信号与系统知识点总结
信号与系统知识点总结
信号与系统知识点总结信号与系统是电子信息科学与技术专业中的一门重要课程,它研究的是信号的产生、传输、处理和系统的分析、设计与控制等内容。
信号与系统是电子信息工程及其相关专业的基础课程,对于学习与工程实践有着重要的意义。
下面是信号与系统知识点的总结。
1.信号的分类信号是信息的载体,它可以是连续的或离散的,可以是周期的或非周期的,可以是冲激的或非冲激的。
根据信号的不同属性,可以将其分为连续信号和离散信号、周期信号和非周期信号、冲激信号和非冲激信号等。
2.连续信号与离散信号连续信号是定义在连续时间域上的信号,用函数表示;离散信号是定义在离散时间域上的信号,用数列表示。
连续信号和离散信号可以通过采样和重构的方法相互转换。
3.周期信号与非周期信号周期信号是在一定时间内重复出现的信号,其周期可以是有限的也可以是无限的;非周期信号是不具有周期性的信号,其能量或功率可以是有限的也可以是无限的。
4.冲激信号与非冲激信号冲激信号是单位面积上的单位冲量信号,可以看作是宽度趋近于零、幅度趋近于无穷大的矩形信号;非冲激信号是在一定时间范围内的非零函数。
5.信号的基本操作信号的基本操作包括平移、反褶、放大、缩小等。
平移操作是将信号在时间轴上平移,反褶操作是将信号在时间轴上反转,放大操作是增大信号的幅度,缩小操作是减小信号的幅度。
6.系统的分类系统是对信号进行操作或变换的装置或过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。
线性系统具有叠加性和比例性质,时不变系统的输出与输入的延迟无关。
7.线性时不变系统的性质线性时不变系统具有线性叠加性、时域平移不变性、时域卷积性质和频域相应性质。
线性时不变系统可以通过其单位冲激响应来描述,单位冲激响应与系统的输入信号进行卷积运算可以得到系统的输出信号。
8.系统的稳定性系统的稳定性是指对于有界输入信号,系统的输出是否有界。
稳定系统的输出信号不会无限增长,而不稳定系统的输出信号可能会无限增长。
信号与系统重要知识总结
信号与系统重要知识总结信号与系统是电子信息类专业中的一门重要课程,它是研究信号的产生、传输、处理与分析的学科。
信号与系统的重要知识主要包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算、系统的稳定性等。
以下是对信号与系统重要知识的总结。
一、信号的基本概念信号是随时间、空间或其他自变量变化的物理量。
根据自变量的不同,信号可以分为时域信号和频域信号。
时域信号是关于时间的函数,而频域信号是关于频率的函数。
二、信号的分类根据信号的性质和特点,信号可以分为连续时间信号和离散时间信号。
连续时间信号是在整个时间范围内存在的信号,离散时间信号仅在一些离散时间点存在。
三、信号的时域和频域表示时域表示是将信号表示为随时间变化的函数,常用的时域表示方法有冲激函数表示、阶跃函数表示和周期函数表示等。
频域表示是将信号表示为随频率变化的函数,常用的频域表示方法有傅里叶变换和拉普拉斯变换等。
四、线性时不变系统线性时不变系统(LTI)是信号与系统中的重要概念,它是指系统的输出只取决于输入的当前值和过去值,且满足线性叠加原理。
LTI系统具有很多重要性质,如时域稳定性、频域稳定性、因果性、时域线性和频域线性等。
五、卷积运算卷积运算是信号与系统中的重要运算工具,它描述了输入信号经过系统响应的输出信号。
卷积运算实质上是将两个信号相乘并对一个变量进行积分的过程。
在时域中,卷积运算可以表示为输入信号和系统冲激响应的卷积;在频域中,卷积运算可以使用傅里叶变换和反变换来进行。
六、系统的稳定性系统的稳定性是指当输入有界时,输出是否也是有界的。
稳定性是一个重要的系统性质,不稳定系统可能导致系统失控或发生崩溃。
稳定性的判定方法有多种,常用的方法有判定系统传递函数的极点位置和利用BIBO(有界输入有界输出)稳定性判据。
综上所述,信号与系统是电子信息类专业中的一门重要课程,它涉及信号的产生、传输、处理与分析的方法。
信号与系统中的重要知识包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算和系统的稳定性等。
信号与系统知识点
