(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点5复杂数列的通项公式与求和问题学案

合集下载

2018届高考数学理二轮复习江苏专用课件:专题三 数 列 第1讲 精品

2018届高考数学理二轮复习江苏专用课件:专题三 数 列 第1讲 精品

(2)解 由题设可求 a2=λ-1,∴a3=λ+1, 令 2a2=a1+a3,解得 λ=4,故 an+2-an=4. 由此可得{a2n-1}是首项为 1,公差为 4 的等差数列, a2n-1=4n-3; {a2n}是首项为 3,公差为 4 的等差数列,a2n=4n-1. 所以 an=2n-1,an+1-an=2. 因此存在 λ=4,使得数列{an}为等差数通项公式:an=a1+(n-1)d, (2)求和公式:Sn=n(a12+an)=na1+n(n-2 1)d, (3)性质:①若 m,n,p,q∈N*,且 m+n=p+q,则 am+an=ap+aq; ②an=am+(n-m)d; ③Sm,S2m-Sm,S3m-S2m,…,成等差数列.
热点二 等差、等比数列的判定与证明 【例 2】 (2016·南师附中月考)已知数列{an}的前 n 项和为 Sn,
a1=14,且 Sn=Sn-1+an-1+12(n∈N*,且 n≥2),数列{bn}满 足:b1=-1149,且 3bn-bn-1=n(n≥2,且 n∈N*). (1)求数列{an}的通项公式; (2)求证:数列{bn-an}为等比数列. (1)解 由 Sn=Sn-1+an-1+12,得 Sn-Sn-1=an-1+12, 即 an-an-1=12(n∈N*,n≥2),则数列{an}是以12为公差的 等差数列,又 a1=14,∴an=a1+(n-1)d=12n-14.
4.(2013·江苏卷)在正项等比数列{an}中,a5=12,a6+a7= 3.则满足 a1+a2+…+an>a1a2…an 的最大正整数 n 的值 为________.
解析 设数列{an}的公比为 q(q>0),由已知条件得12q+12q2=3,即 q2+q-6=0,解得 q=2,或 q=-3(舍去),an=a5qn-5=12×2n-5= 2n-6,a1+a2+…+an=312(2n-1),a1a2…an=2-52-42-3…2n-6= 2n2-211n,由 a1+a2+…+an>a1a2…an,可知 2n-5-2-5>2n(n-2 11), 由 2n-5-2-5>2n(n-2 11),可求得 n 的最大值为 12,而当 n=13 时, 28-2-5<213,所以 n 的最大值为 12. 答案 12

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

【例 2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a,b,c 分别为角 A, B,C 的对边.若 acos B=3,bcos A=1,且 A-B=π6. (1)求边 c 的长; (2)求角 B 的大小. 【导学号:56394089】
[解] (1)∵acos B=3,bcos A=1,∴a×a2+2ca2c-b2=3,b×b2+2cb2c-a2=1, 化为:a2+c2-b2=6c,b2+c2-a2=2c. 相加可得:2c2=8c,解得 c=4.
(2)由 α∈0,π2,β∈0,2π得,α-β∈-π2,π2.

sin(α-β)=
1100,则
cos(α-β)=3
10 10 .
则 sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)
=255×31010- 55× 1100= 22,
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
∴16sin2B+π6-16sin2B=8sin22B+π6, ∴ 1 - cos 2B+π3 - (1 - cos 2B) = sin2 2B+π6 , 即 cos 2B - cos 2B+π3 = sin22B+π6, ∴-2sin2B+6πsin-6π=sin22B+6π, ∴sin2B+6π=0 或 sin2B+6π=1,B∈0,152π. 解得:B=π6.
6.2 判断三角形形状 三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可 利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三 角形的形状

专题5数列(精讲讲义)-2018年高考数学二轮复习解题方法精讲精练精测(江苏版)

专题5数列(精讲讲义)-2018年高考数学二轮复习解题方法精讲精练精测(江苏版)

