4π t ) ↔ π [δ (ω + 4π ) + δ (ω − 4π )]
c d
− jωt d
信号与线性系统考试样题
一、填充题(每空1分,共25分)1、信号可分为能量信号和功率信号,能量信号的能量为____________,平均功率为___________;功率信号的平均功率为___________,能量为___________。
2、同时满足___________和___________两个性质的系统称线性系统。
3、已知离散时间系统的特征根v 1,v 2(二阶)为实根,3v j v v e φ=⋅,4v j v v e φ-=⋅,则该系统为______阶的,其零输入响应的一般形式为y zi (k)=_______________________________。
4、计算下列各式的值(其中ω0为常数):022[(1)(1)]__________j t e t t dt ωδδ-++-=⎰;[()]()t e t t εδ-'*=____________________;=-⋅)1()2sin(k k δπ__________;=-*)1()(k k εε__________;5、设f(t)是周期为T 的周期信号,其傅里叶级数展开式可表示为:∑∞=Ω+Ω+=10)]sin()cos([2)(n n n t n b t n a a t f ,则其中20a 称信号的__________分量;Ω=__________,称为_______________;如果b n =0,则f(t)为__________函数。
6、已知f(t)的频谱函数为)()()(ωφωωj e j F j F ⋅=,若)12()(1-=t f t f 则f 1(t)的频谱函数F 1(j ω)的模=)(1ωj F __________,相位=)(1ωφ__________。
7、对于因果稳定的线性非时变连续系统,其系统函数)(s H 的极点在S 平面上的位置应满足______________;对于因果稳定的线性非移变离散系统,其系统函数)(z H 的极点在Z 平面上的位置应满足______________。
专升本《信号与线性系统》-试卷-答案
专升本《信号与线性系统》一、(共60题,共156分)1. 能量有限信号是指总能量为有限值而平均功率为____的信号。
(2分).标准答案:1. 零;2. 系统响应中随时间增长而趋于稳定的部分称为________________分量。
(2分).标准答案:1. 稳态响应;3. 单位函数响应h(k)是指离散时间系统对____________________________________________的零状态响应。
(2分).标准答案:1. 单位函数(或δ(k));4. 若周期函数f (t)满足,则称其为________函数。
(2分).标准答案:1. 奇谐;5. h(t)是连续因果LTI系统的冲激响应,则系统稳定的充要条件是________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________________。
(2分).标准答案:1. ;6. ____。
(2分).标准答案:1. 0;7. 时间函数中变化较____的信号必定具有较宽的频带。
(2分).标准答案:1. 快;8. 信号的最小抽样频率为________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________________ Hz。
信号和系统试题及答案
信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。
答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。
答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。
答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。
答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。
答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。
答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。
信号与系统试题三及答案
A 卷 第(1)页,共(13)页模拟试题三及答案考场号 座位号 班级 姓名 学号题号 一 二 三 四 五 六 总分 得分一、(共25分,每小题5分)基本计算题1. 试应用冲激函数的性质,求表示式2()t t dt δ∞-∞⎰的值。
2.一个线性时不变系统,在激励)(1t e 作用下的响应为)(1t r ,激励)(2t e 作用下的响应为)(2t r ,试求在激励1122()()D e t D e t +下系统的响应(假定起始时刻系统无储能)。
3.有一LTI 系统,当激励)()(1t u t x =时,响应21()3()t y t e u t -=,试求当激励2()()x t t δ=时,响应)(2t y 的表示式(假定起始时刻系统无储能)。
4.试绘出时间函数)]1()([--t u t u t 的波形图。
A 卷 第(2)页,共(13)页5.试求函数2(1)()t e u t --的单边拉氏变换。
二、(15分,每问5分)已知某系统的系统函数为23()710s H s s s +=++,试求(1)该系统函数的零极点;(2)判断该系统的稳定性;(3)该系统是否为无失真传输系统,请写出判断过程。
三、(10分)已知周期信号f (t )的波形如下图所示,求f (t )的傅里叶变换F (ω)。
1()t fA 卷 第(3)页,共(13)页四、(10分)信号f (t )频谱图()F ω如图所示,请粗略画出:(1)0()cos()f t t ω的频谱图;(2)0()j t f t e ω的频谱图(注明频谱的边界频率)。
A 卷 第(4)页,共(13)页五、(25分)已知)(6)(2)(2)(3)(22t e t e dt dt f t f dt d t f dtd +=++,且)(2)(t u te =,2)0(=-f ,'(0)3f -=。
试求:(1)系统的零输入响应、零状态响应;(2)写出系()F ω1ω-0ω1ω-2ω-2ω1ω0ωA 卷 第(5)页,共(13)页统函数,并作系统函数的零极点分布图;(3)判断该系统是否为全通系统。
