电大机械制图之点直线平面投影

合集下载

机械等绘图类学习3章.点、直线、平面的投影

机械等绘图类学习3章.点、直线、平面的投影

例1:已知K点在平面ABC上,求K点的水平投影。

b

bd
k●
c
a
●k
c
a
a k● b c
利用平面的积聚性求解
b
d
a
●k
c 通过在面内作辅助线求解
例2:已知AC为正平线,补全平行四边形 ABCD的水平投影。
解法一:
b
解法二: b
a
k
c a
c
d
d
d
d
a
k
ca
c
b
b
相交吗? 不相交!
a′ d′
a
d
b c
为什么?
交点不符 合空间一个点 的投影特性。
判断方法? ⒈ 应用定比定理
⒉ 利用侧面投影
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
c′
O
a′
AC
d
a
c
c
b
两直不线相相交交!吗?
交为点什么不?符合一个
点的投影规律!
b′ d′
B D
d bH
V c′ a′
3(′4 ′)1● ′
第二分角
V
x
第三分角
正投影面 V 水平投影面 H 投影轴 OX
o 第一分角
第四分角
返回
V
O X
返回
两面体系的展开
V
O X
两面投影规律 •点的投影连线垂直于投影轴。
V a'
ZA X
YA
由于画面 是无限大, 去掉画框
0
a H
•点的投影到投影轴的距离,也就是该 点与对应的相应投影面的距离。

机械制图-第2章-点-直线-平面投影习题答案

机械制图-第2章-点-直线-平面投影习题答案

2-33 过点A作正平线AM与△BCD平行并与△EFG 相交,求出交点K,并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-34 求两平面的交线MN并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-35 求两平面的交线MN并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案


( 是)

( 是)

( 是机)械制图-第2章-点-直线-平面投影 ( 否 )
习题答案
2-25 过点D作正平线DE平行于△ABC。
机械制图-第2章-点-直线-平面投影 习题答案
2-26 △ABC平行于直线DE和FG,补全△ABC的水平投影。
机械制图-第2章-点-直线-平面投影 习题答案
2-27 判断下列各图中的两平面是否平行。
2-30 求直线EF与△ABC的交点K并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-31 求直线EF与△ABC的交点K并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-32 过点A作直线AB与直线CD平行并与△EFG 相交,求出交点K,并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
机械制图-第2章-点-直线-平面投影 习题答案
2-6 在直线AB上取一点C,使其到H及V面的 距离相等。
机械制图-第2章-点-直线-平面投影 习题答案
2-7 标出交叉二直线上的重影点并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-8 判断两直线的相对位置(平行、相交、交叉、垂直相交、 垂直交叉)并将答案填写在下面的括号内。
2-14 作直线EF平行于OX轴,并与直线AB、CD相交 (点E、F分别在直线AB、CD上)。

机械制图电子教案之点,线面的投影精选全文完整版

机械制图电子教案之点,线面的投影精选全文完整版

模块三点、直线、平面的投影〖相关描述〗组成物体的基本几何元素是点、线、面。

为了表达物体的结构,必须首先掌握几何元素的投影规律。

〖知识准备〗学习情境一点的投影一、点的三面投影特性如图3-1,由于投影面相互垂直,所以连影线也相互垂直,八个顶点A、a、aY、a′、a″、aX、O、aZ构成正六面体,根据正六面体的性质,可以得出点的三面投影图的投影特性如下。

(1)点的正面投影和水平投影的连线垂直于OX轴,即aa′⊥OX;点的正面投影和侧面投影的连线垂直于OZ轴,即a′a″⊥OZ;同时aaYH⊥OYH,a″aYW⊥OYW。

(2)点的投影到投影轴的距离,反映空间点到另一投影面的距离,即a′aX=a″ aYW=Aa,也即空间点A到H面的距离;aaX=a″aZ=Aa′,也即空间点A到V面的距离;a′aZ=aaYH=Aa″,也即空间点A到W面的距离。

