原代神经细胞培养方法 Neuron Cell Culture

合集下载

原代神经元培养

原代神经元培养

原代神经元培养神经细胞原代培养从动物(大鼠或小鼠等)的胚胎或新生动物的脑组织取下某一局部区域,分离细胞,培养在培养容器后不再移植,常称为原代神经细胞培养。

一、培养前准备1. 器械和器皿器械:外科剪、镊子、虹膜剪等、小剪刀、细镊子和虹膜小刀等各种金属器械如解剖器械,使用后及时刷洗干净,用酒精棉球擦拭后晾干,或经60℃烘干,以防生锈。

由于湿热消毒对手术器械容易可用70-80%酒精浸泡1小时以上消毒。

器皿:1)玻璃瓶及相应的胶塞或胶木螺旋盖,用于分装血清、多聚赖氨酸、解剖液、各种盐溶液和培养液等。

2)培养瓶、盖玻片培养用的盖玻片必须不含铅、不发霉,可用0.2N盐酸浸泡10分钟,用蒸馏水洗2次,每次10分钟,然后移入丙酮或乙醇浸泡10分钟,再用双蒸水洗2次,每次10分钟,烘干待消毒。

凡组织学用过的旧盖玻片一般不用。

3)移液管、吸管、烧杯、离心管和培养皿。

4)塑料培养皿(35mm)、塑料培养板(6、24、96孔)。

辅助工具:放置试管、吸管和玻璃瓶等的架子。

2. 培养基和培养用液的配制1) 培养基质:有多聚赖氨酸、牛皮胶原和鼠尾胶原。

本室目前常用分子量为7-140000多聚赖用滤器过滤灭菌,并分装成1-2ml冻存。

用前以D-Hanks平衡盐水或其他无钙镁离子溶液溶解稀释至0.25%或0.125%。

实际使用温度一般为37℃20-30分钟。

6) 解剖溶液:由平衡盐水(D1-无钙镁离子的Puck氏液)、HEPES缓冲液和蔗糖-葡萄糖溶液组成称为D1-SGH。

D1平衡盐水:NaCl 8.0g、KCl 0.4g、Na2HPO4.7H2O 0.045g、KH2PO4 0.03g、酚红0.0012g、三蒸水50ml。

蔗糖-葡萄糖(SG):蔗糖7.5g、葡萄糖3g、三蒸水50ml。

HEPES(H,0.352mM):用25ml左右的三蒸水溶解2.35g的HEPES后,用NaOH或HCl 调pH至7.3-7.4,加三蒸水至28ml。

原代神经元培养

原代神经元培养

神经细胞原代培养从动物(大鼠或小鼠等)的胚胎或新生动物的脑组织取下某一局部区域,分离细胞,培养在培养容器后不再移植,常称为原代神经细胞培养。

一、培养前准备1. 器械和器皿器械:外科剪、镊子、虹膜剪等、小剪刀、细镊子和虹膜小刀等各种金属器械如解剖器械,使用后及时刷洗干净,用酒精棉球擦拭后晾干,或经60℃烘干,以防生锈。

由于湿热消毒对手术器械容易可用70-80%酒精浸泡1小时以上消毒。

器皿:1)玻璃瓶及相应的胶塞或胶木螺旋盖,2)用于分装血清、多聚赖氨酸、解剖液、各种盐溶液和培养液等。

3)培养瓶、盖玻片4)培养用的盖玻片必须不含铅、不发霉,可用0.2N盐酸浸泡10分钟,用蒸馏水洗2次,每次10分钟,然后移入丙酮或乙醇浸泡10分钟,再用双蒸水洗2次,每次10分钟,烘干待消毒。

凡组织学用过的旧盖玻片一般不用。

5)移液管、吸管、烧杯、离心管和培养皿。

6)塑料培养皿(35mm)、塑料培养板(6、24、96孔)。

辅助工具:放置试管、吸管和玻璃瓶等的架子。

2. 培养基和培养用液的配制1) 培养基质:有多聚赖氨酸、牛皮胶原和鼠尾胶原。

本室目前常用分子量为7-140000多聚赖氨酸(Poly-L-lysine,浓度为0.1mg/ml。

2) 平衡盐溶液:主要以无机盐和葡萄糖配制而成。

各种平衡盐溶液主要的不同点在于NaCl的浓度、离子浓度及缓冲系统的不同,可根据实际需要选用适当的平衡盐溶液。

3) 培养液:目前已有现成的干粉出售,按说明书进行配制即可。

神经细胞培养需高糖,培养液应含有或加葡萄糖至6g/L。

目前培养海马神经元可选用B27无血清培养液。

4) 血清:有胎牛血清、小牛血清和马血清等。

分装成小瓶,4℃保存备用(分装前需56℃灭活30分钟)。

5) 胰蛋白酶溶液:用于分离细胞。

先用少量灭菌三蒸水将胰蛋白酶粉末溶成糊状,然后补水至2.5%浓度,振荡摇匀,4℃过夜,待完全溶解后用滤器过滤灭菌,并分装成1-2ml冻存。

用前以D-Hanks平衡盐水或其他无钙镁离子溶液溶解稀释至0.25%或0.125%。

原代神经元培养培训课件

原代神经元培养培训课件

精品文档神经细胞原代培养的胚胎或新生动物的脑组织取下某一局部区域,分离细胞,培养在从动物(大鼠或小鼠等)培养容器后不再移植,常称为原代神经细胞培养。

一、培养前准备1. 器械和器皿器械:外科剪、镊子、虹膜剪等、小剪刀、细镊子和虹膜小刀等℃烘干,各种金属器械如解剖器械,使用后及时刷洗干净,60用酒精棉球擦拭后晾干,或经以防生锈。

由于湿热消毒对手术器械容易可用70-小时以上消毒。

80%酒精浸泡1 器皿:1) 2) 3)玻璃瓶及相应的胶塞或胶木螺旋盖,用于分装血清、多聚赖氨酸、解剖液、各种盐溶液和培养液等。

5)培养瓶、盖玻片次,盐酸浸泡可用0.2N10分钟,用蒸馏水洗2培养用的盖玻片必须不含铅、不发霉,分钟,10分钟,再用双蒸水洗2次,每次1010每次分钟,然后移入丙酮或乙醇浸泡烘干待消毒。