信号与系统信号分类:模拟、数字(连续、离散)三种基本系统互连:串联、并联(级联)、反馈对系统的描述:I/O方程、初始条件、边界条件因果:输出只取决于以前的和当前的输入时不变:特性不随时间改变线性:齐次性、可加性初始松弛条件一个离散时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积)一个连续时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积几份)卷积性质:交换律、分配律、结合律单位冲激响应对系统因果、稳定性的描述LTI系统的特征值、特征函数(离散、连续)周期性连续信号的傅里叶级数公式(各项意义)傅里叶级数存在条件(Dirichlet条件:周期内积分存在、有限个最大最小值、有限个不连续点)吉布斯现象(对存在不连续点的函数进行的傅里叶级数分析)帕斯瓦尔定理(能量与频谱的关系)时域卷积频域相乘;时域相乘频域卷积(系数)(离散:周期卷积)周期离散信号特征函数的性质(周期性N时域频域)与连续信号的区别系统函数、频率响应周期信号通过LTI系统:信号功率谱被改变(幅度、相位)时域连续频域非周期,时域周期频率离散傅里叶变换公式(傅里叶级数是傅里叶变换的抽样)傅里叶变换存在条件:能量有限、狄里赫利条件离散时间傅里叶级数以N为周期,傅里叶变换以2π为周期离散时间傅里叶反变换存在条件:无;变换:能量有限或绝对可和实信号的傅里叶变换共轭对称,实偶信号对应频域实偶,实奇频域虚奇周期卷积计算公式CTFT在时域和频域存在对偶关系线性相位:只时移不失真;非线性:时移的同时失真全通系统定义抽样:原始信号与抽样序列相乘(频域:频谱线性搬移)(零阶保持采样)奈奎斯特抽样速率(两倍信号最高频率)模拟角频率w,数字角频率Ω(Ω=wT)抽样前后傅里叶变换对应关系(以ws为周期和以2π为周期、系数)卷积的应用:AM调制(最大调制效率三分之一)、解调超外差式接收:先移到低频然后解调拉普拉斯变换:傅里叶变换不能分析不稳定系统以及不可和信号拉普拉斯变换与傅里叶变换的关系(不同:拉氏变换还需要收敛域来确定信号)收敛域(拉氏变换仅在收敛域内有定义)(合理变换的收敛域内不能有极点)(只与s的实部有关)(傅里叶变换存在条件)如果信号是有限长并且绝对可积,则收敛域是整个s平面单边信号收敛域:右单边对应右平面,左单边对应左平面,双边对应带状收敛域由极点确定,两极点之间,最右极点右边,最左极点左边,或不存在S平面几何分析法(确定拉氏变换幅频相频特性)拉氏变换确定系统稳定(ROC包含虚轴)、因果(RHP)初始、终值定理;应用(与拉氏变换零极点个数、已经s=0处是否有极点有关)框图表示系统函数单边拉氏变换(分析因果系统,用带有初始条件的微分方程描述系统)、微分性质中与初始条件有关全响应=零输入响应+零状态响应反馈:引入极点Z变换公式(收敛域只与z的模有关)Z变换和DTFT的关系(r=1)、LT关系(z=expsT)S平面和Z平面的关系(虚轴和单位圆)Z变换与因果(收敛域在圆外且包括无穷远或Z变换极点数不大于零点数)、稳定(收敛域包括单位圆或所有极点都在单位圆内或傅里叶变换存在)的关系图形分析(Z变换与频率响应的关系)线性常系数微分方程描述离散系统系统函数单边Z变换(收敛域总是在圆外并且包括无穷远处)(对因果系统,单边变换等于双边变换)(时移特性与n=-1处的值有关)。
信号与系统复习知识总结
重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε✧ 与)(n δ的关系: ()()(1)n n n δεε=-- ✧ 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。
信号与系统知识点
| T0 2
−T0 2
x(t) |2
dt
=
∞ n=−∞
Cn
2
A → A2
B
sin
(ω0t )
→
B2 2
C
cos
(ω0t
)
→
C2 2
6、 连续非周期信号表达为 e jωt (−∞ < t < ∞) 的线性组合
∫ x(t) = 1 ∞ X ( jω)e jωtdω 2π −∞
x(t) ⇔ X ( jω)
∫ X ( jω) = ∞ x(t)e− jωtdt −∞
7、常用连续非周期信号的频谱
