第一章波函数和薛定谔方程

合集下载

量子力学 第1章-1-2(第3讲)

量子力学 第1章-1-2(第3讲)

越来越多的实验事实证明,波函数的位相是非常重要的物理 概念,只限于统计解释还不能完全穷尽对波函数的认识。
量子波函数的概率解释有不足
玻恩的概率解释:“波函数的振幅的平方是粒 子被发现的概率” 。不是完整诠释,只关注 所谓的可观察量(振幅),忽略了相位(因为 不属于可观察量)。
杨振宁说,规范场论就是相位场。相位是其根 本。振幅与相位合起来用复数表示。
x=0
dx
由于
d 2(x,t)
dx2
0
x0
故 x 0 处,粒子出现概率最大。
注意
(1)归一化后的波函数
(r , t
)
仍有一个模为一的因
子 ei 不定性( δ为实函数)。
若 r,t 是归一化波函数,那末, r,tei 也是
归一化波函数,与前者描述同一概率波。
(2)只有当概率密度 (r,t) 对空间绝对可积时,才
2
(r,t) dx
A2
ea2x2 dx
A2
1
a2
归一化常数
1/ 2
A a/
归一化的波函数1/ 2Fra bibliotek1a2x2 i t
(r,t) a / e 2 2
(2)概率分布: (x, t) (x, t) 2 a ea2x2
(3)由概率密度的极值条件
d(x, t) a 2a2 xea2x2 0
相位是复杂性之源,相位导致纠缠,纠缠导致 记忆与电子相干。自由度的纠缠和相干,往往 会造就许多意想不到的结果。
作业题
1. 下列一组波函数共描写粒子的几个不同状态? 并指出每
个状态由哪几个波函数描写。
1 ei2x / , 4 ei3x / ,
2 ei2x/ , 5 ei2x / ,

波函数与薛定谔方程

波函数与薛定谔方程

波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。

波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。

本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。

一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。

对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。

波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。

波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。

另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。

二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。

薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。

薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。

三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。

解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。

通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。

薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。

波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。

波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。

四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。

首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。

这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。

其次,波函数还包含了粒子的相位信息。

波函数 薛定谔方程

波函数 薛定谔方程
2 2
(3)粒子能量 一维运动( 一维运动(沿
E 是一定值
x 轴),V(x) 不显含 t ,一维定态问题
2 d 2 H = +V(x) 2 2m dx
2 d 2ψ(x) +V (x)ψ(x) = Eψ(x) 2 2m dx
d 2ψ(x) 2m + 2 [E V(x)] (x) = 0 ψ 2 dx
ψ1(x) 与 ψ1 (x) 描写粒子的同一个状态
所以只取
n =1
A由归一化条件求出
ψ (x)
2
:粒子出现在附近单位长度间隔中的几率
粒子出现在

x ~ x + dx 之间的几率 dW = ψ(x) dx
2
1 = ∫ ψ (x) dx = ∫0 ψ (x) dx = ∫0 x)

a
2
a
2
a
nπx A sin dx a
2 2
=∫
0
1 2nπx 1 2 a 2nπx a A (1 cos )dx = A (x sin ) 2 a 2 2nπ a 0
2
1 2 = Aa , 2
2 A= a
2 nπx sin ψn (x) = a a 0
0< x <a x < 0, x > a
nπ En = 2ma2
2
2 2
∝ E , E 不再解释为能量密度
2
2
三、波函数的标准条件和归一化条件 经典力学: 某时刻质点在什么位置? 动量是多少? 经典力学: 某时刻质点在什么位置? 动量是多少? 轨迹方程? 轨迹方程? 量子力学: 微观粒子的波函数是什么? 量子力学: 微观粒子的波函数是什么? 粒子出现在空间各点上的几率是多大? 粒子出现在空间各点上的几率是多大? 粒子动量取各种可能数值的几率是多大? 粒子动量取各种可能数值的几率是多大? 某时刻粒子出现在空间各点上的几率是唯一的、完全确定的 某时刻粒子出现在空间各点上的几率是唯一的、 波函数: 波函数:单值函数 某时刻粒子出现在空间各点上的几率是有限的 波函数: 波函数:有限的 粒子出现在空间各点上的几率分布及随时间的变化是连续的 波函数: 波函数:连续的