图3-1 立体上点的投影二、点的投影与直角坐标若将三面投影体系看作直角坐标系,则投影面为坐标面,投影轴为坐标轴,这时点O即为坐标原点,如图31所示。

规定OX轴从点O向左为正,OY轴从点O向前为正,OZ轴从点O向上为正,反之为负。

从图31可得,点A(xA,yA,zA)的投影与坐标有下述关系:xA=OaX=a′aZ;yA=OaY=aaX;zA=OaZ=a′aX。

因此,若已知点的坐标(x,y,z),就可以画出点的投影图。

三、特殊位置点的投影特殊情况下,点可以属于投影面或投影轴。

1.属于投影面的点当点的某一个坐标为0时,点就从属于一个投影面。

如图3-4(a)所示,点A的Z坐标zA=0,则点A在H面上。

点A的水平投影a与空间点A重合,正面投影a′在OX轴上,侧面投影a″在OYW轴上。

所以,属于投影面的点的投影特性如下。

(1)点的一个投影与空间点本身重合。

(2)点的另外两个投影在坐标轴上。

2.在投影轴上的点当点的两个坐标为0时,点就在投影轴上。

如图3-4(b)所示,点B的X坐标xB=0,Y坐标yB=0,则点B在Z轴上。

电大机械制图之点直线平面投影的基础知识(ppt 64页)

电大机械制图之点直线平面投影的基础知识(ppt 64页)

正面投影
c'd'=CD d'
γ
c' α
X
Z
d"
O c"
cd
YW X
Z
V d' W D d"
c'
c"
Hc d Y
水平投影cd∥OX 侧面投影c"d"∥OZ YH
c'd'与OX、OZ的夹角α、γ等 于CD对H、W面的倾角。
3)侧平线:平行于W面,对V、H面倾斜
e' Z e"
侧面投影
f'
β α
e"f"=EF
§2--1 投影法的基础知识
• 一、投影的概念 • 投影——空间物体在光线的照射下,在
地上或墙上产生的影子,这种现象叫做投 影。 • 投影法——在投影面上作出物体投影的 方法称为投影法。
二、投影法的分类
1、中心投影法:
全部投影线都 从一点投射出。
投射中心 S
C
A
B
c
投射线
a
b
H 投影面
投特 影性 面: 之投 间影 距大 离小 有与 关物 。体


水平面 平行于 正平面 某一投
平 面
侧平面 影面
一般位置平面 对三个投影面都倾斜
1、投影面垂直面
垂直于某一个投影面,而倾斜于其余两个 投影面的平面为投影面垂直面。
平行、相交、交叉
B D
1、平行两直线:
A
C
投影特性:空间两直 线相互平行,它们的 各组同面投影必定相 互平行。
b
d
a
c
反之,若两直线的各同面投影相互平行,则两直线 在空间一定平行。

机械制图-点、直线、平面的投影

机械制图-点、直线、平面的投影
特殊位置点的应用
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。

机械制图教材正投影基础知识ppt课件(投影法、点的投影、直线的投影、两直线的相对位置、平面的投影)

机械制图教材正投影基础知识ppt课件(投影法、点的投影、直线的投影、两直线的相对位置、平面的投影)
俯视图
左视图
正面投影面——V面
水平投影面——H面
侧面投影面——W面
(正面投影)
(水平投影)
(侧面投影)
视图:把互相平行的投影线当作人的视线,用正投影法所得物体的投影称为视图。
2.三视图的形成及其投影规律
3. 三视图之间的对应关系
度量对应关系:
主、俯视图——长对正
主、左视图——高平齐
俯、左视图——宽相等
y
z
y
x
x
z
四、 点的坐标
a
例1 已知: 点A的正面与侧面投影,求点A的水平投影。
a
yH
a
yw
15
10
20
a
a'
a"
例2 已知: 点A的坐标为x=20mm,y=10mm,z=15mm,即A(20、10、15),求作点A的三面投影图。
1. 一般位置点(X、Y、Z)
1) 投影面上的点:V 面上点(X、0、Z) H 面上点(X、Y、0) W 面上点(0、Y、Z)
3) 原点上的点: (0、0、0 )
2) 投影轴上点:
X 轴上点(X、0、0) Y 轴上点(0、Y、0) Z 轴上点(0、0、Z)
注意: 点的各个投影一定要写在它所属的投影面区域内。
五、 各种位置点的投影
2. 特殊位置点
c'
c"
c
b"
b'
b
c"
c
a'
a"
O
b'
b
a'
a
a"
Aa
Bb"
Cc'
例3 已知: 点A在H面上,点B在W面上,点C在V面上,试求各点的投影。