凡组织学用过的旧盖玻片一般不用。

6)7)移液管、吸管、烧杯、离心管和培养皿。

8)。

孔)、、、塑料培养板(35mm9)塑料培养皿()62496精品文档.精品文档辅助工具:放置试管、吸管和玻璃瓶等的架子。

2. 培养基和培养用液的配制多7-1400001) 培养基质:有多聚赖氨酸、牛皮胶原和鼠尾胶原。

本室目前常用分子量为0.1mg/ml,浓度为。

聚赖氨酸(Poly-L-lysineNaCl主要以无机盐和葡萄糖配制而成。

各种平衡盐溶液主要的不同点在于2) 平衡盐溶液:的浓度、离子浓度及缓冲系统的不同,可根据实际需要选用适当的平衡盐溶液。

培养液:目前已有现成的干粉出售,按说明书进行配制即可。

神经细胞培养需高糖,培3)无血清培养液。

养液应含有或加葡萄糖至6g/L。

目前培养海马神经元可选用B27℃564) 血清:有胎牛血清、小牛血清和马血清等。

分装成小瓶,4℃保存备用(分装前需。

灭活30分钟)胰蛋白酶溶液:用于分离细胞。

先用少量灭菌三蒸水将胰蛋白酶粉末溶成糊状,然后补5) 冻℃过夜,待完全溶解后用滤器过滤灭菌,并分装成1-2ml水至2.5%浓度,振荡摇匀,4。

世界上最完善最详细的神经元原代培养完全黄金版

世界上最完善最详细的神经元原代培养完全黄金版

世界上最完善最详细的神经元原代培养完全黄金版世界上最完善最详细的神经元原代培养完全黄金版[精华]序言:国内外关于原代培养有很多文献,不幸的是,没有一篇是详细的,没有一篇解答过why. 为了让大家少走弯路,根据我杀过3000只老鼠的经验,我把我这几年摸索的经验和大家分享,请求多投几票得几个叮当。

相信你follow我的这篇文章一定会做的很好。

我的标题说的很像吹牛,但是我是严肃认真的说的,I earn it.note:这篇文章全是我个人的经验,99。

9%原创,经过无数失败的到的最完美的原代神经元培养法,除了最后那一副图是来自下面第2行那篇文献,所以我才说是99.9%原创。

(注:附录的图是常用的消化酶对实验的存活率影响,来自下面链接里的文献)另外,成年鼠的原代培养我没有摸索过,推荐一篇文献在我以前的帖子(无需叮当)(/bbs/post/view?bid=156&id=17651341&sty=3)本篇专门讨论胎鼠和新生鼠神经元的原代培养。

1.材料选择。

一定要严格按照国际上,NCBI数据库,其他文献的材料一致。

胎鼠就要胎鼠,新生鼠就要新生鼠,不能混淆。

因为新生鼠有一些受体,在培养的工作中失去功能,会不能再生,比如NMDA受体。

和文献不同会导致错误结论,甚至困惑。

很多人写信问我新生鼠的培养问题,我回答用新生鼠的实验很少,八成是你自己搞错了实验对象,请确认国际上的相关研究文献所用老鼠,再来问我下面的问题。

2,培养基选择(neurbasal/neurobasal-a,invitrogen Co.ltd)。

我强烈不建议用血清培养。

原因是:首先,血清刺激胶质细胞和杂细胞分裂,最后非常影响神经元产量;其次,为了抑制胶质生长,往往要加入阿糖孢苷。

严重的毒性会影响许多灵敏实验;再次,最重要的,血清培养的细胞状态很不均一,从正常到凋亡都有,严重影响试验准确,而无血清专用培养基所有的正常细胞都处于一样的状态,要么都好,要么都差,高度一致。

神经元原代培养方法

神经元原代培养方法

神经元原代培养方法
从孕17-18天的雌鼠的胎儿分离神经元细胞。

孕雌鼠麻醉然后解剖,胎
儿收集到HBSS-1中然后快速断头。

剥离脑膜和白质后,大脑皮质收集
入 HBSS-2 液中机械磨碎。

皮质碎片移到有0.025%胰酶的HBSS-2液中3 7°C消化15分钟。

胰酶消化后,细胞用含有10%胎牛血清的HBSS-2液冲
洗两次,用神经基础培养液重悬细胞(培养液添加了0.5mM左旋-谷氨
酰胺,25μM左旋-谷氨酸,2%B27和0.12mg/mL庆大霉素)。