波函数和薛定谔方程

波函数和薛定谔方程

px ∂ 2Ψ = − Ψ, ∂x 2 h2
2
py ∂ 2Ψ = − Ψ 2 2 ∂y h pz ∂ 2Ψ = − Ψ ∂z 2 h2
2
2
h p2 2 − ∇ Ψ= Ψ 2m 2m (3)
是同一个量子态的不同表述
Ψ (r,t)是以坐标 r 为自变量的波函数, 坐标空间波函数,坐标表象波函数; C(p, t) 是以动量 p 为自变量的波函数, 动量空间波函数,动量表象波函数; 二者描写同一量子状态。
r r Ψ (r , t ) 与 c( p, t ) 有类似的物理意义 r 2 Ψ (r , t ) 是指在t时刻,粒子在r处出现的概率密度 r 2 c( p, t ) 是指在t时刻,粒子具有动量p的概率密度
与能量为E及动量为p 的粒子相联系的波(物质波) h E 的频率及波长为 λ= ν = p i rr h ( p⋅r − Et ) r 自由粒子平面波函数 ψ (r , t ) = Ae h
2.1 波函数的统计解释
另一种理解: 为防止电子间 发生作用,让 电子一个一个 地入射,发现 时间足够长后 的干涉图样和 大量电子同时 入射时完全相 同。(1989) 粒子是基本的,电子的波动性是大量电子之 间相互作用的结果。
2.3 含时薛定谔方程
2.3.1 经典粒子的动力学方程
r r dr t = t 0时刻,已知初态是: r0 , p0 = m dt
t = t0
2r r d r 粒子满足的方程是牛顿 方程: F = m 2 dt
从牛顿方程,人们可以确定以后任何时刻 t 粒子的状态 r 和 p 。因为初条件知道的是坐标及其对时间的一阶导 数,所以方程是时间的二阶常微分方程。
dτ ∫ ∞
→∞
2.2 态叠加原理

波函数和薛定谔方程

波函数和薛定谔方程

波函数和薛定谔方程波函数和薛定谔方程是量子力学中两个重要的概念。

波函数是用来描述量子系统状态的数学函数,而薛定谔方程则是描述波函数随时间演化的微分方程。

本文将介绍波函数和薛定谔方程的基本原理和应用,并探讨它们对量子力学的重要性。

一、波函数的概念和性质1. 波函数的定义波函数是量子力学中用来描述量子系统的数学函数。

它通常用符号ψ来表示,且是复数函数。

波函数的模的平方表示了找到该系统处于某个状态的概率。

2. 波函数的物理意义波函数的物理意义是描述了量子系统的可能状态和其对应的概率分布。

通过对波函数的求模平方,我们可以得到量子系统在不同状态的概率分布图。

3. 波函数的归一化条件波函数必须满足归一化条件,即在整个空间内积分后等于1。

归一化条件保证了系统一定会处于某个状态,并且概率总和为1。

二、薛定谔方程的基本形式和解析解1. 薛定谔方程的基本形式薛定谔方程是描述量子系统波函数在时间上演化的基本方程。

一维情况下,薛定谔方程可以写为:iħ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ式中符号的含义为ħ为约化普朗克常数,m为粒子的质量,V(x)为势能函数。

2. 薛定谔方程的解析解对于某些特定的势能函数,薛定谔方程存在解析解。

比如自由粒子情况下的薛定谔方程的解为平面波,简谐振子情况下的薛定谔方程的解为倒谐波。

三、波函数和薛定谔方程的应用1. 粒子在势阱中的行为波函数和薛定谔方程被广泛应用于研究粒子在势阱中的行为。

通过对势能函数和初始条件的设定,可以计算出粒子的波函数演化,并分析粒子的行为,比如能量谱和态密度等。

2. 电子在固体中的行为波函数和薛定谔方程在固体物理学中有着重要的应用。

通过求解薛定谔方程,可以得到电子在晶体中的波函数,从而研究电子的能带结构、载流子运动以及材料的电导性等性质。

3. 分子和化学反应波函数和薛定谔方程在化学领域中也有广泛的应用。

通过求解薛定谔方程,可以得到分子的波函数,从而研究化学反应的动力学过程、反应速率以及分子能谱等性质。

波函数及薛定谔方程详解课件

波函数及薛定谔方程详解课件

03ቤተ መጻሕፍቲ ባይዱ
CATALOGUE
薛定谔方程在量子力学中的应用
无限深势阱
无限深势阱模型描述粒子被限 制在一定空间范围内运动的情 形,通常用于描述微观粒子在
势能无限高区域的行为。
在无限深势阱中,波函数具有 特定的边界条件,即在势阱边
界处波函数为零。
薛定谔方程在无限深势阱中的 解为分段函数,表示粒子在不 同势阱内的能量状态。
波函数及薛定 谔 方程详解课件
contents
目录
• 波函数简介 • 薛定谔方程概述 • 薛定谔方程在量子力学中的应用 • 波函数与薛定谔方程的关系 • 实验验证与实例分析 • 总结与展望
01
CATALOGUE
波函数简介
波函数的定 义
波函数是一种描述微观粒子状 态的函数,它包含了粒子在空 间中的位置和动量的信息。
06
CATALOGUE
总结与展望
波函数与薛定谔方程的意义
波函数
波函数是描述微观粒子状态的函数, 它包含了粒子在空间中的位置、动量 和自旋等所有信息。通过波函数,我 们可以计算出粒子在给定条件下的行 为和性质。
薛定谔方程
薛定谔方程是描述波函数随时间变化 的偏微分方程,它反映了微观粒子在 运动过程中所遵循的规律。通过求解 薛定谔方程,我们可以预测粒子在不 同条件下的行为和性质。
时间相关形式
在有限域中,薛定谔方程的形式为 ifrac{dpsi}{dt}=Hpsi,其中H为哈密 顿算子。
薛定谔方程的解
分离变量法
对于具有周期性势能的情况,可以将波函数分离为几个独立的函数,分别求解 后再组合得到原方程的解。
微扰法
对于势能存在微小扰动的情况,可以通过微扰法求解薛定谔方程,得到近似解。