机械制图-点、直线、平面的投影.doc

机械制图-点、直线、平面的投影.doc

机械制图-点、直线、平面的投影机械制图主讲:朱飞第二章点、直线、平面的投影 2 2- - 1 投影法概述 2 2- - 2 点的投影 2 2- - 3 直线的投影 2 2- - 4 平面的投影 2 2- - 5 直线与平面、平面与平面的相对位置本章内容课件目录一、投影法投影面 S 投射中心 A 投射线投影 a P 2 2- - 1 投影法概述二、投影法分类投射中心中心投影法平行投影法斜投影法正投影法正投影的基本特性多面正投影图单面正投影多面正投影直观图多面正投影展开图多面正投影图二、点的三面投影展开图投影图立体图 X X X Y H Y W Z O Y Z Y H Y W Z例2 2- -1 1 已知点A 的正面投影a 和侧面投影a 求作该点的水平投影。

Y W Y H三、点的直角坐标表示法四、各种位置的点 1. 一般位置点。

到三个投影面的距离均不为零。

Y H Y W X Y2. 投影面上的点)到某个投影面的距离(一个坐标值)。

为零。

Y W YH Y3. 投影轴上的点到某两个投影面的距离(二个坐标值)为零。

Y W Y Y H五、两点相对位置 1. 一般情况两点到三个投影面的距离(坐标值)对应不等。

Y H Y Y W2. 特殊情况一两点到一个投影面的距离(坐标值)相等。

Y W Y H Y2. 特殊情况二两点到两个投影面的距离(坐标值)相等。

Y W Y H Y2 2- -3 直线的投影一、各种位置直线及投影特性 1. 一般位置直线由一般位置的两点连线构成。

该直线与三个投影面都倾斜。

投影特性: : 三个投影都倾斜于投影轴,每个投影既不直接反映线段的实长,也不直接反映倾角的大小。

Y W Y H Y二、特殊位置直线及特性 1. 投影面平行线在直线所平行的投影面上,投影反映实长,且该投影与相邻投影轴的夹角反映该直线对另外两个投影面的倾角大小。

在另外两个投影面上,线段的投影为缩短的线段,且分别平行于直线平行的投影面所包含的两个投影轴。

机械制图课件 第3章 点、直线及平面的投影

机械制图课件 第3章 点、直线及平面的投影

(1)绝对坐标法 :空间点对原点的坐标。 (2)相对坐标法:两点的相对坐标,即两点坐标差。
Z
a
Z
a xA
a
zA-zB
b
yA
A
xA
a
X
zA
O
YW
X
O
B
zA b
yA
b xA-xB a yA-yB Y
a
YH
3.1.3 特殊位置点的投影
(1)绝对坐标法 :空间点对原点的坐标。 (2)相对坐标法: 两点的相对坐标,即两点坐标差。
3.1.1 点在两投影面体系中的投影
1、两投影面体系的组成
V
(1) 两个互相垂直的投影面 X ◆正立投影面(简称正投影面
或V面)
◆水平投影面(简称水平面或H面)
O H
(2) 投影轴
OX轴: V面与H面的交线
两个投影面
(3) 分角
互相直
V面和H面把空间分成四个部分,依次用I、II、
III、IV表示,,分别称它们为第一、二、三、四分角。
② xA(oa x) =aayH=aaz =Aa(A到W面的距离)
yA(oayH= oayw)=aax= aaz =Aa(A到V面的距离)
z A (oaz)= aax= aayw =Aa(A到H面的距离)
3、点的投影规律
Z
Z
V a
az