δ (t ),u (t ),sgn (t ), e−αtu (t ),sin (ω0t ), cos (ω0t ), e± jω0t , Sa (ω0t ),δT0 (t) ,矩形波、三
角波等
8、傅里叶变换的性质(用会)
第 3 章 系统的时域分析
1、系统的时域描述
连续 LTI 系统:线性常系数微分方程
y (t )与x (t ) 之间的约束关系
离散 LTI 系统:线性常系数差分方程
y[k]与x[k ]之间的约束关系
2、 系统响应的经典求解(一般了解) 衬托后面方法的优越
纯数学方法
全解=通解+特解
y (t ) = yh (t ) + yp (t )
项)(一般了解)
h[k ] :等效初始条件法(一般了解)
4、 ※卷积计算及其性质
∫ y(t) = x(t) ∗ h(t) = ∞ x(τ )h(t −τ )dτ −∞ ∞
y [k ] = x[k]∗ h[k] = ∑ x[n]h[k − n] n=−∞
信号与系统知识点整理
信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
信号与系统知识点详细总结
信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结
信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
信号与系统知识点
信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。
本文将探讨一些与信号与系统相关的重要知识点。
一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。
连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。
离散信号则是在时间或幅度上存在着间隔,如数字音频信号。
二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。
周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。
信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。
三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。
时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。
频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。
四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。
线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。
时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。
五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。
卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。
相关则是通过计算信号之间的相似性,用于信号的匹配与识别。
六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。
它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。
傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。
七、采样与重构采样和重构是数字信号处理中常用的技术。
采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。
信号与系统重点概念公式总结
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
信号与系统知识点总结
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统重点总结