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是描述微观粒子行为的一门物理学科,它提出了一种新的描述方式——波函数。

波函数是量子力学的核心概念,它可以用来描述粒子的位置、能量、动量等性质。

而薛定谔方程则是描述波函数随时间演化的数学表达式。

本文将重点讨论波函数与薛定谔方程在量子力学中的重要性和应用。

一、波函数的概念与性质波函数(ψ)是量子力学中对粒子状态的描述。

它是一个复数函数,包含了粒子位置、能量等信息,并且满足归一化条件,即在整个空间内的积分平方和为1。

波函数的模的平方,即|ψ|²表示粒子在某个位置上的出现概率密度。

波函数具有叠加原理,也就是说多个波函数可以叠加形成新的波函数。

这个叠加过程可以用波函数的线性组合来表示,其中各个波函数所对应的系数表示了它们的相对贡献程度。

二、薛定谔方程的形式与意义薛定谔方程是描述波函数随时间演化的方程,它是由薛定谔于1925年提出的。

薛定谔方程的一般形式为:Ĥψ = Eψ其中Ĥ为哈密顿算符,E为能量本征值,ψ为波函数。

这个方程描述了体系中的粒子在不同的势场中的运动规律。

三、波函数与薛定谔方程的应用1. 原子结构与电子行为在原子结构研究中,波函数被用来描述电子在原子核周围的分布情况。

薛定谔方程可以求解出不同原子的能级和电子轨道分布,从而解释和预测原子光谱的性质。

2. 材料物性与波函数分析波函数可以用来研究材料的结构和物性。

通过计算材料中的波函数,可以得到材料的能带结构、电子密度分布等信息,从而揭示其导电性、磁性等特性。

3. 量子力学中的粒子碰撞在粒子碰撞研究中,波函数描述了入射粒子和出射粒子之间的相互作用。

利用薛定谔方程求解波函数,可以计算出散射截面、角分布等碰撞参数。

4. 量子计算和量子通信波函数的叠加性为量子计算和量子通信提供了基础。

量子计算利用波函数的叠加原理,利用量子态的叠加特性进行并行运算,从而加快计算速度;量子通信利用波函数的纠缠性质,实现了安全的信息传输。

量子力学电子教案波函数和 薛定谔方程

量子力学电子教案波函数和 薛定谔方程
第二章
波函数和 薛定谔方程
微观粒子的基本属性不能用经典语言确切描述。
量子力学用波函数描述微观粒子的运动状态,波函数所 遵从的方程——薛定谔方程是量子力学的基本方程。 一、 物质波的波函数及其统计解释
1. 波函数: 概率波的数学表达形式, 描述微观客体的运动状态
(r , t ) ( x, y, z, t )
对屏上电子数分布 作概率性描述
一般 t 时刻,到达空间 r(x,y,z)处某体积dV内的粒子数 : 2 d N N | | d V
| ( x, y, z, t ) | *
2
dN N dV
| ( x, y, z, t ) |
2
的物理意义:
• t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比 • t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率 • t 时刻,粒子在空间分布的概率密度
2. 波函数的强度——模的平方 2 波函数与其共轭复数的积 | | * 例:一维自由粒子:
| ( x, t ) | * 0e
2 i ( E t p x x ) i h ( E t p x x )
0e
0
2
3. 波函数的统计解释
1 2
| | | 1 2 | 1 1 * 2 2 * 1 2 * 1 * 2
2 2
干涉项
4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1
|
V
| dV
2