信号与系统信号与线性系统期末考试试卷
信号与系统信号与线性系统期末考试试卷1、已知某连续信号()f t 的傅⾥叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进⾏取样得到离散时间序列()f k ,序列()f k 的Z 变换。
解法⼀:f(t)的拉普拉斯变换为2111)2)(1(1321)(2+-+=++=++=s s s s ss s F ,2111)(Re )(--===---=-=?-=∑∑e z z e z z e z z K e z z s F s z F ni T s i s s ni sT i i解法⼆:f(t)=L -1{F(jw)}=(e -t - e -2t)ε(t)f(k)= (e -k - e-2k)ε(k)=)())()((21k e ekk ε---F(z)=Z[f(k)]= 21-----ez zez z2、求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε??=+的卷积和。
解:f 1(k)={1,2,1}=δ(k)+2δ(k -1)+ δ(k -2)f 1(k)* f 2(k)= f 2(k)+ 2f 2(k -1)+ f 2(k -2)3、已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。
解:5.014.01)(+-+=z z z F ,两个单阶极点为-0.4、-0.5 当收敛域为|z|>0.5时,f(k)=(( -0.4)k -1-( -0.5)k -1)ε(k -1)当收敛域为0.4<|z|<0.5时,f(k)= ( -0.4)k -1ε(k -1)+( -0.5)k -1ε( -k)当收敛域为|z|<0.4时,f(k)= - ( -0.4)k -1ε(-k)+( -0.5)k -1ε( -k)点评:此题应对收敛域分别讨论,很多学⽣只写出第⼀步答案,即只考虑单边序列。
信号与线性系统_华中科技大学中国大学mooc课后章节答案期末考试题库2023年
信号与线性系统_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.设【图片】,若【图片】,则【图片】。
参考答案:错误2.已知某信号【图片】的傅里叶变换为【图片】,则该信号的导数【图片】的拉普拉斯变换及其收敛域为()。
参考答案:2,全S平面3.单位脉冲响应为【图片】的LTI系统是非因果、不稳定的系统。
参考答案:错误4.已知某系统的系统函数H(s),唯一决定该系统单位冲激响应h(t)函数形式的是()。
参考答案:H(s)的极点5.双边序列【图片】的傅里叶变换为【图片】。
参考答案:错误6.已知某系统的频域系统函数为【图片】其中K和【图片】均为正常数,则该系统是一个()。
参考答案:理想带通滤波器7.设离散信号【图片】的傅里叶变换为【图片】,则【图片】=()。
参考答案:48.已知某因果信号的拉普拉斯变换【图片】,则其初值【图片】等于()。
参考答案:-19.某连续LTI系统的阶跃响应为【图片】,则系统()。
参考答案:一定是稳定的10.已知【图片】,【图片】,且【图片】,则y[1] = ( )。
参考答案:11.为减少欠采样的影响,工程实际中可先对信号进行低通滤波处理,低通滤波器的截止频率应该低于采样频率。
参考答案:错误12.信号f (t) 如下图所示,则其表达式为()。
(注:r(t)表示单位斜坡信号)【图片】参考答案:(t − 1)u(t)13.若某因果序列【图片】的Z变换【图片】,则【图片】的值为()。
参考答案:214.若离散时间信号x[n]如图1所示,则x[2n − 4]如图2所示。
【图片】参考答案:正确15.单位冲激响应为【图片】的LTI系统是()。
参考答案:有记忆的、稳定的16.具有单位脉冲响应【图片】的LTI系统是()。
参考答案:因果的、稳定的17.离散周期信号x[n]的傅里叶级数表示为【图片】,则x[n]是()。
参考答案:纯虚的奇信号18.某连续时间LTI系统的频域系统函数为【图片】,若激励信号【图片】,则响应中基波和二次谐波分量的幅度之比为()。
《信号与线性系统》试题与答案
综合测试(三)一、选择题(本题共6小题,每小题3分,共18分)1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足()A. B.C. D.2、序列和等于()A. 1B.C. D.3、连续时间信号的单边拉普拉斯变换为()A. B.C. D.4、下列各式中正确的是()A. B.C.D.5、单边Z变换对应的原时间序列为()A.B.C.D.6.请指出是下面哪一种运算的结果?()A.左移6 B. 右移6C.左移2 D. 右移2三、描述某系统的微分方程为y”(t) + 4y’(t) + 3y(t) = f(t)求当f(t) = 2e-2t,t≥0;y(0)=2,y’(0)= -1时的解;(15分)解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。
齐次解为y h(t) = C1e -t + C2e -3t当f(t) = 2e–2 t时,其特解可设为y p(t) = Pe -2t将其代入微分方程得P*4*e -2t + 4(–2 Pe-2t) + 3Pe-t = 2e-2t解得P=2于是特解为y p(t) =2e-t全解为:y(t) = y h(t) + y p(t) = C1e-t + C2e-3t + 2e-2t其中待定常数C1,C2由初始条件确定。
y(0) = C1+C2+ 2 = 2,y’(0) = –2C1–3C2–1= –1解得C1 = 1.5 ,C2 = –1.5最后得全解y(t) = 1.5e–t –1.5e –3t +2 e –2 t, t≥0三、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f(t) 求当f(t) = 2e -t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分)解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。
信号与线性系统分析试题及答案
2. (7 分)
F ( z) 5z z 3z 2
2
;
F ( z) 5 5 5 ; z ( z 1)( z 2) z 1 z 2
z 2, 为右边序列 f (k ) 5(2 n 1) (k )
四.