专题五 数列考向一 、等差数列与等比数列的基本性质 1.讲高考(1) 考纲要求① 理解等差数列、等比数列的概念.② 掌握等差数列、等比数列的通项公式与前n 项和公式.③ 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. ④ 了解等差数列与一次函数、等比数列与指数函数的关系.(2) 命题规律① 对等差、等比数列基本量的考查是重点内容,常以填空题或的形式出现.考查运用通项公式,前n 项和公式建立方程组求解,应为简单题.②、对等差、等比数列性质的考查是热点,主要以填空题或解答题的形式出现,具有“新、巧、活” 的特点,考查利用性质解决有关的计算问题,应为中档题或压轴题.③等差、等比数列的综合问题,多以解答题的形式考查,主要考查考生综合数学知识解决问题的能力,应为压轴题例1【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.例2.【2016年高考江苏卷】 已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是 . 【答案】20.【解析】由510S =得32a =,因此2922(2d)33,23620.d d a -+-=-⇒==+⨯=【名师点睛】江苏高考在等差数列、等比数列的考察主要是等差数列等比数列的性质,而性质的合理使用得先观察下标的特征和数列和式的特点.2.讲基础1、把握两个定义,若一个数列从第二项起,每一项与前一项的差(比)是同一个常数,则这个数列是等差(等比)数列;2、记住四组公式,等差及等比数列的通项公式,前n 项和公式;3、活用三种性质3.讲典例【例1】 【2013 江苏高考 19】设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2nn nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 【答案】(1) 详见解析.(2) 详见解析. 【解析】证明:由题设,(1)2n n n S na d -=+.(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即2n nS n c+=b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有3211111122d d n b d a d n cd n ⎛⎫⎛⎫-+--++ ⎪ ⎪⎝⎭⎝⎭=c (d 1-b 1). 令A =112d d -,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D .(*) 在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有111730,1950,2150,A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0. 即112d d -=0,b 1-d 1-a +12d =0,cd 1=0. 若d 1=0,则由112d d -=0,得d =0,与题设矛盾,所以d 1≠0. 又因为cd 1=0,所以c =0.【名师点睛】利用基本量计算,这是处理两类基本数列问题的通法.另外,如果已知数列为等差数列,当我们用定义求解比较麻烦时可以利用等差数列的通项的形式把等差数列问题转为恒成立问题去处理,当然我们也把通常前3项成等差数列去求出参数的值,再检验此时数列符合等差数列的定义即可. 【趁热打铁】【2004 江苏 高考】设无穷等差数列{a n }的前n 项和为S n . (Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k k S S =的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S =成立.解析:(1)当1,231==d a 时,n n n n n S n +=-+=2212)1(23,由2)(2k k S S =得,2224)21(21k k k k +=+ ,即0)141(3=-k k ,又0≠k ,所以4=k 。

2018江苏高考数学总复习要点——知识篇(全套)

2018江苏高考数学总复习要点——知识篇(全套)

① 若m n p q(m, n, p, q N*)
则am an ap aq (反之,不一定成立)

三、基本初等函数(2)三角恒 等变换
• 1三角函数的有关概念
• (1)定义
抓住x,y,r
• (2)符号 一全二正三切四余
• (3)三角函数线 正切线的起点特殊
• 2同角三角函数的基本关系式
• Sin2x+cos2x=1
• Tanx=sinx/cosx (x≠kπ+π/2)
三、基本初等函数(2)三角恒 等变换
六 数列
等差数列a , 首项为a ,
n
1
⑶ 常用性质
公差d,前n项和Sn .
① 若m n p q(m, n, p, q N*)
则am an ap aq (反之,不一定成立)
② an,bn都是等差数列,则pan qbn
(p, q为常数)也是等差数列;
③ 在an中,每隔k项抽出一项,按原来的
三角函数 图像
定义域 值域 单调性 奇偶性 周期性 对称轴 对称中心
Y=sinx
R [-1,1] 奇函数 T=2π
Y=cosx
R [-1,1] 偶函数 T=2π
Y=tanx
{X|x≠kπ+π/2,k∈Z} R
奇函数 T=π
三、基本初等函数(2)三角恒 等变换
• 5函数y=Asin(ωx+ϕ)的图形和性质 • (1)初相变换(相位变换) • (2)振幅变换 • (3)周期变换
三、基本初等函数(2)三角恒 等变换
• 3正余弦正切的诱导公式 • 公式六(正余互变) • Sin(π/2+α)=cos α , • coS(π/2+α)=—sin α, • tan(π/2+α)=—1/tan α ,