a ●
az a
y●
A
X ax
A

(xA,yA,z●Aa)
O
W
X
3.1.1 点在两投影面体系中的投影
2、点的两面投影图
V
a
点A的正面投影
a●
A

第2章 机械制图点、直线、平面的投影PPT优质课件

第2章  机械制图点、直线、平面的投影PPT优质课件
图2-9 三投影面体系
资讯
2.三视图的形成
如图2-10所示,将物体放在三投影面体系中用正投影方法将其向 各投影面投射,即可得到物体的三面视图。
画图时,需将相互垂直的三个投影面展平在同一平面上,规定: V面保持不动,将H面绕OX轴向下旋转90°,W面绕OZ轴向后旋 转90°,如图2-11所示。
图2-10 三视图的形成
2.1.1 投影法的分类
1. 中心投影法
投射线从一点发出的投影法称为中心投影法。
发出投射线的点即是投射中心。 中心投影法的特点: ① 图形立体感强,多用于表达建筑物的造型,如图2-2所示。 ② 图形度量性差,即不能准确反映物体的真实形状和大小,因 而在机械制图中较少使用。
图2-1 中心投影法
图2-2 用中心投影法绘制的建筑形体透视图
[例2-2] 如图2-22(a)所示,根据K点的V、W面投影,补出其水平 投影。 作图分析: 可按点的三面投影规律,求出K点的水平投影。作图过程如图222(b)所示。
(a)
(b)
图2-22 补画点的第三投影
资讯
[例2-3] 已知A点(25,20,16),画出A点的直观图。 作图步骤如图2-23所示。
主视图、俯视图——长对正。
主视图、左视图——高平齐。
俯视图、左视图——宽相等。
上述关系统称为“三等关系”。 不论是整体还是局部,物体的
三视图都应符合三等关系,
图2-13 三视图度量的对应关系
在三等关系中,应注意理解俯视图和左视图“宽相等”的对应关系。
资讯
4. 视图间的方位对应关系 物体有上、下、前、后、左、右六个方位。 主视图反映了物体的上、下和左、右方位, 俯视图反映了左、右和前、后方位, 左视图则反映了上、下和前、后方位。

画法几何及机械制图 第二章 点、直线和平面的投影

画法几何及机械制图 第二章  点、直线和平面的投影

a
定比作图方法
c
b
§2-2 直线的投影
例2 已知点C在线段AB上,求点C的正面投影。
b Z
b
V
b
c a C B
X
A
O
a
X
a
a
O
a
c YW
a
c Hb
c b
YH
§2-2 直线的投影
例3. 在直线AB上取一点C, 使AC = L,求点C的两投影。
b c
a
L
b c
a
a
X
a
b
L
c
ZAB
O
b
c
ZAB
b0
L
c0
平面对 投影面的倾 角、、
二、各种位置平面的投影特性
§2-3 平面的投影
投影面垂直面: 垂直于一个、倾斜 于另两个投影面的 平面
V面—正垂面 H面—铅垂面 W面—侧垂面
特殊位 置平面
投影面平行面: 平行于一个、同时 垂直于另两个投影 面的平面
V面—正平面 H面—水平面 W面—侧平面
投影面倾斜面: 对三个投影面都倾 斜的平面
c b
X
b O c
YW
当两直线均为
b
一般位置直线时, c
若有两个同面投影 满足上述条件,则 空间两直线相交。
d
a
YH
§2-2 直线的投影
3. 交叉两直线
既不平行又不相交的两直线
b
1(2 )
d
c
a