1.
(5 分) f (k ) 3,2,11,4,21,22,1,4
0
sin( 2t ) 1 sin( 2t ) 4 2t 4 2t 1 F ( j ) 2 g 4 ( ) 0.5 g 4 ( ) 4 f (t )
x(t ) f (t ) s (t ) X ( j )
五. 解: (16 分) (1)对原方程两边同时 Z 变换有:
9 . 已 知 离 散 系 统 函 数 H ( z) 性: 。
z2 ,试判断系统的稳定 z 0.7 z 0.1
2
第 1 页 共 5 页
czu 监制(盗版)
2
三. (14 分)
2s 2 6s 6 ① 已知 F ( s) 2 , Re[ s] 2 ,试求其拉氏逆变换 f(t); s 3s 2
f (t ) sin(2t ) , 2t s(t ) cos(1000t )
试求其输出信号 y(t),并画出 y(t)的频谱图。
第 3 页 共 5 页
czu 监制(盗版)
4
参考答案 一填空题(30 分,每小题 3 分) 2. 4. 5. 1 ; 1 ,0
j ' ( ) 1
2. ;
1
2007 年度第 I 学期
期末考试试卷
10 . 如 图 所 示 是 离 散 系 统 的 Z 域 框 图 , 该 系 统 的 系 统 函 数 H(z)=
信号与线性系统分析复习题及答案
信号与线性系统复习题单项选择题;1. 已知序列3()cos()5f k k π=为周期序列,其周期为 C A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 B图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 AA .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 AA . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 D A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 B A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 AA .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 C A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为 BA .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指 A A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为 A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 A . )(2)()(2)(''t f t f t y t y -=+B. )()(sin )('t f t ty t y =+C. )()]([)(2't f t y t y =+D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指 A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________;2.()(2)t e t t dt δ∞--∞++=⎰____________________________;3.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;4.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 5.函数()f t 的傅里叶变换存在的充分条件是________________________;6. 已知11()10.5X z z -=+(0.5)z >,则其逆变换()x n 的值是______________;7.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;8.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 9.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 10. 已知信号)(t f ,则其傅里叶变换的公式为______________; 11. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________; 12.()(2)t e t t dt δ∞--∞++=⎰____________________________;13.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;14.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 15.函数()f t 的傅里叶变换存在的充分条件是________________________;16. 已知11()10.5X z z-=+(0.5)z >,则其逆变换()x n 的值是______________; 17.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;18.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 19.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 20. 已知信号)(t f ,则其傅里叶变换的公式为______________; 21.)(63t e tε-的单边拉普拉斯变换为_________________________;22.