2018年全国普通高等学校招生统一考试数学(江苏卷)(解析版)

2018年全国普通高等学校招生统一考试数学(江苏卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B ⋂=________.【答案】{1,8}.【解析】分析:根据交集定义{}A B x x A x B 且⋂=∈∈求结果.详解:由题设和交集的定义可知:{}1,8A B ⋂=.点睛:本题考查交集及其运算,考查基础知识,难度较小.2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为i 12i z ⋅=+,则12i 2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b R ∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为i a b -.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90.【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为8989909191,,,,,故平均数为89+89+90+91+91905=. 点睛:12,,,n x x x L 的平均数为12n x x x n+++L .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.【答案】8【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.5.函数()f x =________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞. 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】3.10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为3.10点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7.已知函数sin(2)()22y x ϕϕππ=+-<<图象关于直线3x π=对称,则ϕ的值是________. 【答案】6π-. 【解析】 分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果.详解:由题意可得2sin π13ϕ⎛⎫+=±⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+;(2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F到一条渐近线的距离为,则其离心率的值是________. 【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.详解:因为双曲线的焦点(c,0)F 到渐近线,b y x a =±即0bx ay ±=,bc b c ==所以2b c =,因此22222231,44a c b c c c =-=-=1, 2.2a c e == 点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____.【答案】2 【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由(4)()f x f x +=得函数()f x 的周期为4,所以11(15)(161)(1)1,22f f f =-=-=-+=因此1π2((15))()cos .242f f f === 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】 分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2,,所以该多面体的体积为21421(2).33⨯⨯⨯= 点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11.若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为__________.【答案】3-.【解析】分析:先结合三次函数图象确定在(0,)+∞上有且仅有一个零点的条件,求出参数a ,再根据单调性确定函数最值,即得结果.详解:由()2620f x x ax '=-=得0,3a x x ==,因为函数()f x 在(0,)+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭,因此322()()10, 3.33a a a a -+==从而函数()f x 在[1,0]-上单调递增,在[0,1]上单调递减,所以()max ()0,f x f ={}min ()min (1),(1)(1)f x f f f =-=-,max min ()()f x f x +=()0+(1)14 3.f f -=-=- 点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v ,则点A 的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u v u u u v , 由0AB CD ⋅=u u u v u u u v 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+= 当且仅当23c a ==时取等号,则4a c +的最小值为9.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设=2k n a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++L L()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m L L =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >.由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如,2,n n n n a n ⎧=⎨⎩为奇数为偶数),符号型(如2(1)n n a n =-),周期型(如πsin 3n n a =).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥。