以1×105c
ell/cm2接种到事先用多聚赖氨酸包被的培养皿上,放到37°C,5%CO2
湿温培养箱里进行培养。

每3天用吸管换液,一次换0.5mL。

体外培养8
天细胞就能用于实验。

选用17-18天的胎鼠能够提高神经元培养的效率,因为与乳鼠相比胚胎
组织的细胞连接还很少。

因此,用乳鼠会使神经元的分离更加困难,
会造成细胞连接不可逆的损伤,细胞之间的共同的轴突和树突更容易
发生损伤。

另外,用出生后1天内的大鼠皮质培养容易有胶质细胞污染,而用胎鼠则可以避免这种情况。

如果用的是乳鼠,一般是在培养36个
小时后加入阿糖胞苷,抑制胶质细胞生长。

另外,如果把分化的影响看成是考虑的重要因素,可以用培养4天的、
8天的、18天的细胞。

其中一个例子可以是观察毒性物质对小孩和成年
的不同效应。

小鼠背根神经节神经细胞的原代培养新方法

小鼠背根神经节神经细胞的原代培养新方法

小鼠背根神经节神经细胞的原代培养新方法小鼠背根神经节神经细胞原代培养是神经学研究、药物筛选及细胞病理学研究中必不可少的一环。

本文将介绍一种新的小鼠背根神经节神经细胞原代培养方法的步骤及注意事项。

步骤1: 动物处理。

用取出小鼠的背根神经节放入无菌的PBS缓冲液中搅拌7-8分钟,使神经节中的细胞离体,并通过多次离心来去除PBS缓冲液。

步骤2: 细胞悬浮。

将含有神经细胞的细胞悬液用1mL冰冷的PBS缓冲液洗涤2次。

再用1mL冰冷的70%酒精进行紧密覆盖,静置5分钟。

再用PBS缓冲液洗涤5次,最后用DMEM/F-12添加10%胎牛血清(FBS)调整至适当浓度。

步骤3: 细胞培养。

将细胞悬液转移到含有0.1%聚赖氨酸的DMEM/F-12培养基中,距离表面1cm左右,进行孵育24-48小时。

孵育室应控制在37℃的恒温条件下,同时CO2含量应设定在5%。

步骤4: 原代细胞出现。

24-48小时后,可见到原代神经细胞在培养皿中生长,而其他非神经细胞则无法生长。

这是因为神经元比其他细胞易受到聚赖氨酸的作用,从而对组织细胞进行筛选。

步骤5: 细胞传代。

当原代细胞数量足够时,可进行细胞传代。

将同等的DMEM/F-12培养基中加入0.5%胰酶,将原代细胞取下进行培养。

注意事项:1.处理过程中必须保持无菌,防止微生物污染。

2.神经节处理过程中的时间要注意,过久会导致细胞死亡,过短则分离不完整。

3.使用的培养基及化学试剂要质量优良。

4.培养条件要严格控制,CO2含量及温度要保持恒定。

本文介绍的方法较为简单易行,对于初学者或初学者也容易了解。

但细胞培养中实验操作需要非常谨慎,为保证实验的准确性和有效性,一定要保证实验过程中的无菌、温度、CO2含量和实验技术的高效性。

神经细胞培养讲义课件

神经细胞培养讲义课件
乳蛋白)
合成培养基(MEM DMEM HAM`S F12 RPMI(1640) 199 L-15 )等
PPT学习交流
9
常用的平衡盐溶液(g/L)
R in g e r
PBS
(1 9 8 5 )
E a rg le (1 9 4 8 )
H anks (1 9 4 9
D u lb e c c o (1 9 5 4 )
b 营养因子等物质 2)细胞的生存环境: a 温度:哺乳动物和人类 为35~37℃;鸟类为38.5℃
b 气相及PH 值 :O2及 CO2的值: CO2=5%;PH=7.2~7.4
c 渗透压:260~320m
mol/L
PPT学习交流
7
3) 无污染及无毒:体外培养的细胞必须生 长于无污染及无毒的环境!!
13
三、培养操作过程
• 新生1~3d SD大鼠,麻醉后75%酒精浸泡消毒,断头后移入超净
工作台,无菌条件下开颅,快速取脑,置于D-Hanks液中,仔细剥 除脑膜和血管,小心剥离脑组织(海马),放入10ml小瓶中
•剪碎,加入0.25%胰蛋白酶放入37℃培养箱,定期振摇促消化。消 化约20min,
Байду номын сангаас
•用含血清的DMEM培养液终止消化,吸管反复轻柔吹打,用200目 不锈钢筛网过滤,将滤液分散组成制成细胞悬液,1000rpm/min离心、 洗细胞两次,每次10min,
2 细胞系培养
PPT学习交流
11
一 神经元的原代培养(Primary culture)
一、组织来源:
1) 种属: 大鼠 小鼠 家鸡 瓜蟾 海兔 蜗牛 水蛭 等
2)年龄:一般为胚胎或新生动物组织
神经胶质细胞:生后早期

原代神经细胞培养

原代神经细胞培养

原代神经细胞培养新生鼠神经元细胞的培养准备工作:1、解剖器械一套(实验室有专门用于细胞间取材用的成套器械),需提前一天灭菌,过夜烤干。

2、试剂、溶液:Neuralbasal培养基(2mM glutamine);D-PBS缓冲液;0.25%trypsin/0.02%EDTA消化液;0.05%poly-lysin。

3、包被玻片:干烤灭菌12 x 12mm2玻片,12孔板。

包被过程:0.05%poly-lysin滴于置培养板中的盖玻片上(注意勿溢出玻片),37℃放置12hr后纯水洗3遍,晾干。

4、操作中所用枪头均用剪刀剪去枪头尖,然后在酒精灯上迅速过一下抛光。

取材:1、从-200C取出三个冰袋,预冷若干皿D-PBS,一大皿用于冷却剥出的脑子,另外的35mm的皿用于冷却分离出的脑组织,如:海马,皮层,下丘脑等,分离几个部位就预冷几小皿D-PBS,小皿盖子上做好标记,第三个冰袋上放一皿盖,上面放灭过菌的滤纸,用于剥离脑子的操作。

2、取1-3天鼠,75%酒精浸泡片刻后,用大剪子断头处死。

3、弯头眼科剪剪开颅骨,取出完整脑至盛有预冷D-PBS的培养皿中,在体式镜下分离相应部位的组织,分别放在相应的皿中。

4、将组织块用弯头眼科剪剪碎,每小块约2mm3左右,用枪移入5mlEP中,稍为沉淀1分钟,吸弃上清,加入0.25%trypsin/0.02%EDTA,37℃消化10-15分钟左右,期间每3分钟颠倒几下。

注:每四个海马用胰酶1ml,每个皮层用胰酶2ml。

5、消化完毕,每毫升胰酶加入100ul血清以终止胰酶,颠倒混匀;1000rpm,4分钟,离心沉淀。

6、吸弃上清,注意不要将组织吸出。

7、加入37℃预热的1-2ml DMEM/10%FBS,用枪头吹打20下左右,此时液体浑浊,组织块明显变小。

8、放置沉淀3分钟左右,可见组织块沉底,吸取上清,其中包含所要的细胞。

9、计数,将细胞密度调整至2-4 x 10 5 /ml后接种于预先用poly-lysine包被过的盖玻片或皿上,100ul每玻片(12 x 12mm玻片)。

神经元原代培养方法

神经元原代培养方法

一、器材二氧化碳培养箱(Forma Series Ⅱ Water Jacketed CO2 Incubator) Thermo公司;SW-CJ- 2F 型超净工作台苏州安泰空气技术有限公司;80- 2B 型离心沉淀机盐城市科学仪器厂;LS-B50L 立式压力蒸汽灭菌器江阴滨江医疗设备厂;AB104 - N 电子天平上海电子仪器厂倒置显微镜 OLYMPUS-IX71二、试剂Neurobasal®-A Medium (1×)无血清培养基 500ml 美国Gibco公司;B-27 Supplement(50×) 10ml 美国Gibco公司DMEM(Dulbecco’s Modified Eagle Medium) Invitrogen公司胰酶(Trypsin 1:250) 5g Solarbio公司;多聚赖氨酸( Poly-L-Lysine,MW 150000- 300000) 25mg Solarbio公司;无支原体胎牛血清四季青浙江天杭生物科技有限公司;马血清(特级)北京元亨生物技术有限公司;注射用硫酸链霉素 100万单位/瓶华北制药股份有限公司注射用青霉素钠 80万单位/瓶华北制药股份有限公司三、方法1.试剂的配制(1)神经元专用培养液将500ml Neurobasal®-A Medium (1×)无血清培养基和10ml B-27 Supplement(50×)混合后,加青霉素和链霉素(终浓度为100单位/ml)使其混匀,4℃储存备用。

(2)D-Hank,s缓冲液称取NaCl8.0g KCl0.4g Na2HPO4·12H2O0.09g KH2PO40.06g 葡萄糖1g,加双蒸水定容至1000ml,调PH于7.2-7.4,抽滤后4℃储存备用。

(3)0.25%胰酶称取0.25g胰酶溶于100ml D-Hank,s缓冲液中,抽滤后4℃储存备用。

神经干细胞原代取材与培养

神经干细胞原代取材与培养

神经原代干细胞的取材及培养长期以来,人们认为中枢神经系统成熟的神经元很难或不能在进行分裂和增殖,属于终末分化细胞。

因而中枢神经系统的损伤、变性导致的神经元丢失及缺损难以修复,神经功能的重建被视为几乎不可能。

神经干细胞在体外分离培养和增殖的成功,为中枢神经系统再生和功能重建提供了新的可能途径。

一、神经干细胞神经干细胞是指具有分化为神经元、星形胶质细胞和少突胶质细胞的能力,能自我更新并能提供大量脑组织细胞的细胞群,具有自我更新能力和多向分化潜能,对损伤和疾病具有反应能力。

原代培养的单细胞在24h内自动聚集成团,这是神经干细胞在体外培养过程中的一个重要特征。

神经干细胞具有的特点有:①有增殖能力。

②有自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个子细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可分化为多种神经细胞。

③具有多向分化潜能,在不同因子下,可以分化成不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化。

总之,自我更新能力和多向分化潜能是神经干细胞的两个基本特征。

二、实验步骤:神经干细胞原代取材及培养1.原代取材(1)脱颈处死2周龄孕鼠,孕鼠腹部以75%酒精消毒后,手术剪打开腹腔,取出子宫,剪开子宫,取出胎鼠,置于含冰冷PBS液的10cm培养皿中。