信号与系统重点总结一、信号的分类与特征1.根据信号的时间性质划分,可分为连续时间信号和离散时间信号。
连续时间信号在时间上连续变化,离散时间信号在时间上以离散的形式存在。
2.根据信号的取值范围划分,可分为有限长信号和无限长信号。
有限长信号在一定时间段内有非零值,无限长信号在时间上无边界。
3.根据信号的周期性划分,可分为周期信号和非周期信号。
周期信号在一定时间内以固定的周期重复出现,非周期信号没有固定的周期性。
4.根据信号的能量和功率划分,可分为能量信号和功率信号。
能量信号能量有限且为有限幅,功率信号在无穷时间上的平均能量有限。
二、连续时间信号的表示与处理1.连续时间信号的表示可以使用函数形式:s(t),其中t为连续变量,s(t)为连续时间信号的幅值。
2.连续时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,频域分析主要研究信号的频率和振幅关系。
3.连续时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、微分和积分等操作,以实现信号的滤波、平滑和增强等功能。
三、离散时间信号的表示与处理1.离散时间信号的表示可以使用序列形式:x[n],其中n为整数变量,x[n]为离散时间信号的幅值。
2.离散时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,在离散时间上进行运算,频域分析主要研究信号的频率和振幅关系,在离散频率上进行运算。
3.离散时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、差分和累加等操作,以实现信号的滤波、平滑和增强等功能。
四、连续时间系统的特性与分析1.连续时间系统可以通过输入信号和输出信号之间的关系来描述。
输入信号经系统处理后,输出信号的幅值和时间关系可以通过系统的传递函数来表示。
2.系统的特性包括因果性、稳定性、线性性和时不变性等。
因果性要求系统的输出只能依赖于过去的输入,稳定性要求系统的输出有界,线性性要求系统满足叠加原理,时不变性要求系统的特性不随时间变化。
信号与系统定义知识点总结
信号与系统定义知识点总结一、信号的基本概念1. 信号的定义:信号是指随时间或空间变化的某一物理量,它可以是电压、电流、声压、光强等。
信号可以是连续的,也可以是离散的。
2. 基本信号类型:常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号等。
3. 基本信号操作:信号的加法、乘法、平移、缩放等操作对信号的表示和分析非常有用。
二、连续时间信号的表示和分析1. 连续时间信号的表示:连续时间信号可以用数学函数来表示,如正弦函数、余弦函数、指数函数等。
2. 连续时间信号的性质:连续时间信号的周期性、奇偶性、能量和功率等性质对信号的分析和处理至关重要。
3. 连续时间信号的分析方法:傅里叶级数和傅里叶变换是分析连续时间信号最常用的方法,它可以将信号分解成一系列正弦、余弦函数的和,方便对信号进行分析。
三、离散时间信号的表示和分析1. 离散时间信号的表示:离散时间信号可以用序列来表示,如离散单位冲激函数、阶跃函数等。
2. 离散时间信号的性质:离散时间信号的周期性、能量和功率等性质对信号的分析和处理同样十分重要。
3. 离散时间信号的分析方法:离散傅里叶变换和Z变换是分析离散时间信号最常用的方法,它可以将离散时间信号转换成频域表示,方便对信号进行分析。
四、系统的基本概念1. 系统的定义:系统是对信号进行输入输出转换的装置或过程,它可以是线性系统、非线性系统,时变系统、时不变系统等。
2. 系统的性质:系统的稳定性、因果性、线性性、时不变性等性质对系统的分析和设计至关重要。
3. 系统的表示和分析:系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示和分析。
五、线性时不变系统的性质与分析1. 线性时不变系统的特点:线性时不变系统具有线性性质和时不变性质,这使得对其进行分析和设计更加方便。
2. 线性时不变系统的表示:线性时不变系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示。