2 Ⅰd
c
b
a1
b d
1(2 )
c
X a
O
d
c
a

机械制图 第二章 点、直线、平面的投影

机械制图 第二章 点、直线、平面的投影
点的投影规律表明:点的两个投影反映 了点的三个坐标,确定了点的空间位置, 因此已知点的任意两个投影,总可以求出 其第三投影,且唯一。
南京师范大学 xws
10
【例1】已知A点的两个投影a和a′,求a″。 】
分析: 由于已知点A的正面投影 和水平投影a, 的正面投影a′和水平投影 分析: 由于已知点 的正面投影 和水平投影 ,则点的空间 位置可确定,也即点A的三个坐标 的三个坐标x、 、 都已知 都已知, 位置可确定,也即点 的三个坐标 、y、z都已知,根据点 的投影规律, 的投影规律,a′a″⊥OZ,a ax = a″az,作出其侧面投影 ⊥ , , a″。 。
Z a' b' αγ X O B b a YH
正平线AB的三面投影 图 2-14正平线 的三面投影 正平线
南京师范大学 xws 23
a" b" Yw A
2)投影面垂直线 在三投影面体系中,垂直于一个投影面 与其它两个投影面都平行的直线称为投影 面垂直线。 垂直于 V 面的直线称为正垂线;垂直于H 面的直线称为铅垂线;垂直于 W 面的直线 称为侧垂线。
Z x a' y O z X a Y a X x A a" a' z ax y O y x z A ax z x ay Y a ay YH (c) (a) (b)
x y
Z az y
z y
a' a" X O
Z az
a' ' Yw ay
45°
图2-4点的三投影面体系 点的三投影面体系
南京师范大学 xws 7
a' b' X a' '
z
b' ' Yw

点直线和平面的投影机械制图课件技术方案

点直线和平面的投影机械制图课件技术方案

06 制图实践与技巧
制图工具与使用方法
制图工具
包括绘图板、绘图铅笔、橡皮、丁字尺、三角板、圆规和圆模板等。
使用方法
掌握各种工具的使用方法和技巧,如丁字尺用于画水平线,三角板用于画垂直线,圆规 用于画圆等。
制图规范与步骤
制图规范
遵循机械制图的标准和规范,如图纸幅面、 线型、字体、尺寸标注等。
制图步骤
中心投影
中心投影是通过一个中心 点将三维物体投影到二维 平面的方法,常用于绘制 透视图。
投影面
正面投影面
将物体放在正前方,与投 影面平行,将物体的侧面 和顶面投影到投影面上。
水平投影面
将物体放在水平面上,将 物体的顶面和侧面投影到 投影面上。
侧面投影面
将物体放在侧面位置,将 物体的顶面和前面投影到 投影面上。
先画出基准线,再画出主要轮廓线,然后细 化和完善图形,最后进行尺寸标注。
制图技巧与经验分享
要点一
技巧分享
掌握一些实用的绘图技巧,如利用丁字尺和三角板的组合 画任意角度的线,利用圆模板快速画出标准圆等。
要点二
经验分享
分享一些绘图经验,如如何提高绘图效率和准确性,如何 处理复杂的图形等。
THANKS FOR WATCHING
尺寸标注与技术要求
尺寸标注
在机械制图中,尺寸标注是非常重要的 环节。尺寸标注需要准确、清晰地表示 出各个零件的尺寸、形状和位置。尺寸 标注应该遵循国家标准或行业规范,以 确保图纸的一致性和可读性。
VS
技术要求
技术要求是对零件的材料、加工工艺、热 处理等方面的要求和说明。技术要求应该 根据实际需要和生产条件进行制定,以确 保零件的质量和性能。
类似性
当平面与投影面倾斜时,平面上点的投影呈现为类似形。