(2)将胎鼠断头,用眼科剪分离颅骨及硬脑膜,取出脑组织,在显微镜下充分取出脑膜和血管组织。

(3)将脑组织用PBS清洗三次,剪成1mm3大小的组织块,至于含DMEM/F12的离心管中,吸管轻吹打10次,静置离心管1~2min,取细胞悬液。

重复2-3次。

(4)细胞悬液以700r/min离心6min,吸除上清,获得细胞沉淀。

用(DMEM/F12+1%N2+2%B27+bFGF20mg/ml+EFG20mg/ml)重悬后,过200目筛网,并计数。

(5)按5×105/ml密度接种,置于37℃,5%CO2培养。

各类神经元细胞的培养方法

各类神经元细胞的培养方法

各类神经元细胞的培养方法神经元细胞是神经系统中的主要细胞类型之一,负责传递神经信息和调控神经功能。

神经元细胞的培养是神经科学研究和临床治疗的重要工具。

通过细胞培养,可以研究神经元的发育、功能和病理机制,同时也可以应用于药物筛选、组织工程和神经修复等领域。

下面将介绍一些常用的神经元细胞培养方法。

1.原代培养2.细胞系培养细胞系是已经建立起来的可持续增殖和培养的细胞株。

细胞系培养可以使用血清或无血清培养基。

通常,将细胞系继代传代,以保持其细胞特性和增殖能力。

细胞系培养可以持续扩大细胞数量,并用于大规模试验和应用,如药物筛选和基因表达研究等。

3.单细胞培养单细胞培养是将单个神经元细胞分离和培养。

首先,通过机械或酶消化方法将神经组织分散为单细胞悬浮液。

然后,通过单细胞分选技术,将单个神经元细胞分离并分配到各个培养孔中。

最后,单个细胞通过培养基提供的营养物和因子进行生长和分化。

单细胞培养是研究神经元个体特性、细胞发育和功能的重要手段。

4.同代培养同代培养是将同一类型的神经元细胞培养在同一培养物中,以形成功能连通的细胞群。

同代培养可以通过多孔膜培养皿、微流控芯片和三维支架等技术实现。

通过细胞之间的相互作用和联结,同代培养可以模拟神经系统的复杂性和功能,用于研究神经网络特性和神经系统发育。

5.共培养共培养是将不同类型的细胞培养在同一文化器皿中,以研究细胞之间的相互作用和信号传递。

常见的共培养方法包括胶质细胞和神经元细胞的共培养,以及神经元细胞和非神经元细胞的共培养。

共培养可以提供更接近体内情况的环境,用于研究细胞间相互作用和细胞发育过程。

神经元原代培养

神经元原代培养

神经元原代培养一、准备1. 试剂1)胎牛血清灭活:血清室温自然融解,摇匀。

选用与血清瓶同规格的对照瓶一个,并加入与血清等体积的水。

对照瓶内插入1~2支温度计(保证测试温度的准确性)。

将血清瓶与对照瓶同时放入恒温水浴箱,待温度计所示温度上升至56℃时,定时30分钟。

灭活后分装,10ml/瓶,一瓶放在培养箱做无菌实验,其余-20~-70℃保存。

2)D-Hank’s液(g/L):NaCl: 8, KCl: 0.4, KH2PO4: 0.06, Na2HPO42H2O: 0.06, NaHCO3: 0.35; 酚红:0.02,超纯水溶解,调节PH至7.2,高压灭菌(购自南方医院临床试验中心)。

3)多聚赖氨酸:避光,用超纯水配制好后过滤,200µl或400µl/tube分装, -20度储存。

母液浓度为5mg/ml,工作液浓度为0.1mg/ml(购自Sigma,P2636,100mg)。

配置方法:20ml超纯水溶解,分装为1ml/管。

用时加入49ml超纯水稀释为0.1mg/ml的工作液。

4)50mM谷氨酸:超纯水溶解,滤过除菌,分装50µl/tube,-20℃保存。

使用时需将终浓度调整为25µM(购自Sigma,G8415,100g,分子量:147.13)。

配制方法:电子天平称量谷氨酸1.4713g,即0.01mol=10mmol,溶于200ml超纯水中,配制为50mM的谷氨酸母液。

例:500ml的Neurobasal Medium中加入Glutamate母液(50mM)250μl,此时终浓度约为25μM。

5)胰蛋白酶:0.25%(购自Hyclone,SH30042.01,100ml)。

6)阿糖胞苷(AraC)母液:10mM,(阿糖胞苷,1:1000稀释用)(购自Sigma,C1768,100mg,分子量:243.22);配制方法:100mg/243.22≈0.41mM,加入41ml超纯水溶解,配制成10mM的AraC母液。

原代神经元细胞培养技巧

原代神经元细胞培养技巧

原代神经元细胞培养技巧
以下是 9 条关于原代神经元细胞培养技巧:
1. 哎呀呀,培养原代神经元细胞,那选对材料可太重要啦!就好比你要做一道美味佳肴,那食材得新鲜优质对吧?比如你得挑健康的胚胎组织,可别随便拿些不靠谱的材料来凑数呀!
2. 嘿,解离细胞这一步可得小心谨慎哦!这就像拆一件精密的玩具,不能太粗鲁,不然全给弄坏啦!要温柔地进行操作呢。

3. 哇塞,接种细胞时可得仔细着点儿!就像给小宝贝们找个舒服的家,密度要合适,位置要恰当,不能马马虎虎哟!
4. 知道吗,培养基那可是细胞的营养大餐呀!怎能随随便便选呢?一定要找最适合它们的,不然它们怎么茁壮成长呢?就像给孩子选奶粉一样重要呐!
5. 天呐,培养环境那简直就是细胞的小天地!温度、湿度、气体都得严格把控,这可不是闹着玩的呢,你说是不是?
6. 哇哦,换液的时候可得注意啦!你想呀,如果给它们换了不好的液体,那不就像给人喝了不健康的水一样嘛,能行么?
7. 诶,观察细胞可不能马虎呀!那可是随时了解它们状态的关键呀,这就好比你时刻关注着自己宝贝的一举一动,有没有问题一下子就知道啦!
8. 哎呀,防止污染那可是重中之重啊!稍微不注意让细菌病毒钻了空子,那不就全完啦?这可不比家里打扫卫生,得超级认真呀!
9. 总之呢,培养原代神经元细胞真的需要特别细心和耐心!每一个环节都不能掉以轻心,都要像对待艺术品一样精心呵护,这样才能培养出健康优秀的细胞呀!。

神经元细胞原代培养完美版说明(重医舟之行)

神经元细胞原代培养完美版说明(重医舟之行)