3. 线性时不变系统的分析方法:冲激响应、频域分析、零极点分析等方法对线性时不变系统的分析非常重要。
信号与系统 知识点总结
信号与系统知识点总结1. 信号的分类信号可以分为连续信号和离散信号。
连续信号是在连续的时间范围内变化的信号,如声音信号、光信号等。
离散信号则是在离散的时间点上取值的信号,如数字信号、样本信号等。
信号还可以根据其能量或功率的性质来分类,能量信号是能量有限,而功率信号是功率有限。
对于周期信号和非周期信号,周期信号必须满足在某个周期内的所有时间点上的信号值是相同的。
2. 时域分析时域分析是研究信号在时间域上的特性,主要包括信号的幅度、相位、频率等。
时域分析有利于了解信号在时间上的变化规律,对于非周期信号可通过傅里叶变换将其分解为频谱成分,而对于周期信号可以利用傅里叶级数展开。
此外,还有拉普拉斯变换、Z变换等方法用于时域分析。
3. 频域分析频域分析是研究信号的频率特性,对于周期信号可以采用傅里叶级数展开进行频域分析,而对于非周期信号可以采用傅里叶变换进行频域分析。
频域分析有助于了解信号的频率分布情况,诸如频率分量的大小、相位、频率响应等。
4. 系统特性系统特性包括线性性、时不变性、因果性等。
线性时不变系统是信号与系统理论中最基本的概念之一,它是指系统对输入信号的线性组合具有线性响应,且系统的特性参数不随时间变化。
除了这些基本的特性外,系统还有稳定性、因果性、可逆性等特性。
稳定系统是指对于有限输入产生有限输出,因果系统则是指系统的输出只能由当前和过去的输入决定等。
5. 离散系统离散系统是指在离散的时间点上产生输出的系统,如数字滤波器、数字控制系统等。
离散系统与连续系统相比,具有离散时间的性质,其特性和分析方法也有所不同。
在离散系统中,常见的方法有差分方程描述、Z变换分析等。
而离散系统的特性与分析方法与连续系统有很大的差异,需要通过一定的数学工具进行分析与设计。
以上就是信号与系统的主要知识点总结,通过对这些知识的掌握,可以更好地理解信号的特性与系统的特性,从而应用于实际工程问题的处理与解决。
希望以上内容能对你的学习有所帮助。
信号与系统总结
信号与系统第一章总结1、信号的分类(1)周期信号和非周期信号两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
(2)连续信号和离散信号连续时间信号:信号存在的时间范围内,任意时刻都有定义。
用t 表示连续时间变量。
离散时间信号:在时间上是离散的,只在某些不连续的规定瞬时给出函数值,用n 表示。
(3)模拟信号,抽样信号,数字信号 模拟信号:时间和幅值均为连续的信号。
抽样信号:时间离散,幅值连续的信号。
数字信号:时间和幅值均为离散的信号。
(4)按照信号能量特点分类:能量受限信号:若信号f (t)的能量有界,即E<∞ ,则称其为能量有限信号,简称能量信号,此时P = 0。
功率受限信号:若信号f(t)的功率有界,即P<∞ ,则称为功率有限信号,简称功率信号,此时E = ∞。
PS :时限信号为能量信号;周期信号属于功率信号。
2、典型的确定性信号(1)指数信号: , α=0 直流(常数);α<0 指数衰减;α>0指数增长。
通常把称为指数信号的时间常数,记作τ,代表信号衰减速度,具有时间的量纲。
对时间的微分和积分仍然是指数形式(2)正弦信号:,振幅K ,周期T=ωπ2 ,初相衰减正弦信号:对时间的微分和积分仍然是同频率的正弦信号 (3)复指数信号:α1θdt t f E 2)(⎰∞∞-∆=⎰-∞→=222|)(|1lim T TT dt t f T P t K t f αe )(=)sin()(θω+=t K t f ()000sin e)(>⎩⎨⎧<≥=-αωαt t t K t f t()()t K t K t K t f t t stωωσσsin e j cos e )( e )(+=∞<<-∞=为复数,称为复频率j ωσ+=s rad/s的量纲为 ,/s 1 的量纲为 ωσ振荡衰减增幅等幅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<≠>≠= 0 ,0 0 ,0 0 ,0ωσωσωσ⎪⎩⎪⎨⎧=<=>==衰减指数信号升指数信号直流 0 ,0 0 ,0 0 ,0ωσωσωσ(4)抽样信号(重点): 性质:1. 偶函数2. 3. 4.5. 6.