画法几何及机械制图课件第三章点直线平面的投影

画法几何及机械制图课件第三章点直线平面的投影

1.一般位置平面
一般位置平面和三个投影面既不垂直也不平行,与三个 投影面都倾斜,所以,如用平面形(例如三角形)表示一般位 置平面,则它的三个投影均不是实形,但具有类似形。
2.投影面垂直面
只垂直于一个投影面的平面,称为投影面垂直面
根据其所垂直的投影面不同,可以分为三种: 1)铅垂面——垂直于H面; 2)正垂面——垂直于V面; 3)侧垂面——垂直于W面。
在右图中,虽然ab∩cd =k,a′b′∩c′d′=k′, 且k′k⊥OX,但因AB是侧平线, 察看侧面投影,a″b″和c″ d″虽然相交,但该交点与 k′的连线与Z轴不垂直,故此 两直线不相交。
若只凭V、H两投影来判断,则需看简单比(abk)与 (a′b′k′)是否相等,若相等则相交,不相等则不相交。
3.交叉两直线
若两直线既不平行又不相交,则它们是交叉直线
同面投影可能相交,但交点不符合空间一个点的投影规律。 交点是两直线上的一对重影点的投影,用其可帮助判断两 直线的空间位置。
两种特殊情况
1.当两直线有两个投 影均互相平行,且又 同时平行于第三个投 影面时,一般应观察 该两直线所平行的那 个投影面上的投影来 判断两直线是否平行。
(1)X坐标大,在左面, XA<XB,,A在右,B在左;
(2)Y坐标大,在前面, YA>YB,,A在前,B在后;
(3)Z坐标大,在上面, ZA<ZB,,A在上,B在下。
2. 重影点和可见性
当空间两点位于对投影面的同一条投影线上时,这两点在 该投影面上的投影重合,称这两点为对该投影面的重影点
点A、B在对H面的同一条投射线上,它们在H面的投影重 合,称为对H面的重影点。而点C、D则称为对V面的重影点。
二、平面对投影面的相对位置及其投影特性

机械制图电子教案 第三章 点、直线、平面的投影

机械制图电子教案 第三章  点、直线、平面的投影
k′(l′)的可见性时,由于K、L两点的水平投影k比l的y坐标值大,所以当从前往后看时,点K可见,点L不可见,由此可判定AB在CD的前方。同理,从上往下看时,点M可见,点N不可见,可判定CD在AB的上方。
(a) (b)
课后练习
复习思考题;3-2题、3-3题
第3讲
课题
面的投影
课型
理 论
教学
目的
掌握各种位置平面的投影规律
(一)投影面平行线
平行于一个投影面且同时倾斜于另外两个投影面的直线称为投影面平行线。平行于V面的称为正平线;平行于H面的称为水平线;平行于W面的称为侧平线。
直线与投影面所夹的角称为直线对投影面的倾角。α、β、γ分别表示直线对H面、V面、W面的倾角。
投影面平行线的立体图、投影图及投影特征
名称
正平线(//V)
2.一直线和直线外一点
3.相交两直线4.平行两来自线5.任意平面图形,如三角形、四边形、圆形等
在投影图上判定两直线是否平行;若两直线处于一般位置时,则只需观察两直线中的任何两组同面投影是否互相平行即可判定;但当两平行直线平行于某一投影面时,则需观察两直线在所平行的那个投影面上的投影是否互相平行才能确定。如图所示,两直线AB、CD均为侧平线,虽然ab∥cd、a′b′∥c′d′,但不能断言两直线平行,还必需求作两直线的侧面投影进行判定,由于图中所示两直线的侧面投影a″b″与c″d″相交,所以可判定直线AB、CD不平行。
(3)面投影e′f′∥OX轴,侧面投
影e″f″∥OYW,且都小于实长。
(1)侧面投影i//j//反映实长。
(2)侧面投影i″j″与OZ轴和OYW轴的夹角β和α分别为EF对V面和H面的倾角。
(3)正面投影i′j′∥OZ轴,水平投影ij∥OYH,且都小于实长。

机械制图点直线和平面的投影介绍PPT课件(84张)

机械制图点直线和平面的投影介绍PPT课件(84张)