神经元细胞原代培养完美版说明1.材料选择。

一定要严格按照国际上,NCBI数据库,其他文献的材料一致。

胎鼠就要胎鼠,新生鼠就要新生鼠,不能混淆。

因为新生鼠有一些受体,在培养的工作中失去功能,会不能再生,比如NMDA 受体。

和文献不同会导致错误结论,甚至困惑。

很多人写信问我新生鼠的培养问题,我回答用新生鼠的实验很少,八成是你自己搞错了实验对象,请确认国际上的相关研究文献所用老鼠,再来问我下面的问题。

2.培养基选择(neurbasal/neurobasal-a,invitrogen Co.ltd)。

我强烈不建议用血清培养。

原因是:首先,血清刺激胶质细胞和杂细胞分裂,最后非常影响神经元产量;其次,为了抑制胶质生长,往往要加入阿糖孢苷。

严重的毒性会影响许多灵敏实验;再次,最重要的,血清培养的细胞状态很不均一,从正常到凋亡都有,严重影响试验准确,而无血清专用培养基所有的正常细胞都处于一样的状态,要么都好,要么都差,高度一致。

Invitrogen/GIBCO 无血清培养基neurobasal(neurbasal-A)被认为是最标准,最好的培养基。

需要的添加剂为B27和谷氨酰胺。

培养出的细胞状态均一,胶质细胞几乎不分裂。

其中,neurobasal是胎鼠培养基,而-A 为新生鼠培养基。

不过根据笔者实验,没什么太大区别,都能很轻松培养成功,但是,切忌中途换培养基,要从一而终。

很多实验室是不加抗生素的,也有的实验室加。

由于很多初学者操作不熟练,不注意,很多人会污染,所以我还是建议加双抗。

注意!由于无血清培养基添加剂不是血清,而是人工合成的B27(也有用N2的,但是推荐B27,只差10美金),血清有复杂的解毒作用而B27没有,双抗对细胞的干扰,无血清培养基要大的多。

所以,如果你在neurobasal里添加抗生素,记得用量只要标准量的一半。

另一个添加成分谷氨酰胺溶液不稳定,所以每次用时候要现配现加。

大概是0.5-2mmol/l大部分人用0.5mmol/l.虽然笔者试过,没加这个也正常生长,但是几乎所有文献都添加,we just simply follow.3.解剖过程一定要全程在冰上遇冷。

神经细胞的培养

神经细胞的培养

17
细胞培养的基本条件
超净工作台的使用
使用前: 开启柜内紫外灯照射10~30min; 预工作2~3min,以除去臭氧和使工 作台面、空间呈净化状态。 使用完毕后: 要用70%酒精将台面和台内擦拭干净。
Harbin Medical University
18
细胞培养的基本条件
火焰消毒
在无菌环境下培养时,首先要点燃酒精灯 ,以后的一切操作,如打开或封闭瓶口等 ,都需在火焰近处并经过烧灼。 注意事项:塑料和橡胶制品过火时要快速 ,不能长时间烧灼。
2.不能用手触及消毒器皿的工作部分, 工作台面上用品要布局合理 。 3.瓶子开口后要尽量保持45°斜位。 4.吸溶液的吸管不能混用。 。
Harbin Medical University
9
细胞培养的基本概念
传代培养注意事项
5.接种数量一般为5x104~8x105个 /ml。
6.传代密度太低,细胞容易死亡,表现 出细胞在达到增殖前有较长的滞留期。 7.培养液由于pH下降呈黄色,若无污 染需要换液或传代。
20
Harbin Medical University
细胞培养的基本条件
细胞培养的实验用品
细胞培养瓶:25cm2,75cm2,150cm2
Harbin Medical University
21
细胞培养的基本条件
细胞培养板:6孔、12孔、24孔、48孔和96 孔(包括平底、U型和V型)。
Harbin Medical University
Harbin Medical University
13
三、细胞培养的基本条件
无菌条件 细胞生长条件 细胞检测条件 细胞保存条件

一种高效简便的原代神经元培养方法

一种高效简便的原代神经元培养方法

一种高效简便的原代神经元培养方法张涛;胡怀强;王旭辉;牛兵;陶珍;曹秉振【摘要】目的:建立一种简便高效的原代神经元培养方法.方法:出生12h内的Wistar乳鼠,分离皮质后剪碎,0.25%胰酶消化30 min,漂洗后轻柔吹散细胞,过滤后1 000 rpm离心5min,弃上清,加接种液吹匀后过滤,静置3~5 min,取上层液体计数并接种.接种后4、45、96 h全量换液,之后每3d半量换液1次.培养第5天评估神经元,NSE染色、NMDAR1染色和台盼兰染色.结果:神经元纯度高(>95%),死亡率低(<5%),细胞形态好,交联充分,背景干净.结论:利用新生大鼠皮质建立了高质量、高产量、简便的神经元培养模型.【期刊名称】《神经损伤与功能重建》【年(卷),期】2016(011)006【总页数】3页(P471-472,475)【关键词】皮质神经元;原代培养;细胞模型;乳鼠【作者】张涛;胡怀强;王旭辉;牛兵;陶珍;曹秉振【作者单位】济南军区总医院济南250031;解放军第303医院南宁530021;济南军区总医院济南250031;第三军医大学大坪医院野战外科研究所重庆400042;济南军区总医院济南250031;济南军区总医院济南250031;济南军区总医院济南250031【正文语种】中文【中图分类】R741;R741.02神经元原代培养是研究神经系统疾病的重要基础模型[1,2]。