(5)钟形信号(高斯函数):3、信号的平移,反褶,展缩(1)平移:左加右减(注意符号)(2)反褶:关于y 轴对称(3)展缩:f(t)到f(at),图形变换(1/a)倍变换方法: 1. 先展缩:a>1,压缩a 倍; a<1,扩展1/a 倍 2. 后平移:+,左移b/a 单位;-,右移b/a 单位 3. 加上倒置:4、阶跃信号和冲激信号(1)单位阶跃信号(通常以u (t )表示)门函数:符号函数:ttt sin )Sa(=)Sa(lim ,即1)Sa(,00===→t t t t 3,2,1π,0)Sa(=±==n n t t ,⎰⎰∞∞-∞==πd sin ,2πd sin 0t t t t t t 0)Sa(lim=±∞→t t ()()t t t ππsin )sinc(=2e )(⎪⎭⎫ ⎝⎛-=τt E tf ()()()[]()0 >±=±→a a b t a f b at f t f 设()()[]a b t a f b at f -=±-()[(/)]f t f a t b a →±()()f t f at →210 0100)(点无定义或⎩⎨⎧><=t t t u ()⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=22ττt u t u t f ⎩⎨⎧<->=0101)sgn(t t t(2)单位冲激信号:①定义:狄拉克函数 只在t=0时,函数值不为0;积分面积为1;t =0 时,为无界函数。
信号与系统知识点汇总总结
信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。
通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。
信号与系统重要知识点
信号与系统重要知识点一、信号与系统的基本概念1.信号的定义:信号是随时间或空间变化的物理量,可以简单分为连续信号和离散信号两种。
2.连续信号与离散信号的区别:连续信号的取值是连续的,可以在任意时间点取值;离散信号的取值是离散的,只能在一些离散时间点取值。
3.系统的定义:系统是指将输入信号转换为输出信号的过程,可以根据输入输出信号的时间特性分为时不变系统和时变系统。
4.线性系统和非线性系统的区别:线性系统的输入输出之间满足叠加原理,即输入的线性组合对应于输出的线性组合;非线性系统则不满足叠加原理。
二、信号与系统的分类与特性1.基本信号:包括单位冲激函数、单位阶跃函数等,这些信号可以通过线性组合构成任意复杂的信号。
2.周期信号和非周期信号:周期信号在一定时间范围内具有重复的模式;非周期信号在时间上没有明显的重复性。
3.傅里叶级数:任意周期信号都可以表示为一系列正弦和余弦函数的叠加,这种表示方式称为傅里叶级数展开。
4.傅里叶变换:傅里叶变换将信号从时间域转换到频率域,可以获得信号在不同频率上的频谱特性。
5.拉普拉斯变换:拉普拉斯变换是一种复变函数变换,它将信号从时间域转换到复平面上的变换域,可以对线性时不变系统进行分析和设计。
三、系统的时域分析方法1.冲激响应:系统对单位冲激函数的响应称为冲激响应,可以通过冲激响应求解系统对任意输入信号的响应。
2.系统的重要特性:包括冲激响应、单位阶跃响应、单位脉冲响应等,这些特性可以通过求系统的单位冲激响应来得到。
3.系统的线性时不变特性:系统具有叠加原理,即输入的线性组合对应于输出的线性组合;同时,系统的时移和加权求和特性在时间上不变。
四、系统的频域分析方法1.系统的频率响应:系统对不同频率的输入信号的响应称为频率响应,可以通过傅里叶变换和拉普拉斯变换进行分析。
2.系统的传递函数:系统的传递函数是输入信号和输出信号的拉普拉斯变换之间的关系,是对系统频率响应的数学描述。
信号与系统重要知识总结
(3)时域无限,频域有限;时域有限,频域无限。
证明:时域有限信号可以看作是信号和门函数相乘,由傅里叶变换的性质,时域相乘对应频域卷积,门函数的傅里叶变换是 函数,故频域无限,由卷积区间的确定(高+高,低+低)的规律知卷积后在频域是无限的。
同理频域有限信号可以看作是门函数与频带有限信号的乘积,由傅里叶变换的性质,频域相乘对应时域卷积,故时域无限。
或者由傅里叶变换的对称性知,频域有限时域无限。
几何平均:N个数据的连乘积的开N次方根。