V
dN N dV

三维定态薛定谔方程
一般形式薛定谔方程

量子力学课件1-2章-波函数-定态薛定谔方程

量子力学课件1-2章-波函数-定态薛定谔方程

V (x,t) (x,t)
假定在 t 0 时刻波函数归一化,随时间演化时它能否保持归一化? 答案:薛定谔方程自动保持波函数的归一化.
证明:
d (x,t) 2 dx (x,t) 2 dx.
dt
t
2 * * *
i
t
( x, t )
2
2m
d2 dx2
V
( x, t )
接收器上从来没有在两个以上地方同时接收到电子的一部分。电子表现
出“粒子性”。
2)电子表现出的干涉是自己与自己的干涉,不是不同电子之间的
干涉,“波动性”是单个电子的行为。
问题:一个电子怎样通过双缝产生干涉现象呢? 结论:微观粒子与物质相互作用时,表现粒子性;运动过程中体现波动性。
§ 3 概率
假设一个屋子中有14个人,他们的年龄分布为:
j2 j2P( j). 0
注意:一般情况下平方的平均是不等于平均的平方的。
普遍地, 可以给出j的函数的平均值
f ( j) f ( j)P( j).
0
显然,两个图具有同样的中值、平均值、最可几值和 同等数目的元素,如何表示出分布对平均值“弥散”程度 的不同?
j j j ,
2 (j)2 . 分布方差
经典物理描述物体运动的范式和途径:
宏观物体,经典力学: (1)求出任意时刻物体的位置 x(t)
(2)求出速度v dx ,动量p mv ,动能 T 1 mv2
dt
2
方法: 牛顿方程
m
d2x dt 2
V (x,t) x
,
F(x,t) V (x,t) x
初始条件 x(0), v(0)
等等,
微观粒子,量子力学:
14岁 1人,

波函数及薛定谔方程

波函数及薛定谔方程
N ⋅ dV | Ψ ( x , y , z , t ) |2 的物理意义:
t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比
t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率
t 时刻,粒子在空间的概率密度分布
注意:
物质波的波函数不表示任何实在物理 量的波动,不描述介质中运动状态(相 位)传播的过程,
NN
标准条件
Ψ是单值、有限、连续的 。
二、薛定谔方程: 是波函数 Ψ所遵从的方程 — 量子力学的基本方程 , 是量子力学的基本假设之一,其正确性由实验检验。
1. 建立 (简单→复杂, 特殊→一般)
一维自由粒子的振幅方程
Ψ (x,t)
=Ψ e−
i ℏ
(
E
t

px

x
)
0
=
Ψ
0e
+
i ℏ
p
x
⋅x
−i Et
2 x
2m
代入
d2ψ ( x) dx2
=

px ℏ2
2
ψ
(
x
)*

d 2ψ ( x ) dx2
+
2 mE ℏ2
ψ
(x)
=
0
即 一维自由粒子的振幅方程
p
2 x
=
2mE
一维定态薛定谔方程
粒子在力场中运动,且势能不随时间变化
E
=
Ek
+
Ep
=
p
2 x
2m
+U
px2 = 2m(E −U )
代入
d2ψ ( x) dx2
∴ 建立关于振幅函数 ψ(x)的方程 —— 振幅方程

第一章+薛定谔方程,一维定态问题

第一章+薛定谔方程,一维定态问题

第一章+薛定谔方程,一维定态问题
薛定谔方程是量子力学中最基本的方程之一。

它描述了粒子在势场中的运动状态。

在一维定态问题中,我们将研究势场为常数的情况。

薛定谔方程的一般形式为:
$$ ihbarfrac{partial}{partial t}Psi(x,t) = hat{H}Psi(x,t) $$
其中,$Psi(x,t)$ 是波函数,$hat{H}$ 是哈密顿算符,$hbar$ 是普朗克常数除以$2pi$。

对于一维定态问题,我们假设势场 $V(x)$ 是常数。

此时,哈密顿算符可以写成:
$$ hat{H} = -frac{hbar^2}{2m}frac{partial^2}{partial x^2} + V(x) $$
其中,$m$ 是粒子质量。

根据定态解的定义,波函数可以表示为:
$$ Psi(x,t) = psi(x)e^{-iEt/hbar} $$
其中,$E$ 是能量。

将波函数代入薛定谔方程中,得到:
$$ -frac{hbar^2}{2m}frac{d^2psi}{dx^2} + V(x)psi = Epsi $$ 这是一维定态问题的薛定谔方程。

解决这个方程,可以得到粒子的能量和波函数,从而描述粒子在势场中的运动状态。

- 1 -。

波函数及薛定谔方程

波函数及薛定谔方程

即:
Ψ dV = 1 ∫∫∫
2
波函数归一化条件
波函数满足的条件:单值、有限、连续、 波函数满足的条件:单值、有限、连续、归一 满足的条件
四 薛定谔方程的建立
1、一维自由粒子薛定谔方程的建立 、一维自由粒子薛定谔 薛定 薛定谔方程是量子力学基本假设之一, 薛定谔方程是量子力学基本假设之一,不能理论推导证明 以一维自由粒子为例
2 mE 2mE = k2 2 ℏ
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
d Φ 2 +k Φ =0 2 dx
2
(2)确定常数 A、ϕ ) 势阱无限深 ~ 阱外无粒子
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
Φ (a) = 0
(x≤0 x≥a) 由波函数连续性 连续性, 由波函数连续性, 边界条件 : Φ (0) = 0 ϕ=0 Asinϕ = 0 Asinka =0
-费曼- 费曼-
玻恩( 的波函数统计解释: 玻恩(M..Born)的波函数统计解释 的波函数统计解释
t 时刻粒子出现在空间某点 r 附近体积元 dV
中的概率, 成正比。 中的概率,与波函数平方及 dV 成正比。 内概率: 出现在 dV 内概率:
dW = Ψ ( r , t ) dV
2
dV=dx dy dz 概率密度: 概率密度: w = dW = Ψ ( r , t ) 2 = ΨΨ
用指数形式表示: 用指数形式表示: 波的强度
x
y = Ae
I∝A
−i 2π ( vt − )
λ
)
x
λ
取复数实部