目前的模型大多存在一些瑕疵,如手术复杂,手术时间长,影响神经元活力;神经元纯度高,但死亡率也较高;价格昂贵,对实验器材及相关试剂要求高[3-5]等。

本课题组采用新生乳鼠皮质,建立了一种简单、廉价、高产、高纯度、高成活率、低背景的神经元培养模型。

1.1 材料1.1.1 实验动物与试剂新生12 h内Wsitar乳鼠,雌雄不拘,购自山东大学实验动物中心。

0.25%胰酶(含EDTA)(PYG0015)购于武汉博士德公司,Neurobasal-A(108880-022)、B27(17504-044)、glutamax(35050-61)、Hanks’Balanced Salt Solution(HBSS)液(14175-079)、小牛血清(16000-044)购于Gibco公司,DMEM/F12(SH30023)购于 Hyclone公司,DnaseI(D8071)购于上海联硕公司,抗体NSE(neuron-specific enolase)(SAB4200571)、多聚赖氨酸(P1399)购于Sigma公司,抗体NMDAR1(N methyl D aspartate recptor(ab134308)购于abcam公司。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. Preparation of coverslips1.1- Mass cultureOur standard mass cultures are plated on astrocytes. Those, in turn, are plated on glas s coverslips pre-coated with poly-D-lysine and laminin.Materials:. #1 coverslips. coverslip racks in a water-tight container (we made ours). poly-D-lysine (PDL) stock solution (1mg/ml in dd water). laminin stock solution (20 μg/ml in Hank’s BSS). 35 mm plastic culture dishes. culture hood equipped with UV lamp. sterile dd waterProcedure:. Place the coverslips in the racks and leave them in the culture hood under UV light for2 hrs.. Coat the coverslips with 12.5 μg/ml PDL (5ml PDL in 400ml sterile dd water) for 2hrs. in the culture hood.. Wash the coverslips with sterile dd water five times, in the culture hood.. Place the coverslips in the sterile 35mm dishes. Add 0.4ml laminin on top of the coverslips. Wait for 45’, then aspirate the excess soluti on1.2- Agarose-collagen microislandsThis protocol is based on protocols by Segal and Furshpan. Although th e following “ma cro-island” approach has allowed for greater neuronal survival, while still providing a high probability of connection between DRG and dorsal horn (DH) autapses or DH-DH co nnections can only be obtained with high probability in the conventional microislands.Materials:. #1 coverslips coated with PDL as above. type II agarose. Vitrogen 100 collagen, ~3 mg/ml. 35 mm plastic culture dishes. culture hood equipped with UV lamp. sterile dd water. atomizerProcedure:. Place coverslips in 35 mm dishes. Melt agarose in dd water at 0.2%, and place a drop on the top surface of each coversli p. The height of each drop is diminished as much as possible by removing excess soluti on with a pipette before the agarose gels.. Allow coated coverslips to air dry overnight in the culture hood at room temperature to form a thin film. For adequate drying, the dishes must be uncovered.. Spray the collagen onto the coverslips with the atomizer. We use a glass perfume bottl e which can be bought at Macy’s i n New York. In our experience that makes bigger dro plets than the Fisher chromatography atomizer, and is much less expensive (and looks better too). The atomizer is held parallel to the bottom of the dishes, about 25 cm abo ve and away from them. It is then pumped forcefully a few times.. The collagen islands can be examined with an inverted microscope. Their size should b e between 300 and 1000 m in order to maximize the probability of connection betweenany two neurons.. ADD A DROP OF COLLAGEN to the edge of the coverslip. That will serve as support f or a “feeder culture” that helps the survival of the insular neurons. The collagen is also allowed to dry overnight, under ultraviolet light.1.3- “Macro”-islandsWe find that few dorsal horn neurons seem to survive on the “traditional” atomizer-gene rated microislands, apparently regardless of neuron density. Although we still do not k now the reason for that, we developed a variation of the microisland method which gene rates bigger (est. 1-3 mm) islands. With this method, the probability of finding an usab le island in a giver coverslip is very much increased. Although, with such big islands, i nterconnected DH neurons are about as easy to find as in a mass culture, DRG neuron s, which seem to grow extremely long axons, are usually connected to most of the DH neurons present.Materials:same as in 2.2, except:.instead of the atomizer, a fine painting brush (#3 or smaller)Procedures:. All identical to 2.2, except for the collagen spraying.. Dip the paint brush in the collagen solution, then shake the excess solution off the bru sh.. Gently tap the brush on the edge of each dish, rotating the dish a few degrees after ea ch tap.. Control the quality of the islands by looking at the dishes through an inverted microsco pe. Some practice is required to optimize the islands.2. Dissection, plating, and maintenance of cells2.1- MediaIn our system, Neurobasal + B-27 seems to improve the survival of the neurons, as well as increase neurite extension/branching. However, it does not favor astrocyte survival. Overall, we tend to use it for the co-cultures in “macro-islands” and for the mass culture s in general, but not for the microislands on astrocytes.A. IMDM for AstrocytesPrepare stocks:. For Glucose/Glutamine/Pen-Strep solution, mix60 g of glucose in 200 ml dd water100 ml Glutamine 200 mM100 ml Penniciline-Streptomycine. Filter through a 0.22 μm filter, separate in 20 aliquots of 20 ml each and freeze. For FVM, mix15 mg 6,7-dimethyl-5,6,7,8-tetrahydropterine hydrochloride75 mg glutathione1.5 g ascorbic acidinto 300 ml dd water. Adjust the pH to 5.5, filter through a 0.22 μm filter, divide in 60 aliquots of 5ml each and freezeFinal medium preparation. Add375 ml IMDM100 ml Fetal Bovine Serum (20 %)20 ml Glucose/Glutamine/Pen-Strep5 ml FVM. Filter through a 0.22 μm filter and store in fridge after useB. MEM for NeuronsPrepare stocks:. Heat-inactivate Horse Serum at 60 C for 30 min; then, freeze in 10 ml aliquots . Freeze 8ml aliquots of Glucose (200mg/ml dd water). Freeze 2 ml aliquots of Vitamins for MEM. Freeze 1 ml aliquots of ……UFDU. Freeze 500 μl aliquots of NGF (10 μg/ml Hank’s BSS)Final medium preparation. Add180 ml MEM10 ml Heat-inactivated Horse serum8 ml glucose stock2 ml Vitamins for MEM. Add U/FDU and NGF as directed below, after plating the cells. Filter through 0.22 μm filterC. Neurobasal + B-27Prepare stocks. Freeze B-27 supplement in 4 ml aliquots. Freeze 0.5 ml Glutamine 200 mM aliquotsFinal medium preparation.Add195.5 ml Neurobasal4 ml B-270.5 ml Glutamine 200 mM2.2- Cortical astrocytesA. Dissection and platingMaterials:. 70% ethanol. Three 60 mm culture dishes with cold L-15 medium (keep on ice). One 35 mm culture dish with 2 ml S-MEM. Large scissors. Small iris scissors. Coarse dented forceps. Two fine forceps. Small spatula. 2.5% trypsin. IMDM for astrocytes. Sterile 15 ml centrifuge tube, with cap, and culture centrifuge. 0-1 day old rat pups (21-22 days from the plug date)Procedures::. Take out dissection instruments and place them in a tray full of ethanol (we recommen d covering the bottom of the tray with paper towel to preserve the tips of the fine force ps). Place 35mm dish with S-MEM in the culture incubator. Wipe pup's neck with 70% alcohol, cut off the head. Add 70% alcohol to the head, hold it with lab tissue. Cut open the skin longitudinally in order to see the whole superior face of the brain. Carefully cut open the skull longitudinally and pull open the two flaps to expose the br ain. Carefully scoop brain out of the skull with a spatula. Place the brain into a dish with L-15. Cut off the brainstem, and separate the two hemispheres. Clean out the hemispheres (i.e. remove the hippocampus, basal nuclei, etc.). You should only remain with the convexity of the hemispheres. Remove the meninges and the blood vessels. Place the two hemispheres into the 35mm dish with S-MEM. Mince the two hemispheres with the small iris scissors. Add 200 l of Trypsin (2.5%), return dish to the incubator, and let incubate for 20-25minutes. Add 2 ml of IMDM to the dish. Place all 4 ml into a 15 ml centrifuge tube and spin for about 8 min. Discard the supernatant and add 2 ml of IMDM to the pellet. Disperse the cells by repeatedly aspiring them with a 5ml pipette. Place the cells into a flask that has been coated with PDL. Add 11 ml of IMDM for a total of 13 ml in the flaskB. Splitting of the astrocytesMaterials:. 