=-⎰∞∞-dt t t t f )()(0δ ____________________________;23.)(5t δ的频谱函数为______________________;24.一个LTI 连续时间系统,当其初始状态为零,输入为单位阶跃函数所引起的响应称为__________响应; 25.序列)()21()(k k f kε=的z 变换为___________________________;26.时间和幅值均为______________的信号称为数字信号; 27.系统函数)6.0)(4.0()1()(+-+=z z z z z H 的极点是___________________________;28.LTI 系统的全响应可分为自由响应和__________________;29. 函数)(1t f 和)(2t f 的卷积积分运算=*)()(21t f t f _______________________; 30. 已知函数23)(+=s s F ,其拉普拉斯逆变换为____________________; 简答题.;1.简述根据数学模型的不同,系统常用的几种分类;2.简述稳定系统的概念及连续时间系统时域稳定的充分必要条件; 3.简述单边拉普拉斯变换及其收敛域的定义; 4.简述时域取样定理的内容; 5.简述系统的时不变性和时变性; 6.简述频域取样定理;7.简述-0时刻系统状态的含义;8. 简述信号拉普拉斯变换的终值定理;9.简述LTI 连续系统微分方程经典解的求解过程; 10.简述傅里叶变换的卷积定理;11.简述LTI 离散系统差分方程的经典解的求解过程;12.简述信号z 变换的终值定理;13.简述全通系统及全通函数的定义; 14.简述LTI 系统的特点; 15.简述信号的基本运算 计算题1.描述离散系统的差分方程为1)1(,0)1(9.0)(=-=--y k y k y ,利用z 变换的方法求解)(k y ; 2.描述某LTI 系统的微分方程为)(3)()(3)(4)(''''t f t f t y t y t y -=++ ,求其冲激响应)(t h ;3.给定微分方程 )(3)()(2)(3)(''''t f t f t y t y t y +=++,1)0(),()(==-y t t f ε,2)0('=-y ,求其零输入响应;4.已知某LTI 离散系统的差分方程为),()1(2)(k f k y k y =--)(2)(k k f ε=, y-1=-1,求其零状态响应;5.当输入)()(k k f ε=时,某LTI 离散系统的零状态响应为)(])5.1()5.0(2[)(k k y k k zs ε-+-=,求其系统函数;6.描述某LTI 系统的方程为),(3)()(3)(4)(''''t f t f t y t y t y -=++求其冲激响应)(t h ;7.描述离散系统的差分方程为 )1()(2)2(43)1()(--=---+k f k f k y k y k y ,,求系统函数和零、极点; 8. 已知系统的微分方程为)()(3)(4)('''t f t y t y t y =++,1)0()0('==--y y )()(t t f ε=,求其零状态响应;9.用z 变换法求解方程2)1(),(1.0)1(9.0)(=-=--y k k y k y ε的全解10.已知描述某系统的微分方程)(4)()(6)(5)(''''t f t f t y t y t y +=++,求该系统的频率响应).(jw H11.已知某LTI 系统的阶跃响应)()1()(2t e t g tε--=,欲使系统的零状态响应)()1()(22t te e t y t t zs ε--+-=,求系统的输入信号)(t f ;12.利用傅里叶变换的延时和线性性质门函数的频谱可利用已知结果,求解下列信号的频谱函数;13.若描述某系统的微分方程和初始状态为 )(4)(2)(4)(5)(''''t f t f t y t y t y -=++5)0(,1)0('==--y y ,求系统的零输入响应;14.描述离散系统的差分方程为 )2()()2(21)1()(--=-+--k f k f k y k y k y , 求系统函数和零、极点;15.若描述某系统的差分方程为)()2(2)1(3)(k k y k y k y ε=-+-+,已知初始条件5.0)2(,0)1(=-=-y y ,利用z 变换法,求方程的全解;信号与线性系统分析复习题答案单项选择题1. C2.B3.A4.A5.D6.B 7 .A 8.C 9.B 10.A 11. C 12.A 13. D 14.B 15.B 16. D17. A 18.C 19. D 20.C 21.B 22.C 23. B 24.A 25.B 26.C 27. D 28.C 29. B 30. B填空题1. 22. 22e - 3. 单位阶跃响应/阶跃响应 4. )(223t et ε- 5.()f t dt ∞-∞<∞⎰6.)()5.0(k k ε- 7.128. 0()st F s e - 9. 全通系统 10. dt e t f jw F jwt⎰∞∞--=)()( 11.卷积和 12. 1 13.)()(d t t kf t y -= 14. )()()()(3121t f t f t f t f *+* 15.齐次解和特解16. 系统函数分子 17. 2 18.63-z z 19.)(2w πδ 20.齐次 21.36+s 22.)(0t f - 23. 5 24. 单位阶跃响应 25. 122-z z26. 离散 27. 0.4,-0.6 28. 强迫响应 29.τττd t f f )()(21-⎰∞∞- 30. )(32t e t ε-简答题1.