波函数和薛定谔方程

波函数和薛定谔方程

波函数和薛定谔⽅程波函数和薛定谔⽅程⼀、波函数的统计解释、叠加原理和双缝⼲涉实验微观粒⼦具有波粒⼆象性(德布罗意假设);德布罗意关系(将描述粒⼦和波的物理量联系在⼀起) k n h p h E ====λων物质波(微观粒⼦—实物粒⼦)引⼊波函数(概率波幅)—描述微观粒⼦运动状态对于微观粒⼦来说,如果不考虑“⾃旋”⼀类的“内禀”态,单值波函数是其物理状态的最详尽描述。

⾄少在⽬前量⼦⼒学框架中,我们不能获得⽐波函数更多的物理信息。

微观粒⼦的状态⽤波函数完全描述——量⼦⼒学中的⼀条基本原理该原理包含三⽅⾯内容:粒⼦的状态⽤波函数表⽰、波函数的统计解释和对波函数性质的要求。

要明确“完全”的含义是什么。

按着波函数的统计解释,波函数统计性的描述体系的量⼦态,若已知单粒⼦(不考虑⾃旋)波函数)(r ψ,则不仅可以确定粒⼦的位置概率分布,⽽且如动量等粒⼦的其它⼒学量的概率分布也均可通过波函数⽽完全确定。

由此可见,只要已知体系的波函数,便可获得该体系的⼀切物理信息。

从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒⼦的状态⽤波函数完全描述。

必须强调指出,波函数给出的有关粒⼦的“信息”本质上是统计性质的。

例如,在适当条件下制备动量为p 的粒⼦,然后测量其空间位置,我们根本⽆法预⾔测量的结果,我们只能知道获得各种可能结果的概率。

很⾃然,⼈们会提出这样的疑问:既然量⼦⼒学只能给出统计结果,那就只需引⼊⼀个概率分布函数(象经典统计⼒学那样),何必假定⼀个复值波函数呢?事实上,引⼊复值波函数的物理基础,乃是量⼦⼒学中的⼜⼀条基本原理——叠加原理。

这条原理告诉我们,两种状态的叠加,绝不是概率相加,数学求和)。

正因如此,在双缝⼲涉实验中,我们才能看见屏上的⼲涉花纹。

实物粒⼦双缝⼲涉实验分析我们⾸先只打开⼀条狭缝,根据粒⼦的波动性,可以预⾔屏上将显⽰波长p / =λ(p 为粒⼦动量)的单缝衍射花纹。

但是,根据粒⼦的微粒性,它们将是⼀个⼀个打上去的,怎样将这两种性质的描述调和起来呢?为此,我们想象将⼊射粒⼦束强度降低,直到只⼀个粒⼦通过狭缝,这时屏上会出现很微弱的衍射花纹吗?当然不会!单个粒⼦只能作为⼀个不可分割的整体打到屏上的⼀个点,从⽽出现⼀个⼩斑点。

量子力学中的薛定谔方程与波函数解析

量子力学中的薛定谔方程与波函数解析

量子力学中的薛定谔方程与波函数解析量子力学是一门对于微观世界的描述和研究的科学,而薛定谔方程则是量子力学的核心公式之一。

薛定谔方程的提出不仅改变了科学界对于微观世界的认知,而且对于现代科技的发展也有着深远的影响。

本文将探讨薛定谔方程的内容以及与之相关的波函数解析。

首先,我们需要了解薛定谔方程的基本形式。

薛定谔方程是一个描述粒子在量子力学中运动的方程,它的一般形式可以写作:iħ∂ψ/∂t = Ĥψ其中,ψ是波函数,t是时间,ħ是普朗克常数,Ĥ是哈密顿算符。

薛定谔方程的这种形式被称为时间-相关薛定谔方程,它描述了波函数随时间演化的规律。

在解析波函数之前,我们首先需要了解波函数的物理意义。

波函数的平方模的绝对值的平方在某一点上的积分值,也就是密度波,表示了在这一点上找到粒子的概率。

因此,波函数可以看作是描述粒子在空间中分布的函数。

解析波函数是指通过薛定谔方程求得波函数的具体形式。

对于简单的系统,如自由粒子、势垒和谐振子等,可以通过求解薛定谔方程的定态解来得到波函数的具体形式。

定态解是指波函数不随时间变化的解,可以表示为:ψ(r,t) = Σ C_n ψ_n(r) e^(-iE_n t/ħ)其中,C_n是展开系数,ψ_n(r)是波函数的空间部分,E_n是能量。