调和平均:一组数据的倒数和除以数据的项数的倒数。
统计平均:概率不同的数据的均值。
算数平均:一组数据的代数和除以数据的项数所得的平均数。概率相同的数据的均值。
标准差:是方差的算术平方根
均方根误差:RMSEroot-mean-square error亦称标准误差它是观测值与真值偏差的平方和观测次数n比值的平方根
基本概念
一维信号:信号是一个独立变量的函数时,称为一维信号。
多维信号:如果信号是n个独立变量的函数,就称为n维信号。
归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。
能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。
功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。
方波的傅里叶级数:频率较低的谐波,其振幅较大,它们组成方波的主体,频率较高的高次谐波振幅较小,它们主要影响波形的细节,波形中所包含的高次谐波越多,波形的边缘越陡峭。谐波中所包含的谐波分量愈多时,除间断点附近外,它愈接近原方波信号,在间断点附近,随着所含谐波次数的增高,合成波形的尖峰愈靠近间断点,但是尖峰的幅度并未明显减小。
信号与系统知识点总结
信号与系统知识点总结在现代科学和工程领域中,信号与系统是重要的基础理论。
它涉及到从电子通信、音频处理到图像识别等许多领域的技术和应用。
本文将对信号与系统的若干关键概念和知识点进行总结与概括。
一、信号的分类和性质信号可以被分为连续时间信号和离散时间信号两类。
连续时间信号是在定义域上连续存在的信号,它可以用连续的函数描述。
离散时间信号是在定义域上只取有限或无限多个离散点的信号,它可以用序列来表示。
信号还可以根据其能量和功率来分类。
能量信号是其能量有限的信号,如脉冲信号;功率信号是其功率有限的信号,如正弦信号。
这个概念对于信号在通信中的传输和处理具有重要意义。
二、线性时不变系统线性时不变系统(简称LTI系统)是信号与系统领域中最为重要的概念之一。
它的特点是输出与输入之间存在线性关系且不随时间发生变化。
LTI系统的性质可以由其冲激响应来描述。
冲激响应是当输入信号为单位冲激函数时,LTI系统的输出。
通过对冲激响应进行线性叠加和时间平移,可以得到系统对任意输入信号的响应。
三、卷积运算卷积运算是在信号与系统中常用的一种数学运算方法。
它可以将两个信号进行融合和混合,得到新的信号。
连续时间信号的卷积可以通过函数乘积和积分运算得到。
离散时间信号的卷积可以通过序列元素的加权和得到。
卷积运算在信号的滤波和频域分析中扮演着重要的角色。
例如,通过卷积可以实现低通滤波和高通滤波,以及信号的快速傅里叶变换。
四、傅里叶变换傅里叶变换是将一个信号从时域变换到频域的数学工具。
它可以将信号表示为一系列复数的和,从而揭示信号的频率分量和功率分布。
连续时间信号的傅里叶变换可以通过积分运算得到,离散时间信号的傅里叶变换可以通过离散的和运算得到。
傅里叶变换在信号压缩、频谱分析和滤波等方面有广泛应用。
例如,通过傅里叶变换可以将音频信号从时域转换为频域,实现音频的压缩和编码。
五、采样定理与信号重构在实际应用中,信号往往是以离散时间形式进行采样和处理的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π 2
π
2
3.双边指数函数 f(t) = e–|t| , >0
Fj
1
O
π2 O π 2
ft
1
O
t
F (j) 0 et e jt d t et ej t d t 1 1 2
0
j j 22
F j
2
F(jω) = | F(jω)|e j (ω)
O
4.冲激函数(t)、´(t)
( t) ( t) e jt d t ( t )dt 1
⑵ 复频域:拉普拉斯变换,t→s;对象连续信号
⑶ z 域:z 变换,k→z;对象离散序列
设 f(t)=f(t+mT)----周期信号、m、T、 =2/T 满足狄里赫利 Dirichlet
条件,可分解为如下三角级数—— 称为 f(t)的傅里叶级数
f
(t)
a0 2
n 1
an
cos(nt)
n 1
bn
傅里叶级数的指数形式
虚指数函数集{ejnΩt,n=0,±1,±2,…}
f(t)
Fn