2.5% trypsin-EDTA. IMDM for astrocytes. Sterile-filtered Ara-C (1mM in Hank’s BSS)Procedures:Monitor the growth of the astrocytes :. When the astrocytes have grown confluent they are ready to be shaken and split. If the medium turns yellow remove it and add 13 ml of fresh mediumShaking and Splitting the Astrocytes:. Add Ara-C to the flask (130 l for 13 ml of IMDM in flask). Close the cap tightly. Place flask in a heated shaker, or in a shaker in an incubator or hot room. The speed of rotation should be high, but not so much that the medium will splash . Shake for 24 hrs. Remove the medium and add 13 ml of Trypsin-EDTA (2.5%). Incubate 20-25 minutes at 37 C. Add 13 ml of IMDM to stop the trypsin. Place the total 26 ml into a 50 ml centrifuge tube. Spin for about 10 minutes. Remove the supernatant and add 5 ml of IMDM. Disperse the cells gently by repeatedly pipetting the medium. Add 8 ml of IMDM for a total of 13 ml. Gently mix the cells by repeated pipetting, then split the medium into four flasks that have been previously coated with PDL (3.25 ml per flask). There will be 1/4 of brain per flask. Feed the astrocytes every two weeks or whenever there is a discoloration of the medium . Once the astrocytes have again grown confluent they are ready to be platedC. Astrocyte platingMaterials:. Trypsin-EDTA. IMDM for astrocytes. PDL- and laminin-coated coverslips in 35 mm dishes (see above for coating procedure) . 50 ml sterile centrifuge tubesProcedures:. Remove the medium from the flask. Add 13 ml of Trypsin-EDTA. Incubate 20-25 minutes at 37 C. Check to see that the astrocytes have lifted off the bottom by holding flask up to the li ght: the Trypsin-EDTA solution should be cloudy with astrocytes that have lifted and ar e floating in the solution. If there are still some stuck to the bottom, gently tap the sides or wait a little longer. Add 13 ml IMDM to stop the trypsin. Place the 26 ml into a 50 ml centrifuge tube and spin for approx. 10min.. Remove supernatant and add 5 ml of IMDM. Gently disperse cells with a 5 ml pipette. Add enough IMDM so that you can add 0.5 ml of cell-containing medium per 35 mm dish. Add 0.5 ml to each PDL- and laminin-coated coverslip (see above for coating procedure) . Go back to each dish and add 1.5 ml more of IMDM for a total of 2 ml per dish2.3- Dorsal horn neuronsA. Dissection and platingMaterials:. MEM for neurons OR Neurobasal +B-27. 70% ethanol. Three 60 mm culture dishes with cold L-15 medium (keep on ice). One 50 ml tube with ~35 ml cold L-15 (keep on ice). One 35 mm culture dish with 2 ml S-MEM. Large scissors (set of 3, largest is for cervical dislocation). Small iris scissors. Small regular scissors. Coarse dented forceps. Two fine forceps. 2.5% trypsin. U/FDU (Uridine/5’-fluoro-2’-deoxyuridine) 1mM stock solution. Sterile 15 ml centrifuge tube, with cap, and culture centrifuge. Pasteur pipettesProcedures:Preparation:. Look at the astrocyte dishes under the microscope to pick out the healthiest ones. Remove all of the IMDM from the dishes and replace with MEM for NEURONS or with Neurobasal + B-27. Thaw a 200 l aliquot of 2.5% trypsin and reserve. Add 2 ml of S-MEM into a 35 mm dish and place in the incubator. Clean dissection area and wipe with ethanol. Take out dissection instruments and place them in a tray full of ethanolRemove the embryo:. Select a pregnant rat in the 16th day of gestation. Anesthetize the rat by placing it in an air-tight chamber and saturating the atmosphere with CO2. Use the large scissors to kill the rat by cervical dislocation. Wipe the abdomen of the rat with ethanol. Cut through the skin, separate it from the peritoneum, and move the flaps of skin awa y from the surgical area. Squirt ethanol in the exposed peritoneum. Cut the peritoneum, and use coarse forceps to suspend the uterine tube, being careful to avoid the external surfaces of the rat. Cut a section of the tube containing 2 or 3 embryos (seen as bulges in the uterus), an d place in the L-15-containing centrifuge tube. Appropriately dispose of the dead ratRemove the spinal cord:. Cut open the uterine tube, then remove two embryos by cutting the placenta. Place embryos into a 60mm dish with cold L-15. Remove embryo from its sac. Transfer embryos to a new 60 mm dish with cold L-15 (use forceps to transfer the emb ryo by its head). Cut off the head, the umbilical cord and the tail. Using fine forceps and the smallest iris scissors place the embryo on its back, and pin the embryo down by its shoulders with the forceps. Using the small iris scissors, cut down the ventral length of the embryo. With the embryo still pinned down, remove viscera with another pair of forceps (be care ful not to puncture the spinal cord while you are removing the unwanted tissue). The ventral side of the vertebral column should now be visible; using the small iris scissors CAREFULLY cut down the length of the column to fully expose the spinal cord. With iris scissors closed, free the cord from the surrounding tissue by pressing down of f each side of the cord, as close to the cord as possible without actually touching it. Transfer cords to a new 60 mm dishDissect the dorsal horns:. Make sure the cord is on its ventral side (cord will curl in towards the ventral side, an d DRG's are closer to the dorsal side). Remove any DRG's. Use two pairs of fine forceps to pull apart the meninges at the rostral end of the cord . Gently press down the length of the medial aspect (ventral horn) of the spinal cord with the bottom of the closed iris scissors: the cord will open like a book, with the ventral horns in the center and the dorsal horns on each side. Cut off the tip of the cord that curls inwards. Using the iris scissors cut the cord longitudinally on each side to remove the lateral (do rsal) 1/3 of the cordDissociate the spinal cord:. Place the four strips of dorsal cord into the 35mm dish with S-MEM. Add 200 l of trypsin (2.5%) and incubate for 20-25min at 37 C. Remove all the S-MEM from the dish, carefully avoiding the dorsal horns. Add 2 ml of MEM for NEURONS or Neurobasal + B-27 and transfer the dorsal horns toa 15ml tube. Use a fire-polished Pasteur pipette to dissociate the tissue.Count neurons and dilute to appropriate density:. Mix cells in the tube and withdraw a small amount with a Pasteur pipette. Place a small drop of the cells into each of the wells of the hemocytometer, the coversli p should already be in place (also wet the two rails that the coverslips sits on so that i t won't fall off). Place hemocytometer upside down on the microscope. Count all the phase-bright neuron sized objects in 9 squares ( use the smaller griddedsquares). Total number of cells equals:number of cells counted x25/9x10,000x2mlse.g. 125 cells x 25/9 x 10,000 x 2mls = 6,944,444.5 cells in 2mls. Dilute dissociated cells to the appropriate volume with MEM for NEURONS or Neurobas al + B-27(cells are usually plated at 250,000 per dish or 25 times less for microisland cultures; fo r microislands intended for autapse studies, we usually include a very small number of DRG neurons, since they seem to improve survival of the DH neurons)Plate the neurons:. Place 1ml of cell suspension into each dish. Add 20 l U/FDU to each dish the following day (do NOT add again to the same cultur e)B. Maintaining the cultures. Feed cells once a week by replacing 1 ml of the medium with fresh medium. When feeding the cells, frequently change the pipette used for suction, to reduce cross-contamination2.4- Dissociated dorsal root ganglion (DRG) neuronsA. Dissection and platingMaterials:. MEM for neurons (see end of section for recipe). 