对于不定态解,即波函数随时间变化的解,我们可以将波函数按能量本征态(定态解)展开。

这样,就可以得到波函数的解析表达式。

波函数的具体形式与实际问题密切相关。

对于一维自由粒子,其波函数的解析表达式为ψ(x,t) = A e^(ikx-ωt),其中A是归一化常数,k是波数,ω是角频率。

这个解析表达式描述了自由粒子在空间中传播的波动性质。

对于势垒问题,波函数的解析解也可以通过求解薛定谔方程得到。

在势垒的两侧,波函数可以分别表示为反射波和透射波。

量子力学中的概率幅分布的特点使得粒子在势垒处发生反射和透射现象。

在实际的研究中,波函数的解析解不仅提供了精确的理论描述,还为物理定律的验证和应用提供了基础。

波函数 薛定谔方程

波函数  薛定谔方程

玻尔在解释氢原子光谱时就提出了定态的概念雏形.定态也是量子力
学中最重要的概念之一,本节就从薛定谔方程出发,对定态的性质做一些
概括性的讨论.
若势能V(r)与时间无关,则可以设
Ψ(r,t)=Ψ(r)f(t)
(15- 41)
把式(15- 41)代入式(15- 40),得到
波函数 薛定谔方程
两边同除以Ψ(r)f(t),就可以分离变量,即
波函数 薛定谔方程
薛定谔方程描述微观粒子运动的一般方程,自然也可以描 15- 36
解,由式(15- 36)可得
(15- 37)
波函数 薛定谔方程
由式(15- 35)可得
波函数 薛定谔方程
(1)这并不是薛定谔方程的证明,薛定谔方程是量子力学的基本 假定,是对大量实验观测结果的概括,它和经典力学中的牛顿三定律一 样,是不能被证明的.
波函数 薛定谔方程
图15- 13 无限深方势阱中的波函数
波函数 薛定谔方程
图15- 14所示为 无限深方势阱中的粒 子分布密度Ψ2(x).容 易看出,当n→∞时, 粒子分布密度会趋于 均匀,即在大量粒子 数条件下,量子力学 将回到经典情况.
图15- 14 无限深方势阱中的粒子分布密度
谢谢观看
波函数 薛定谔方程
若定态波函数能够满足归一化条件,即
则在无限远处,定态波函数必然迅速趋于0,即粒子不可能出现 在无穷远处,也就是粒子被限制在有限的范围内运动,这种状态就称 为束缚态,否则就称为游离态.
波函数 薛定谔方程
在经典情况下,粒子当然也不能出现在阱外,这一点与量子 力学的解并无区别.若是经典粒子,在阱内各处的势场都为零, 因此粒子在阱内均匀分布.在量子力学情况下,容易解得粒子出 现在各处的概率并不相同,随着位置的变化而变化,即粒子分布 是不均匀的.此外,在经典情况下,粒子的能量可以取任意的有 限值,即粒子的能量是可以连续变化的,但在量子力学情况下, 粒子的能量只能取一系列分立值,即能级是量子化的.图15-13所 示为无限深方势阱中的波函数Ψ(x).

波函数和薛定谔方程

波函数和薛定谔方程
当 V →∞
d ∫ ρd τ = −∫∫ J (r , t )⋅ dS → 0 dt V S
物理量
d f ( x) dt = ∫ f ( x) ∂ρ ( x, t ) ∂t
显然, J (r , t )⋅ dS 具有通量的物理含义。 对于任意物理量的 f ( x) ,有
dx
进一步,有
d f ( x) dt = −∫ f ( x ) ∂J x ( x , t ) dx ∂x
J (r , t ) 为三维矢量。
连续性
依据连续性方程,显然有
+∞ ∂ d +∞ 2 J x ( x, t ) dx ψ dx = −∫ −∞ ∂x dt ∫−∞
连续性方程的积分形式为

V
∂ρ d τ = −∫∫∫ ∇⋅ J (r , t ) d 3 r ∂t V
= −J x ( x, t ) −∞ = J x (−∞, t ) − J x (+∞, t )
波函数和薛定谔方程
物理系
统计性诠释
牛顿方程
υ= dx dt F = ma
m
F ( x, t )
x (t )
∂V d2x m 2 =− ∂x dt x0 = x (0)
x (t ) = ?
薛定谔方程
与经典力学中牛顿方程的地位类似; 2 ∂ψ ∂ 2ψ ψ ( x, t ) 为粒子的波函数; =− +U ψ i ∂t 2m ∂x 2 波函数遵从薛定谔方程,决定性地演化。 ψ0 = ψ ( x, 0)
( j ) = ( j + 1) − j
归一化
我们回到波函数的统计解释上来, 显然的,粒子必然存在于全空间,
则对于任意的正数 ε,总存在 X > 0 , 当 x > X 时,恒有

1-波函数的统计解释与薛定鄂方程

1-波函数的统计解释与薛定鄂方程

专题1−波函数的统计诠释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。

如何从波函数得到微观粒子的信息是量子力学的一个主要内容。

波恩的统计诠释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。

由于波函数的诠释,物理上的波函数必须是归一化1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)由波函数的统计诠释,波函需要满足标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。