点C在D的正前方,它们的正面投影重影。
当两点的某投影重影时,可从另外的两面投影上看出其先后位置。
9
例:已知点A在点B之前5,之上9,之右8,求点A的投影。
a
a
9
8
a
10
5
二 直线的投影
• 直线对投影面的相对位置
V
• 直线上的点
• 两直线的相对位置
a′
• 立体上直线的分析
X
Z b′
B b″
βγ
W
α
A
a″
b
aH Y
11
● 直线的投影由两端点同名投影的连线确定
b'
b"
a'
b
a
正面投影看高低 水平投影看前后 侧面投影看前后
a"
根据直线两端点的相对 位置 判别AB的指向(方向)
13
2. 直线相对投影面的位置
(1) 一般位置直线
V
b′
Z
b
b
B
b″
W
a′
Z
a
a
Y
A
X
a″ X
O
Y
b b a H
a
投影特性:三个投影均倾斜于投影轴, Y
V
b
B
V
b
B
a
X
ΔZ
O
A
b
a
H
a
X
β
O
A
b
a
H
要记住这个图(随时能用两根杆模拟出来)
35
直角三角形中,斜边为线段的实长,两直角边分别为线 段的投影及坐标差.
△Z α
ab
△Y
β
a'b'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点的三面投影规律:
(1)点的投影连线垂直于投影轴。
即:a'a⊥ox,a'a"⊥oz (2)点的投影到投影轴的距离,等于该点的 坐标,
也就是该点到相应投影面的距离。
三、点的三面投影与直角坐标的关系:
将投影面体系当作空间直角坐标系,把V、H、 W当作坐标面,投影轴ox、oy、oz当作坐标 轴,o 作为原点。 点A的空间位置可以用直角坐标(x,y,z)来表示。
同面投影连线确定。
Z
例:已知直线
b' b"
AB端点坐标为
a'
A(20,15,5), X
B(5,5,15)
a
作AB的三面投
影。
O a"
b
YW
YH
二、各种位置直线的投影特性
1、一般位置直线
V
Z
Z b' b"
W
a'
a" O
X
X
b
YW
a
H
Y
YH
直线的三面投影长度均小于实长,三面投影均倾斜于 投影轴,但不反映空间直线对投影面倾角的大小。
正面投影
c'd'=CD d'
γ
c' α
X
Z
d"
O c"
cd
V
YWX
H
Z W
c"
Y
水平投影cd∥OX 侧面投影c"d"∥OZ YH
c'd'与OX、OZ的夹角α、γ等 于CD对H、W面的倾角。
3)侧平线:平行于W面,对V、H面倾斜
e' Z e"
侧面投影
f'
β α
e"f"=EF
f"
X 水平投
影 ef∥OYH, 正面投
β
b
γ
c
YH
其余两投影面的 投影为类似形
YW
Z
V W
X
a"
H Y
二、投影法的分类
1、中心投影法:
特性:投影大小与物体和 投影面之间距离有关。
全部投影线都 从一点投射出。
投射中心 S
C
A
B
c
投射线
a
b
H 投影面
2、平行投影法:所有投影线都相互平行。
1)正投影法:(主要学习此种投影方法)
投射方向
投射线互相 平行且垂直 于投影面
特性:投影大小与物体 和投影面之间距离无关。
Z V
a'
b'
W
a"
A
X a
B b"
H
bY
Z
a' b' a" b"
X a
O
YW
b 1、ab=AB=实长 YH
2、 a′b′ ∥OX轴 ,
a" b" ∥ OYW轴 3、 α =0° β 、γ反映
实际大小
Z V
b'
W
B
b"
X
a' b
A
O
a"
a HZ Y
b"
a'
a"
X
O
b
YW
a 1、 a" b" =AB=实长 YH
e'
X
e
ef=e'f '=EF
Z
f ' e'(' f ")
侧面投影积聚 为一点。 O YW
f
YH
ef⊥OYH,e'f'⊥OZ。
Z
Z
V
Z V
V
a' ( b')
X
W
a"
X
a'
W
a' b'
W
A a"
b'
X
AB
H Y
Z
b"
B
H
Y
Z
a
b
H ZY
a' ( b')
b" a"
a'
a"
a'
X b
YW
a
YH
1、V面投影积聚为一点。
1、w面投影积聚为一点。
2、 a'b' =ab=AB=实长
3、ab⊥OYH轴 , a'b' ⊥ OZ
轴 γ =90°α、 β =0°
投影面垂直线的投影特性
1、直线在所垂直的投影面上的投影积聚为 一点。
2、直线在另外两个投影面上的投影垂直于 相应的轴(所垂直投影面上的坐标轴), 且反映实际长度。
三、直线上的点
2、 a" b" =ab=AB=实长
3、ab⊥OX轴 , a" b" ⊥ OZ 轴 β=90°α、γ=0°
b' X
b"
O
YW
YH
1、H面投影积聚为一点。
2、 a" b" = a'b' =AB=实长
3、 a'b' ⊥OX轴 , a" b" ⊥ OY W 轴 α =90° β 、γ=0°
X
O
YW
ab
YH
H
在该面上的投影ab 反映空间直线AB 的真实长度。即:
ab=AB
2)直线CD垂直于投影面 在该面上的投影有积聚性,其投影为一点
C
D
c(d)
H
3)直线EF倾斜于投影面
在该面上的投影长度变短,即:ef=EF cosα
E F
α
H
f
e
3、平面的投影
平面的投影一般仍是相类似的平面图形,在特殊 情况下积聚为直线。