2018届江苏高考二轮数学专题教学案 数列的综合问题探究

2018届江苏高考二轮数学专题教学案 数列的综合问题探究

2018届江苏高考二轮数学专题教学案 数列的综合问题探究【热身训练】1..已知数列{a n },a n =n 2+λn +3(其中λ为常实数),且a 3为数列{a n }的最小项,则实数λ的取值范围是________.解析:法一 a n ≥a 3对任意n ∈N *恒成立,即:λ(n -3)≥-(n -3)(n +3)当n ≥4时,λ≥-(n +3),所以λ≥-7;当n ≤2时,λ≤-5;当n =3时,λ∈R ;综上所述:-7≤λ≤-5. 法二 基本函数的特性:52≤-λ2≤72,所以-7≤λ≤-5.2.若数列{c n }满足c n =⎩⎪⎨⎪⎧4n -1,当n 为奇数时;4n +9,当n 为偶数时.则数列{c n }的前19项的和T 19=________.解析:c 2n +1-c 2n -1=8,c 2n +2-c 2n =8,T 19= 3+75 2×10+ 17+81 ×92=831.3.设S n 是等差数列{a n }的前n 项和,满足a 1=1,S 6=36,且a m ,a m +2,a k 成等比数列,则m +k 的值为________.解析:设等差数列{a n }的公差是d .所以S 6=6a 1+15d =36,又因为a 1=1,所以d =2.所以a n =a 1+(n -1)d =2n -1.又a m ,a m +2,a k 成等比数列等价于(2m -1)(2k -1)=(2m +3)2,即2k -1= 2m +322m -1=2m -1+8+162m -1.所以k =m +4+82m -1,m ,k 是正整数.由于m ,k 是正整数,故2m -1只可能取1,2,4,8.又2m -1为奇数,故2m -1=1,即m =1,k =13,所以m +k =144.已知数列{a n }的前n 项和S n =(-1)n·n ,若对任意正整数n ,(a n +1-p )(a n -p )<0恒成立,则实数p 的取值范围是________.【热点追踪】数列问题一直以来是高考的重点且位于压轴题的位置,而数列的特点是方法灵活,难度较大,本专题就数列中的单调性问题,奇偶性问题,存在性问题等热点问题加以探究,以便学生能更好的理解数列. (一)数列中的单调性问题例1. 已知数列{a n }满足:a 1=12,a n +1-a n =3n -1-nq ,n ∈N *,p ,q ∈R .a 4为数列{a n }的最小项,求q 的取值范围.变式1 已知S n =1+12+13+…+1n ,n ∈N *,设f (n )=S 2n +1-S n +1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式f (n )>mm +2恒成立.解析:由题意可知f (n )=S 2n +1-S n +1=1n +2+1n +3+1n +4+…+12n +1所以f (n +1)-f (n ) =⎝ ⎛⎭⎪⎫1n +3+1n +4+…+12n +1+12n +2+12n +3-⎝ ⎛⎭⎪⎫1n +2+1n +3+1n +4+…+12n +1=12n +2+12n +3-1n +2=⎝ ⎛⎭⎪⎫12n +2-12n +4+⎝ ⎛⎭⎪⎫12n +3-12n +4>0.所以f (n )在n ≥2单调递增,从而fmin(n )=f (2)=920,从而-2<m <1811.变式2 在数列{a n }中,已知a 1=2,a n +1=3a n +2n -1. (1)求证:数列{a n +n }为等比数列;(2)记b n =a n +(1-λ)n ,且数列{b n }的前n 项和为T n ,若T 3为数列{T n }中的最小项,求λ的取值范围.解析:(1)因为a n +1=3a n +2n -1,所以a n +1+n +1=3(a n +n ). 又a 1=2,所以a n >0,a n +n >0,故a n +1+n +1a n +n=3,所以{a n +n }是以3为首项,公比为3的等比数列. (2)由(1)知道a n +n =3n,所以b n =3n-n λ.所以T n =31+32+ (3)-(1+2+3+…+n )λ=32(3n -1)-n n +1 2λ.若T 3为数列{T n }中的最小项,则对∀n ∈N *有32(3n -1)-n n +1 2λ≥39-6λ恒成立.即3n +1-81≥(n 2+n -12)λ对∀n ∈N *恒成立.当n =1时,有T 1≥T 3,得λ≥365;当n =2时,有T 2≥T 3,得λ≥9;当n ≥4时,n 2+n -12=(n +4)(n-3)>0恒成立,所以λ≤3n +1-81n 2+n -12对∀n ≥4恒成立.令f (n )=3n +1-81n 2+n -12,则f (n +1)-f (n )=3n +1 2n 2-26 +162 n +1 n 2+3n -10 n 2+n -12 >0对∀n ≥4恒成立.所以f (n )=3n +1-81n 2+n -12在n ≥4时为单调递增数列.所以λ≤f (4),即λ≤814.综上,9≤λ≤814.(二)数列中的奇偶性问题例2. 已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *. (1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 取值范围.