);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t,坐标x有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。

由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。

.测量引起波函数的坍塌存在两类完全不同的物理过程:“正常”类,波函数按薛定鄂方程“从容不迫”的演化,“测量”类,由于测量,波函数突然和不连续的坍塌。

对于坐标这个力学量,由波函数我们可以得出它的信息(几率密度、期待值),那么其他力学量呢? 力学量的期待值当粒子处于态),(t x ψ时,对于一个力学量,如果我们还想知道测量这个力学量可以得到那些特定值,得到某个特定值的几率是多少,那么该如何做?波函数的统计解释(广义统计解释)给出。

首先,我们需要知道这个力学量的本征函数。

,n n n F Φ=Φ∧λ ,...3,2,1=n 分立谱本征函数满足正交归一条件(分立谱)nm n mdx δ=ΦΦ⎰∞∞-*将体系的状态波函数ψ用算苻ˆF的本征函数nΦ展开nnncΦ=ψ∑则在ψ态中测量力学量ˆF得到结果为nλ的几率是2n c,在测量后波函数坍塌为nΦ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它往往出现在 2 大的地方 而不会出现在 2 小的地方 同时 (3) 又是以波的方式在空间传播
于是粒子的运动又表现出波动性 总之.微粒的运动遵从的是统计性的规律 而不同于经典力学的确定性规律
(3) 波函数的不确定性:
1、常数因子不定性:
(rv)和 C (rv) 描述同一种运动状态。
)
0 cos 2
(E h
t
x) hp
1 0 cos (Et x
px )
(x,
t)

i (Et
0e
px x)
(取实部)
描述自由粒子(三维)可用平面波波函数来描述。
i ( pvrvEt )
pv Aeh
如果粒子处于随时间和位置变化的力场中运动, 它的动量和能量不再是常量(或不同时为常量) 粒子的状态就不能用平面波描写,这样的微观 粒子的运动状态也可以用较复杂的波完全描述。
对归一化波函数仍有一个模为一的相因子不定性。 若Ψ (r , t )是归一化波函数,那末, exp{iα}Ψ (r , t )也是归一化波函数(其中α是实数)
(4)波函数的归一化
( , ) * d 2 d
(全)
(全)
归一化条件就可以简单表示为:
( , ) 1
t时刻粒子出现在 pv点附近 dpv体积元内的几率;
电子衍射实验
1.1.5 Heisenberg不确定度关系
接受了波函数的统计诠释,完全摒弃经典粒子的轨 道概念,即排除了粒子每时每刻有确定的位置和确 定的动量。
粒子出现在x~x+dx间隔的概率 | (x) |2 dx
所以由波函数只能给出粒子位置的平均值 x及其偏差 x2

pr (rr )(rr ,t)drr
1
(2)3/ 2

(r, t)exp[ i p• r]dxdydz
显然,二式互为Fourier变换式,故而总是成立的。
所以
(rr , t)

( pr , t)
一一对应,
是同一量子态的两种不同描述方式。
Ψ(r,t)是以坐标 r 为自变量的波函数, 坐标空间波函数,坐标表象波函数;
px
x)


0e
i (Et h
px
x)
02
波函数的统计解释
类 比
光栅衍射
电子衍射
光栅衍射
I Eo2
I Nh N
I大处 I小处 I=0
到达光子数多 到达光子数少 无光子到达
电子衍射
I | |2
IN
电子到达该处概率大 电子到达该处概率小 电子到达该处概率为零
各光子起点、终点、路 径均不确定

s in d
2
d

0
0
0
若(r,t)没有归一化,
(rv) 2 d A (A是大于零的常数)
则有
1
2
(rv) d
1
A
也就是说,(A)-1/2 (x,y,z)是归一化的波函数 ,与 (x,y,z)描写同一几率波,(A)-1/2称为归 一化因子。
求几率密度: (x, y, z,t) (x, y, z) 2
Ψ(p,t)是以动量 p 为自变量的波函数, 动量空间波函数,动量表象波函数;
二者描写同一量子状态。

如若
(r, t) 2 d 3r 1

+
则有: ( p, t) 2 d 3 p 1 -
dW (rv) (rv) 2 drv
t时刻粒子出现在 rv点附近 drv 体积元内的几率; dW ( pv) ( pv) 2 dpv
D-B所提出的由波函数所描述的“物质波” 是刻画粒子在空间几率分布的几率波。
这就是首先由 Born 提出的波函数的几率解释, 它是量子力学的基本原理。
经典概念和量子力学对粒子和波的理解:
共同点: 颗粒性,即是具有一定质量,电荷等属性的客体
粒子性不同点:
经典认为遵循经典决定论, 沿确定轨道运动 微观粒子不遵循经典决定论, 无确定轨道, 只是以一种几率分布的形式出现
各电子起点、终点、路径 均不确定
用I对屏上光子数分布作 用| |2 对屏上电子数分布
概率性描述
作概率性描述
(2) 波函数的物理意义
(rv,t) (rv,t) 2 几率分布 运动状态
在t时刻,r点,dτ=dxdydz体积内找到由波函数 Ψ(r,t)描写的粒子的几率是:
dW(r,t)=C|Ψ(r,t)|2dτ
同样对粒子的动量也只能知道其统计平均值 px及其涨落px2
海森伯指出,平均偏差乘积有一个最小的限制
xpx