ejnt
n
系数 Fn 称为复傅里叶系数
Fn
1 T
T
2T f ( t ) e j n t d t
2
欧拉公式
cosx=(ejx + e–jx)/2 sinx=(ejx - e–jx)/2j
傅里叶系数之间关系
F n F n e jn
1A 2
n
e jn
1( 2
a
n
j
bn
)
Fn
1 2
a
2 n
b
2 n
1 2
An
n arctan
bn an
an An cosn
bn An sinn
n 的偶函数:an , An , |Fn |
n 的奇函数: bn ,n
常用函数的傅里叶变换
1.矩形脉冲 (门函数) 记为 gτ(t)
j
ε(k)*ε(k)= (k+1)ε(k) f(k)*δ(k) = f(k) , f(k)*δ(k– k0) = f(k – k0) f(k)*ε(k) =
f1(k – k1)* f2(k – k2) = f(k – k1 – k2) [f1(k)* f2(k)] = f1(k)* f2(k) = f1(k)* f2(k) f1(t)*f2(t) = f(t)
' ( t)
'
(
t
)
e
jt d t
de dt
jt
t
0
j
'(t) f (t) d t f '(0)
6. 符号函数
f(t) = e–tε(t), >0
1
j
1,
sgn(t)
t0 0, t 0 1, t0
sgn( t ) lim f ( t )
0
sgn(t ) 1
O
t
1
相位频谱
π
2π
0 2π 4π
π
2.单边指数函数
ft
1
f(t) = e–tε(t), >0
O
t
F (j)
0
e
t
j
e
t
d t j
1e( j)t 0
1
j
频谱图 F(j) 1 j
幅度频谱
F j
1
22
0,
,
F j 1
F j 0
相位频谱: arctan
0,
,
,
0
j
F (j) / 2 e jt d t e 2 e 2
/ 2
j
2 sin(
2
)
Sa(
)
2
F(jω)一般是复函数: F(jω) = | F(jω)|e j (ω)
幅度频谱
F j
2 sin() F ( j) 2 Sa(
2π
) 2
O 2π 4π
F j
频宽:
B
2π
或
Bf
1
2π O 2π 4π
常用拉普拉斯变换总结
1 、 (t)0←(t)→e 1s,tdt >1 -∞
(t) ←→
def
F(s)
0
f (t )e std t
1
s s0 > -Re[s0] 2、指数函数e-s0t ε(t)←→
es0t(t) e e s0t st dt e(ss0)t dt 1
0
0
s s0
1
s s0 > Re[s0] 3、指数函数es0t ←→
sin(nt)
注意: an 是 n 的偶函数, bn 是 n 的奇函数
f
(t)
A0 2
Ancos(nt
n1
)n
式中,A0 = a0 An a 2 nb 2 n
n arctan
bn an
可见:An 是 n 的偶函数, n是 n 的奇函数。an = Ancosn, bn =
–Ansin n,n=1,2,…
f(t ) F(j) 1 j1
j2 j 2 2
sgn(t)
lim0 F
(j)lim02j22
2
j
7. 阶跃函数
e (t)
1
(t) 1 1 sgn(t) () 1
22
j
0t
1,
sgn(t)
t0 0, t 0 1, t0
1. F 变换对
1←→2() sgnt 2
j
2. 常用函数 F 变换对:
时域分析f :(t)以 冲激f函(数(基本)信d,号 t为 ) 任意输入信号可分解为一系列
冲激函数之和,即
而任意信号作用下的零状态响应yzs(t)
yzs(t) = h(t)*f(t) 用于系统分析的独立变量是频率,故称为频域分析。 学习 3 种变换域:频域、复频域、z 变换
⑴ 频域:傅里叶表变换,t→ω;对象连续信号
4、(t)或 1 ←→1/s ,> 0
5、若 s0 为实数,且 s0 =±a(a>0) , 则
eat(t) 1
a
eat(t) 1
a
sa
sa
6、若 s0 为虚数,且 s0 =±jβ, 则
e jt(t ) 1 s j
0
e jt(t)
1
s j
0
s
s2 20 cos0t = (ej0t+ e-j0t )/2 ←→
0 s2 2 sin0t = (ej0t– e-j0t )/2j ←0→
拉普拉斯变换性质