答:1加法运算,信号1()f ⋅与 2()f ⋅之和是指同一瞬时两信号之值对应相加所构成的“和信号”,即12()()()f f f ⋅=⋅+⋅2乘法运算,信号1()f ⋅与 2()f ⋅之积是指同一瞬时两信号之值对应相乘所构成的“积信号”,即12()()()f f f ⋅=⋅⋅3反转运算:将信号()f t 或()f k 中的自变量t 或k 换为t -或k -,其几何含义是将信号()f ⋅以纵坐标为轴反转;4平移运算:对于连续信号()f t ,若有常数00t >,延时信号0()f t t -是将原信号沿t 轴正方向平移0t 时间,而0()f t t +是将原信号沿t 轴负方向平移0t 时间;对于离散信号()f k ,若有整常数00k >,延时信号0()f k k -是将原序列沿k 轴正方向平移0k 单位,而0()f k k +是将原序列沿k 轴负方向平移0k 单位; 5尺度变换:将信号横坐标的尺寸展宽或压缩,如信号()f t 变换为()f at ,若1a >,则信号()f at 将原信号()f t 以原点为基准,将横轴压缩到原来的1a倍,若01a <<,则()f at 表示将()f t 沿横轴展宽至1a 倍2.答:根据数学模型的不同,系统可分为4种类型. 即时系统与动态系统; 连续系统与离散系统; 线性系统与非线性系统 时变系统与时不变系统3.答:1一个系统连续的或离散的如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统;2连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰4.信号的单边拉普拉斯正变换为:dt e t f s F st ⎰∞-=)()(逆变换为:ds e s F j t f jwjwst ⎰+-=δδπ)(21)(收敛域为:在s 平面上,能使0)(lim =-∞→tt et f δ满足和成立的δ的取值范围或区域,称为)(t f 或)(s F 的收敛域;5.答:一个频谱受限的信号)(t f ,如果频谱只占据m m w w ~-的范围,则信号)(t f 可以用等间隔的抽样值唯一表示;而抽样间隔必须不大于mf 21m m f w π2=,或者说,最低抽样频率为m f 2; 6.答:如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变或非时变系统或常参量系统,否则称为时变系统; 描述线性时不变系统的数学模型是常系数线性微分方程或差分方程,而描述线性时变系统的数学模型是变系数线性微分或差分方程;7.答:一个在时域区间),(m m t t -以外为零的有限时间信号)(t f 的频谱函数)(jw F ,可唯一地由其在均匀间隔)21(m s s t f f <上的样点值)(s jnw F 确定;)()()(ππn wt Sa t n j F jw F m n m -=∑∞-∞=,sm f t 21=8.答:在系统分析中,一般认为输入)(t f 是在0=t 接入系统的;在-=0t 时,激励尚未接入,因而响应及其导数在该时刻的值)0()(-j y与激励无关,它们为求得0>t 时的响应)(t y 提供了以往的历史的全部信息,故-=0t 时刻的值为初始状态;9.答:若)(t f 及其导数dt t df )(可以进行拉氏变换,)(t f 的变换式为)(s F ,而且)(lim t f t ∞→存在,则信号)(t f 的终值为)(lim )(0lim s sF t f s t →∞→=;终值定理的条件是:仅当)(s sF 在s 平面的虚轴上及其右边都为解析时原点除外,终值定理才可用;10.答:1列写特征方程,根据特征方程得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解函数的形式,将特解代入原微分方程,求出待定系数得到特解的具体值. 3 得到微分方程全解的表达式, 代入初值,求出待定系数 4 得到微分方程的全解11.答:1时域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()()()(2121ωωj F j F t f t f ↔* 2 频域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()(21)()(2121ωωπj F j F t f t f *↔12..答:1列写特征方程,得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解的形式,将特解代入原差分方程,求出待定系数, 得到特解的具体值. 3 得到差分方程全解的表达式, 代入初始条件,求出待定系数, 4 得到差分方程的全解 13.答:终值定理适用于右边序列,可以由象函数直接求得序列的终值,而不必求得原序列;如果序列在M k < 时,0)(=k f ,设∞<<↔z z F k f α),()(且10<≤α,则序列的终值为)(1lim)(lim )(1z F zz k f f z k -==∞→∞→或写为)()1(lim )(1z F z f z -=∞→上式中是取1→z 的极限,因此终值定理要求1=z 在收敛域内10<≤α,这时)(lim k f k ∞→存在;14.答 全通系统是指如果系统的幅频响应)(jw H 对所有的w 均为常数,则该系统为全通系统,其相应的系统函数称为全通函数;凡极点位于左半开平面,零点位于右半开平面,且所有的零点与极点为一一镜像对称于jw 轴的系统函数即为全通函数;15.答:当系统的输入激励增大α 倍时,由其产生的响应也增大α倍,则称该系统是齐次的或均匀的;若两个激励之和的响应等于各个激励所引起的响应之和,则称该系统是可加的;如果系统既满足齐次性又满足可加性,则称系统是线性的;如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变系统或常参量系统;同时满足线性和时不变的系统就称为线性时不变系统LTI 系统;描述线性时不变系统的数学模型是常系数线性微分差分方程;线性时不变系统还具有微分特性;计算题1解:令)()(z Y k y ↔,对差分方程取z 变换,得 0)]1()([9.0)(1=-+--y z Y z z Y将1)1(=-y 代入上式并整理,可得 9.09.09.019.0)(1-=-=-z zz z Y 取逆变换得 )()9.0()(1k k y k ε+=2.