变式1 (2017·镇江期末)已知n ∈N *,数列{a n }的各项均为正数,前n 项和为S n ,且a 1=1,a 2=2,设b n=a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若S 2n =3(2n-1),数列{a n a n +1}也为等比数列,求数列的{a n }通项公式.变式2 已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n .解析:(1)若数列{a n }是等差数列,则a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3,即2d =4,2a 1-d =4-3,解得,d =2,a 1=-12.(2)由a n +1+a n =4n -3,得a n +2+a n +1=4n +1(n ∈N *).两式相减,得a n +2-a n =4.所以数列{a 2n -1}是首项为a 1,公差为4的等差数列,数列{a 2n }是首项为a 2,公差为4的等差数列,由a 2+a 1=1,a 1=2,得a 2=-1.所以a n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -5,n 为偶数.①当n 为奇数时,则a n =2n ,a n +1=2n -3.所以S n =a 1+a 2+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n =1+9+…+(4n -11)+2n =2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n2.所以S n =⎩⎪⎨⎪⎧2n 2-3n +52,n 为奇数2n 2-3n2,n 为偶数.(三)数列中的存在性问题例3. 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n =1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和为T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.变式1 已知数列{a n }中,a 2=1,前n 项和为S n ,且S n =n a n -a 12.(1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设lg b n =a n +13n,试问是否存在正整数p ,q (其中1<p <q ),使 b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.变式2 已知数列{a n }满足a 1+a 2+…+a n =n 2(n ∈N *). (1)求数列{a n }的通项公式;(2)对任意给定的k ∈N *,是否存在p ,r ∈N *(k <p <r )使1a k ,1a p ,1a r成等差数列?若存在,用k 分别表示p和r (只要写出一组);若不存在,请说明理由.解析:(1)当n =1时,a 1=1;当n ≥2,n ∈N *时,a 1+a 2+…+a n -1=(n -1)2,所以a n =n 2-(n -1)2=2n -1;综上所述,a n =2n -1(n ∈N *).(2)当k =1时,若存在p ,r 使1a k ,1a p ,1a r 成等差数列,则1a r =2a p -1a k =3-2p2p -1,因为p ≥2,所以a r <0,与数列{a n }为正数相矛盾,因此,当k =1时不存在;当k ≥2时,设a k =x ,a p =y ,a r =z ,则1x +1z =2y,所以z =xy2x -y ,令y =2x -1,得z =xy =x (2x -1),此时a k =x =2k -1,a p =y =2x -1=2(2k -1)-1,所以p =2k -1,a r =z =(2k -1)(4k -3)=2(4k 2-5k +2)-1,所以r =4k 2-5k +2;综上所述,当k =1时,不存在p ,r ;当k ≥2时,存在p =2k -1,r =4k 2-5k +2满足题设.【乘热打铁】1.已知数列{a n }为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为3227,则这个数列的公差为________.解析:由题意偶数项和为192,奇数项和为162,又S 偶-S 奇=5d ,所以这个数列的公差为5. 2.等比数列{a n }的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为________.解析:设公比是q ,由题意得a 1+a 3+a 5+…+a n -1=85,a 2+a 4+a 6+…+a n =170,解得q =2,a n =2n-1,S n =2n-1,易得n =8.3.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a 2nb n为整数的正整数n 的个数是________.解析:由A n B n =7n +45n +3可设A n =kn (7n +45),所以a n =14kn +38k ,设B n =kn (n +3),所以b n =2kn +2k ,故a 2nb n =14n +19n +1=14+5n +1,所以n =4,故使得a 2nb n为整数的正整数n 的个数是1. 4.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *,设b n =2a n +(-1)na n ,则数列{b n }的前2n 项和为________.。