右后
前 主视图—反映物体的上下和左右

俯视图—反映物体的前后和左右


左视图—反映物体的前后和上下

5、方位关系

注:俯、左视图靠近主视图的一 边,表示物体的后表面;远离主 视图的一边,表示物体的前表面。

§2--2 点的投影
一、点在两投影面体系中的投影
过A作垂直于V、 H面的投射线A a´、 Aa,分别与H面交 于a,与V面交于a´, a、 a´即为点A的两 面投影。
例1、试在直线AB上取一点C,使AC:CB=1:2,求 作C点。
解:分点C的投 影必在AB的 同面投影上。
c' b' a'
且 ac:cb =a'c': c'b' =1:2
X
O
c
b
a 123
例2、已知直线CD及点M的两面投影,判断
M是否在CD上。
z
解1、
c'
m'
c"
m"
作侧平线CD和点M
d'
d"
的侧面投影,
1)平面平行于投影面
B
A
C
投影△abc反映空 间平面△ABC的 真实形状。
b
a
c
H
真实性
2)平面垂直于投影面
E
D
F
d ef
H
在投影面上的投 影积聚为直线。
积聚性
3)平面倾斜于投影面
L K
M 投影△klm面积变小。
l
K m
H
类似性
四、投影的基本性质: ★ 1、真实性 ★ 2、积聚性 ★ 3、类似性
X
O
由作图知点M的侧面
c
YW
投影不在cd上,所以
m
M不在CD上。
d
YH
四、两直线相对位置
空间两直线的相对位置分为
平行、相交、交叉
B D
1、平行两直线:
A
C
投影特性:空间两直 线相互平行,它们的 各组同面投影必定相 互平行。
b
d
a
c
反之,若两直线的各同面投影相互平行,则两直线 在空间一定平行。
2、相交两直线
同面投影可能相交,但不符合空间点的投影规律。
如图示
a'
d'
AB两面投影的交点 连线不⊥OX轴, ∴为交叉两直线。
c' b'
c b
a
d
小结
➢点与直线的投影特性,尤其是特殊 位置直线的投影特性。
➢点与直线及两直线的相对位置的判 断方法及投影特性。
➢点分割直线成定比——定比定理。
特殊位置平面
§2--4
C AK
K是两直线的共有点, ∴K在平面上的投影k
D
B
必在ab上,又必在cd上。
a
c
dk b
★相交的两 直线是共面 的直线。
交点K的三面投影符 合点的投影规律。
c'
Z c"
k' b'
k" b"
a' d'
a" d"
Xc
O
YW
a
k b
d
YH
3、交叉两直线
在空间即不平行也不相交的两直线为交叉两直 线。
a'
a"
a'b'=a"b"=AB
b'
X
b"
O
水平投影 积聚为一 点。
a (b)
YH
相关文档
最新文档