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++于是系统函数为343)()()(2++-==s s s s F s Y s H zs )()23()(3t e e t h t t ε---=3.系统的特征方程为0232=++λλ特征根为:1,221-=-=λλ 所以,零输入响应为t zi tzi zi e C e C t y --+=221)(所以:22)0(1)0(21'21=--==+=++zi zi zi zi zi zi C C y C C y故:4321=-=zi zi C C所以:t t zi e e t y --+-=43)(24.解:零状态响应满足:2)1(2)(=--k y k y zs zs ,且0)1(=-zs y 该方程的齐次解为:kzs C 2设特解为p,将特解代入原方程有:22=-p p从而解得2)(-=k y p所以22)(-=k zs zs C k y 将2)0(=zs y 代入上式,可解得4=zs C故,)()224()(k k y k zs ε-⋅=5.解:1)(-=z z z F )5.1)(5.0)(1()5.02()(2+--+=z z z z z z Y zs 75.05.02)()()(22-++==z z z z F z Y z H zs 6.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++ 系统函数为:3312)()()(+++-==s s s F s Y s H zs 故冲激响应为)()23()(3t e e t h t t ε---=7. 解:对差分方程取z 变换,设初始状态为零;则:)()2()()431(121z F z z Y z z ----=-+于是系统函数)21)(23()12()()()(-+-==z z z z z F z Y z H 其零点为21,021==ζζ, 极点为21.2321=-=p p 8. 解: 方程的齐次解为:t zs t zs e C e C 321--+方程的特解为:31 于是:31)(321++=--t zs t zs zs e C e C t y 031)0(21=++=+zs zs zs C C y 03)0(21'=--=+zs zs zs C C y得61,2121=-=zs zs C C 于是:)()312161()(3t e et y t t zs ε+-=--9. 解:令)()(z Y k y ↔,对差分方程取z 变换,得11.0)]1()([9.0)(1-=-+--z z y z Y z z Y 将2)1(=-y 代入上式,并整理得 )9.0)(1()8.19.1()(---=z z z z z Y )(])9.0(1[)(1k k y k ε++=10.解:令)()(),()(jw Y t y jw F t f ↔↔,对方程取傅里叶变换,得 )(4)()()(6)()(5)()(2jw F jw F jw jw Y jw Y jw jw Y jw +=++ 654)()()(2++-+==jw w jw jw F jw Y jw H 11. 解:)(2)()(2t e dtt dg t h t ε-==22)(+=s s H 2)2(43)(++=s s s s Y zs 2211)()()(++==s s s H s Y s F zs )()211()(2t e t f t ε-+= 12 解:)(t f 可看作两个时移后的门函数的叠合;)2()2()(22-++=t g t g t f因为)(2)(2w Sa t g ↔所以由延时性和线性性有: )2cos()(4)(2)(2)(22w w Sa e w Sa e w Sa jw F w j w j =+=- 13.解:特征方程为:0452=++λλ 4,121-=-=λλt zi t zi zi e C e C t y 421)(--+=t zi t zi zi e C e C t y 421'4)(----=令,0=t 将初始条件代入上式中,得1)0(21=+=+zi zi zi C C y 54)0(21'=--=+zi zi zi C C y 可得: 2,321-==zi zi C C0,23)(4≥-+=--t e e t y t t zi14.解:对差分方程取z 变换,设初始状态为零,则 )()1()()211(221z F z z Y z z ----=+- 211)()()(22+--==z z z z F z Y z H 其零点1,121-==ζζ;极点21212,1j p ±= 15. 解:令)()(z Y k y ↔,对差分方程取z 变换,得112111)]2()1()((2)]1()([3)(----+=-+-++-++zy y z z Y z y z Y z z Y)1)(23()(22-++=z z z z z Y )(])2(32)1(2161[)(k k y k k ε---+=。
信号与系统考试题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间 120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t) (8分) (3).f(k)=1,k=0,1,2,3,h(k)=1,k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y ’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
《信号与线性系统》试题与答案
C. D。
97.离散时间单位延迟器D的单位序列响应为()
A. B。 C。 D。1
98. 周期信号的傅立叶变换为()
A. B。2 C。 D。0.5
99. 可写成以下正确的表达式是()
A. B。