2
这个关系称不确定关系。
讨论单缝衍射的不确定关系
如图所示,位置的不确定,由缝宽模Δx=d 给出。x方向的动 量不确定度Δpx用衍射一级极小的半角宽度表示,
即 1 = px / p,p ≈po
§1.1. 物质波的波函数及其统计解释
1.1.1、实物粒子的波动性
E h p h/
1.1.2、波粒二象性的分析
1、经典物理学中粒子与波的有关概念
经典概念中粒子意味着: ➢有一定质量、电荷等“颗粒性”的属性; ➢有确定的运动轨道,每一时刻有一定位置和速度。
经典概念中波意味着: ➢某种实在的物理量的空间分布作周期性的变化; ➢干涉、衍射现象,即相干叠加性。
(rv,t)
(1)波函数的统计解释(量子力学的基本原理)
波函数在空间中某一点的强度(模的平方)和在 该点找到粒子的几率成比例。
(x, y, z) (rv) 2
|Ψ (r,t)|2 Δx Δy Δz 与此t时刻,在r点处,体积元 ΔxΔyΔz中找到粒子的几率成正比。或者讲波函 数在空间某点的强度(波函数模的平方)和在 这点找到粒子的几率成比例。
玻恩统计解释:
t 时刻第 1 个粒子处于 r1 处 dr1 内, 同时第 2 个粒子处于 r2 处 dr2 内,……….. 同时第` N 个粒子处于 rN 处 drN 内的几率为:
(rr1, rr2,L rrN ,t) 2 d 3r1d 3r2 L d 3rN
归一化条件:
rr
(r1, r2,L
[解]:由不确定关系式 ΔxΔPx≥h
对电子:Δx = h/mΔυx =
6.626 10 34 J.s
2.4 10 2 m
9.110 31 kg 300 m.s1 110 4
对子弹:Δx = h/mΔ υx=
6.626 10 34 J.s
4.4 10 31 m
r rN
,
t)
2
d
3r1d
3r2
L
d 3rN
1

波函数的三个标准条件:
1、单值 在一个地方的几率密度只有一个值 2、连续 运动的连续性要求几率密度是连续的 3、有限 在所以可能出现粒子的地方的几率和为1
1.1.4 动量空间(表象)的波函数
波函数Ψ(r,t) 可用各种不同动量的平面
波表示,下面我们给出简单证明。
0.05kg 300 m.s1 110 4
1.1.6、力学量的平均值和算符的引进
(一)力学量平均值
(1)坐标平均值
(2)动量平均值
(二)力学量算符

(1)动量算符

(2)动能算符
(3)角动量算符
(4)Hamilton 算符
po 是入射光子动量
按照波的衍射理论,第一级 衍射极小的角位置为
于是有
1


d
xpx ≈po= h
例题2
质 量 为 9.1×10-31kg 的 电 子 和 质 量 为 0.05kg 的 子 弹 均 以 300m·s-1的速度运动,假定速度的不确定范围均为0.01%,计 算它们的最小可能的位置不确定范围,并加以比较。
粒子在整个空间出现的概率为1
归一化条件要求波函数平方可积
(rv) 2 d 有限值
一维坐标系(设沿方向)的情况下:

d ~ dx


三维直角坐标系的情况下:



d ~ dx dy dz


三维球坐标系的情况下:
d ~
r 2dr
因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的 相对几率之比是:
2
2
C(r1 , t ) (r1 , t )
C(r2 , t )
(r2 , t )
注意:一个经典波的波幅若增大一倍,则相应的波动能量 将为原来的4倍,即代表了完全不同的状态。
2、相位因子不定性:
(rv)与 C (rv)ei 述同一种运动状态,ei称为相因子。
1.1.3 几(概)率波
例: 一维自由粒子的波函数
经典描述: 沿 x 轴匀速直线运动
量子描述: E, p守恒; , 确定
类比: 单色平面波
, 一定 沿直线传播
以坐标原点为参考点,设 0,以速率u沿 x方向传播.


0
c os (t

x u
)

0
cos2
(
t

x

电子的衍射实验
1.入射电子流强度小,开始显示电子的微粒性,长时 间亦显示衍射图样; 2. 入射电子流强度大,很快显示衍射图样.
电子源
P
P
O
感 光 屏
单电子衍射实验结果分析:
“亮纹”处是到达该处的电子数多,或讲电子到达 该处的几率大。 “暗纹”处是到达该处的电子数少,或讲电子到
达 该处的几率小。
第1章 波函数和薛定谔方程
相关文档
最新文档