2018年高考数学江苏专版三维二轮专题复习教学案:专题四_数列

2018年高考数学江苏专版三维二轮专题复习教学案:专题四_数列

江苏新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课)[常考题型突破][必备知识]1.通项公式等差数列:a n=a1+(n-1)d;等比数列:a n=a1·q n-1.2.求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).[题组练透]1.(2017·镇江期末)已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d =________.解析:设等比数列{a n }的公比为q , 则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7, 即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4, 所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案:2 [方法归纳][必备知识][题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,则a n =2n ,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n (n -1)2d ,∴S n =d2n 2+⎝⎛⎭⎫1-d 2n . ∵函数y =d 2x 2+⎝⎛⎭⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d <-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0,得n -1<1-d. ∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳](1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用. [课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+10(10-1)2×2=110.法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24. 答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________.解析:由题意S 5S 3=5a 1+10d3a 1+3d =3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1=1a n +3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5,所以a 20=2115. 答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,所以b n =1n (n +1)=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎡⎦⎤4q 2-2+(q 2-2)+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n ,则数列{a n }的通项公式a n =________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n -2n -1=2a n +2n -1,从而a n +1+2n =3(a n+2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n }是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,① a 1+(p -1)d =2k +1,② 两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2.则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m (m -1)2d =m (2m -1)-m (m -1)=m 2. 答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12n n(-1)2=n nn n n 2273++22222=2--.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________.解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (n +1)2.由题意可知,N >100,令n (n +1)2>100, 得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n -1,前n 组的所有项的和为2(1-2n )1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t -1应与-2-k 互为相反数,即2t -1=k +2, ∴2t =k +3, ∴t =log 2(k +3), ∴当t =4,k =13时,N =13×(13+1)2+4=95<100,不满足题意; 当t =5,k =29时,N =29×(29+1)2+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破][例1] n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若对任意n ∈N *,S n =a 2n +n2恒成立,求数列{a n }的通项公式;(3)若S 2n =3(2n -1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3n +1-32.(2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列; 故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=⎩⎨⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n , S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S na n +2=1-⎝⎛⎭⎫-13n -2⎝⎛⎭⎫-13n +2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ 由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t , 即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .[例2] n n a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正, 得a 2n +1n +1=4·a 2n n ,所以a n +1n +1=2·a n n , 因此a n +1n +1a n n =2,所以⎩⎨⎧⎭⎬⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n , 所以b n =a 2nt n =a 21·4n -1·n tn, 如果数列{b n }是等差数列,则2b 2=b 1+b 3, 即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t 3,则t 2-16t +48=0, 解得t =4或t =12. 当t =4时,b n =a 21·n 4,因为b n +1-b n =a 21(n +1)4-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3,所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4.(3)由(2)得b n =a 21n 4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n (n +1)2-a 41n 2=16a 21m 4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意; 当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m .[方法归纳]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S nn ,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn =a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2(n +1)2-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S nn,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =(n +2)b n +1-nb n 2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S nn ,①(n +2)λ=12(a n +1+a n +2)-S n n ,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.[例3] (2017·n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法归纳]设数列{a n}的前n项的和为S n.定义:若∀n∈N*,∃m∈N*,S n=a m,则称数列{a n}为H数列.(1)求证:数列{(n-2)d}(n∈N*,d为常数)是H数列;(2)求证:数列{(n-3)d}(n∈N*,d为常数,d≠0)不是H数列.证明:(1)∵a n=(n-2)d,∴S n=n(-1+n-2)2d=n(n-3)2d.令n(n-3)2d=(m-2)d.