C. D。
100. ()
A. B。 C。 D。
二、填空题
1. ________________。
2.从信号频谱的连续性和离散性来考虑,周期信号的频谱是_______________。
A.S/2 B。S/3 C。S/4 D。S
34. …是()
A.周期信号B。非周期信号C。不能表示信号D。以上都不对
35.线性系统具有()
A.分解特性B。零状态线性C。零输入线性D。ABC
36.设系统零状态响应与激励的关系是: ,则以下表述不对的是()
A.系统是线性的B。系统是时不变的C。系统是因果的D。系统是稳定的
A、f(-t+1)B、f(t+1)
C、f(-2t+1)D、f(-t/2+1)
18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()
19。信号 与冲激函数 之积为()
A、2B、2 C、3 D、5
A、因果不稳定系统B、非因果稳定系统
C、因果稳定系统D、非因果不稳定系统
21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是()
A、常数B、实数C、复数D、实数+复数
22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是()
A、阶跃信号B、正弦信号C、冲激信号D、斜升信号
23.积分 的结果为()
A B C. D.
24.卷积 的结果为()
信号与系统考试题及答案
信号与系统考试题及答案**信号与系统考试题及答案**一、单项选择题(每题2分,共20分)1. 信号与系统中的信号指的是()。
A. 电信号B. 光信号C. 信息的传递方式D. 以上都是答案:D2. 离散时间信号的数学表示是()。
A. x(t)B. x(nT)C. x(t) = x(nT)答案:D3. 连续时间信号的数学表示是()。
A. x(t)B. x(nT)C. x(t) = x(nT)D. x(n)答案:A4. 系统的基本特性不包括()。
A. 线性B. 时不变性C. 因果性D. 非线性5. 卷积积分是()。
A. 线性时不变系统的输出B. 线性时变系统的输出C. 非线性时不变系统的输出D. 非线性时变系统的输出答案:A6. 傅里叶变换是()。
A. 时域信号到频域信号的变换B. 频域信号到时域信号的变换C. 时域信号到时域信号的变换D. 频域信号到频域信号的变换答案:A7. 拉普拉斯变换是()。
A. 时域信号到频域信号的变换B. 频域信号到时域信号的变换C. 时域信号到复频域信号的变换D. 频域信号到复频域信号的变换答案:C8. 采样定理是关于()。
A. 信号的采样B. 信号的重建C. 信号的滤波D. 信号的调制答案:A9. 奈奎斯特频率是()。
A. 信号的最高频率B. 信号的最低频率C. 采样频率的两倍D. 采样频率的一半答案:D10. 理想低通滤波器的频率响应是()。
A. H(f) = 1, |f| < f_cB. H(f) = 0, |f| < f_cC. H(f) = 1, |f| > f_cD. H(f) = 0, |f| > f_c答案:A二、填空题(每题2分,共20分)1. 信号可以分为______信号和______信号。
答案:连续时间,离散时间2. 系统的时不变性意味着如果输入信号发生时间平移,输出信号也会发生相同的时间平移,即系统对信号的响应不随时间变化而变化,这称为系统的______。
信号与线性系统复习题
目录目录 (1)复习题一 (2)答案 (12)复习题二 (14)答案 (22)复习题三 (27)答案 (36)复习题四 (39)答案 (42)复习题五 (43)答案 (52)复习题六 (56)答案 (64)复习题七 (65)答案 (67)复习题八 (69)答案 (77)复习题九 (82)复习题一1.1绘出下列信号的波形图(1) ;(2) ;(3) ;(4)(5) ;(6) ;(7) ;(8) ;(9) ;(10) , 式中。
1.2 绘出下列信号的图形(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8) 。
1.3 试写出题图1.1各信号的解析表达式题图1.11.4 判定下列信号是否为周期信号。
若是周期信号,则确定信号周期T。
(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8) 。
1.5 已知连续时间信号x (t)和y (t)分别如题图1.2 (a)、(b)所示,试画出下列各信号的波形图。
(1) ; (2) ;(3) ; (4) ;(5) ; (6) ;(7) ; (8) ;(9) ; (10) ;(11) ; (12) 。
题图 1 .21.6 已知离散时间信号x (k)和y (k)分别如图1.3 (a)、(b)所示,试画出下列序列的图形:(1) ; (2) ;(3) ; (4) ;(5) ;(6);(7);(8)。
题图1.3题图1.41.7 已知信号x (t)、y (t)的波形如题图1.2 所示,分别画出和的波形。
1.8 已知信号f (t+1)的波形如题图1.4 所示,试画出的波形。
1.9 分别画出题图 1.3中信号x (k)、y (k)的、一阶前向差分、一阶后向差分和迭分。
1.10 画出下列各信号的波形:(1) ; (2) ;(3) ; (4) 。
1.11 计算下列各题。
(1) ; (2) ;(3) ; (4) ;(5); (6) :(7) ; (8) ;(9) ; (10) 。
信号与系统考试题及答案
信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合测试(三)
一、选择题(本题共6小题,每小题3分,共18分)
1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而
仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足()