70% ethanol. Three 60 mm culture dishes with cold L-15 medium (keep on ice). One 50 ml tube with ~35 ml cold L-15 (keep on ice). One 35 mm culture dish with 2 ml S-MEM. Large scissors (set of 3, largest is for cervical dislocation). Small iris scissors. Small regular scissors. Coarse dented forceps. Two fine forceps. 2.5% trypsin. U/FDU (Uridine/5’-fluoro-2’-deoxyuridine) 1mM stock solution. NGF 10 g/ml stock solution. Sterile 15 ml centrifuge tube, with cap, and culture centrifuge. Pasteur pipettesProcedures:For co-cultures, we usually dissect the DRGs after the dorsal horn, as they seem to be les s sensitive. Remove and dissect the embryos in the same way as for DH dissection, incl uding removal of the viscera. From then on, there are differences:Cut open the backbone. Insert the lower blade of small iris scissors in the vertebral cavity, through the neck o pening, and, by alternately cutting at either side of the midline, make two parallel cuts all the way down to the tail stub.. The cuts should be made as lateral as possible to the midline.. Use fine forceps to lift the “strip” of bone with care not to damage the underlying spin al cord.. Using 2 fine forceps, gently pull spinal cord away from the vertebrae, at each side. Do not pull the spinal cord out yet. This is just to loosen the DRGs from the vertebrae.I have found that this considerably improves DRG recovery.Remove the spinal cord with the attached DRGs. Using 2 fine forceps, pull the spinal cord from the vertebral cavity. Hold the spinal cord by its most rostral aspect, being sure to take hold of some dura, and pull it away, slo wly, while holding the body down with the other forceps.. Transfer each spinal cord with attached DRGs to the previously prepared 35 mm Petri dish containing 2 ml S-MEM.Extract DRGs. Hold the spinal cord down with one fine forceps and, with the other, pluck the DRGs a way like grapes (holding them by roots).. After removing all possible DRGs, discard the spinal cord in some other dish Enzymatic treatment and dissociation of DRGs. Add 200 μl of trypsin (2.5%) and incubate for 20-25min at 37 C. Remove all the S-MEM from the dish, carefully avoiding the dorsal horns. Add 2 ml of MEM for NEURONS and transfer the dorsal horns to a 15ml tube. Use a fire-polished Pasteur pipette to dissociate the tissue.. Centrifuge the tube for 5 min at 500-1000 rpm. Remove the supernatant and add re-suspend the pellet in 2ml MEM for neurons. Count neurons and dilute to appropriate density:. Mix cells in the tube and withdraw a small amount with a Pasteur pipette. Place a small drop of the cells into each of the wells of the hemocytometer, the coversli p should already be in place (also wet the two rails that the coverslips sits on so that i t won't fall off). Place hemocytometer upside down on the microscope. Count all the phase-bright neuron sized objects in 9 squares (use the smaller gridded squares). Total number of cells equals:number of cells counted x25/9x10,000x2 mle.g. 125 cells x 25/9 x 10,000 x 2 ml = 6,944,444.5 cells in 2 ml. Dilute dissociated cells to the appropriate volume with MEM for NEURONS (cells are us ually plated at 50,000 per dish for mass cultures, or 25 times less for microisland cult ures; for microislands intended for autapse studies, we usually include a very small nu mber of DRG neurons, since they seem to improve survival of the DH neurons)Plate the cells. Either mix DRG neurons with DH neurons or add 40 μl of concentrated cell suspension to dishes previously plated with DH neurons. Add 10μl NGF per dish.. Add 20μl U/FDU per dishB. Maintaining the cultures. Same as for DH monocultures, except that NGF must be added to the fresh medium at each feeding2.5- Dorsal root ganglion (DRG) explantsThis culture is identical to the dissociated DRG except in the plating procedures: the cell s are not dissociated, and special care must be taken to recover as many explants as po ssible and to appropriately place them in the coverslips. A glass Petri dish is used for t he final DRG removal because the DRG explants readily attach to the plastic culture dis hes, reducing the final yield.A. Dissection and platingMaterials:Similar to dissociated DRG culture, except::. add a 60 mm or smaller glass Petri dish with cold L-15, on ice. add wide-bore 1-200 μl pipette tips. add Pipetman or similar automatic pipettor. no dish with S-MEM is necessary. no trypsin is necessaryProcedures:. Add U/FDU to dishes BEFORE adding the explantsSimilar to dissociated DRG culture, until removal of spinal cord. Place spinal cords with DRGs in the glass Petri dish with L-15. Remove DRGs one by one, so that they will be well separated in the end. After discarding the bare spinal cords, take Petri dish to the hoodPlating the DRG explants:. Aspirate the medium from the Petri dish, rinsing the dish with medium if necessary to recover as many DRGs as possible. Centrifuge the tube for 5 min at 1000 rpm. Remove the supernatant, and re-suspend the cells in a final volume equivalent to 45 μl /dish. Using the wide-bore pipette tips, aspirate and eject medium several times to re-suspend explants and remove 40 μl of explant-containing medium. Carefully aim the tip at the center of the coverslip, and gently eject the medium. You have to actually touch the medium in the dish in order to get optimal placement of the explants in the center of the coverslip.. Repeat procedure, including re-suspending the explants, for every dish to be plated with explants.3. Supplies & SuppliersAscorbic acid: Gibco #850-3080B-27 supplement: Gibco #17504 -044Fetal Bovine Serum: Gibco #263-00061Hank’s BSS (Balanced Salt Solution) :Gibco #24020-125L-Glutamine 200 mM: Gibco # 25030-081MEM: Gibco # 11090-057Neurobasal: Gibco # 21103-0495Penicillin-Streptomycin: Gibco #1514-0122S-MEM (Modified Eagle Medium) : Gibco #320 -1385 AJTrypsin-EDTA (2.5%): Gibco# 25300-054Trypsin (2.5%): Gibco 610-5090 PETrypsin: Gibco #25300-054Vitamins for MEM (Gibco #11120-052)IMDM : Cellgro :#10-016-LVHorse Serum: JRH Biosciences #12449-77p (test sample before purchasing)Laminin: Collaborative Biomedical Products #402326,7-Dimethyl 5,6,7,8-tetrahydropterine HCl: Calbiochem #31636 Glutathione: Calbiochem #3541ARA-C (Cytosine-B-D arabino-furanoside) Sigma # C17685’-Fluoro-2’-Deoxyuridine: Sigma #F0503Glucose: Sigma #G7528 (highest grade)PDL (poly-D-lysine): Sigma #P7886Uridine: Sigma # U3750NGF (Nerve Growth Factor): Boehringer Mannheim #1362-348Vitrogen 100 collagen: Collagen Biomaterials #PC07014. Useful referencesAgarose-collagen microisland cultures:. Segal, M.M (1994) J.Neurophysiol.72:1874-83Neurobasal:. Brewer et al., (1993) J. Neurosci. Res. 35:567-576实验频道录入:Protocol责任编辑:admin ∙上一篇实验频道:Dissociated Cultures of Cerebellar Neurons∙下一篇实验频道:Proteasome Preparation from Human Brain。

相关文档
最新文档