A. B.
C. D.
2、序列和等于()
A. 1
B.
C. D.
3、连续时间信号的单边拉普拉斯变换为()
A. B.
C. D.
4、下列各式中正确的是()
A. B.
C.D.
5、单边Z变换对应的原时间序列为()
A.B.
C.D.
6.请指出是下面哪一种运算的结果?()
A.左移6 B. 右移6
C.左移2 D. 右移2
二、填空题(本题共6小题,每小题3分,共18分)
1、计算积分
2、若两个连续时间信号和的卷积积分为:
则信号
3、计算卷积和
4、若函数的单边拉氏变换为,则函数的初值为
5、若的单边拉氏变换为,则函数的单边拉
氏变换为
6、若信号的傅里叶变换式为,则其对应的时间信号
三、按要求完成下列各题(本题共8小题,每小题5分,共40分)
1、已知系统的系统函数为,如果系统的零状态响应
为,请求出系统的激励信号
2、已知信号的波形如下图所示,求其频谱函数
3、如果一个离散系统的差分方程为:
请求出该系统的单位函数响应。
4、求序列的Z变换,并求收敛区。
5、已知函数和的波形如下面图(a)和图(b)所示,求
并画出的波形。
6、一个线性非时变离散时间系统的单位函数响应为
如图(a)所示,当激励
如图(b)所示时,求系统的零状态响应
,并画出图形。
7、已知某连续时间系统函数为:
,请画出该系统的零极图,
并判断系统是否稳定,说明原因。
8、已知线性非时变系统的微分方程为:
,
若已知系统的初始状态为:
,
,请求出该系统的零输入响
应。
四、计算题(本大题共 6小题,共74分 )
1、(本题共10分)
已知连续时间信号
的频谱函数为
,
⑴.请求出信号
的频谱函数,并画出其相应频谱图;
⑵.如果分别对信号
和信号
进行均匀抽样,为了保证能够从所得的
离散时间信号中恢复原连续信号,则需要的最大抽样间隔分别为多少秒?
2、(本题16分)
已知电路如图所示,激励信号为
,
,。
求系
统的零输入响应和零状态响应,并判断自然响应和受迫响应。
3、(本题8分)
某线性系统的模拟框图如下图所示,请列出系统的状态方程和输出方程
4、(本题12分)
一离散时间系统的差分方程为:
,其中系统
的激励为
,响应为
,已知系统初始值为
,
,若
系统的激励信号为
,请求出系统的全响应。
5、(本题12分)
下面图示是由系统由几个子系统组合而成,已知各子系统的单位冲激响应分别为
,
,
,
输入信号为
,试求:
(1)总系统的单位冲激响应
;
(2)求出系统的零状态响应。
综合测试(三)答案
一、解
1.C
2.D
3.C
4.D
5.C
6.D
二、解
1、
2、
3、
4、函数的初值为 1
5、
6、
三、解
1、解
2、解
3、解
4、解
5、解
6、7、解
极点:
均在S平面的左半平面,所以系统稳定。
8、解
四、解
1、解
(1) 信号
的频谱函数为
(2) 对信号进行均匀抽样,要求抽
样频率
,
最大抽样间隔
对信号进行均匀抽样,要求抽
样频率
最大抽样间隔
2、解
3、解
4、解
5、解。