(*)当d=0时,存在正整数m满足(*).当d≠0时,m=2+n(n-3)2,∵∀n∈N*,n(n-3)2∈Z,∴m∈Z,且n(n-3)2≥-1,∴m≥1,m∈N*,故存在m∈N*满足(*).所以数列{(n-2)d}是H数列.(2)数列{(n-3)d}的前n项之和为S n=n(-2+n-3)2d=n(n-5)2d.令n(n-5)2d=(m-3)d.因为d ≠0,所以m =3+n (n -5)2,当n =2时,m =0,故{(n -3)d }不是H 数列. [课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n .(2)∵b n =a n log 12a n =2n log 122n =-n ·2n ,∴S n =-(1×2+2×22+…+n ·2n ),①2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62, ∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 1(1-q n )1-q+1,所以q nb n =11-q +1a 1-q n 1-q,即b n =⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n -11-q , 所以存在实数λ=11-q, 使得b n +λ=⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n ,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q ,此时{b n +λ}为等比数列,所以存在实数λ=11-q,使得{b n +λ}为等比数列. 法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝⎛⎭⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列. 3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2, 所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列.若b n =2n -1,则S n =2n -1,取n =2,m =1, 则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数, 所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2s (s -1)2p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s(s -1)2∈N *,不妨设k =t +1-2s(s -1)2,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1. ①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去). 所以a n =2n -1.(2)①∵b 1=a 1,b n +1-b n =1a n a n +1, ∴b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎫1-13,b 3-b 2=12⎝⎛⎭⎫13-15,…,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式. 故b n =3n -22n -1,n ∈N *. ②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2, 即12m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *).(1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得q n -1+q n >q n +1, ∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n =q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列, ∴S n =⎩⎪⎨⎪⎧n (1+r ),q =1,(1+r )(1-q n )1-q ,q ≠1.(3)证明:当q ≥2时,S n =(1+r )(1-q n )1-q,∵S n -a n +1=(1+r )(1-q n )1-q -(1+r )q n =1+r 1-q [(1-q n )-q n (1-q )]=1+r1-q [1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0,因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得 n ≥2时,2S n +1=n (n +1)a n n -1+(n +1)(n -2)a 1n -1,①2S n +2=(n +1)(n +2)a n +1n +(n -1)(n +2)a 1n,② ②-①得,2a n +2=(n +1)(n +2)a n +1n -n (n +1)a n n -1+(n 2-n +2)a 1n (n -1), 即2(a n +2-a 1)=(n +1)(n +2)(a n +1-a 1)n -n (n +1)(a n -a 1)n -1,两边同除(n +1)得,2(a n +2-a 1)n +1=(n +2)(a n +1-a 1)n -n (a n -a 1)n -1, 即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n (n -1)2×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2=…… =n (n -1)×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0, 所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11,令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2). 所以a n =a 1+(n -1)d (n ≥2). 又n =1时,也适合上式, 所以a n =a 1+(n -1)d (n ∈N *).所以a n+1-a n=d(n∈N*).所以当r=2时,数列{a n}是等差数列.第3课时数列的综合应用(能力课)[常考题型突破][例1](2017·南京考前模拟)若各项均为正数的数列{a n}的前n项和为S n,且2S n=a n +1 (n∈N*).(1)求数列{a n}的通项公式;(2)若正项等比数列{b n},满足b2=2,2b7+b8=b9,求T n=a1b1+a2b2+…+a n b n;(3)对于(2)中的T n,若对任意的n∈N*,不等式λ(-1)n<12n+1(T n+21)恒成立,求实数λ的取值范围.[解](1)因为2S n=a n+1,所以4S n=(a n+1)2,且a n>0,则4a1=(a1+1)2,解得a1=1,又4S n+1=(a n+1+1)2,所以4a n+1=4S n+1-4S n=(a n+1+1)2-(a n+1)2,即(a n+1+a n)(a n+1-a n)-2(a n+1+a n)=0,因为a n>0,所以a n+1+a n≠0,所以a n+1-a n=2,所以{a n}是公差为2的等差数列,又a1=1,所以a n =2n -1.(2) 设数列{b n }的公比为q ,因为2b 7+b 8=b 9,所以2+q =q 2,解得q =-1(舍去)或q =2,由b 2=2,得b 1=1,即b n =2n -1.记A =a 1b 1+a 2b 2+…+a n b n =1×1+3×2+5×22+…+(2n -1)×2n -1, 则2A =1×2+3×22+5×23+…+(2n -1)×2n , 两式相减得-A =1+2(2+22+…+2n -1)-(2n -1)×2n ,故A =(2n -1)×2n -1-2(2+22+…+2n -1)=(2n -1)×2n -1-2(2n -2)=(2n -3)×2n+3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n +3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)n λ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min . g (n +2)-g (n )=2+62n +1-62n -1=2-92n ,当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ), 即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134. 当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝⎛⎭⎫-3,134. [方法归纳]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2).(1)证明:数列{a n +1-a n }为等差数列; (2)令c n =(n +1)a n na n +1+na n +1(n +1)a n,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12, 所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1,即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8),所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×(n -1)(1+n -1)2+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =(n +1)a n na n +1+na n +1(n +1)a n =2n +12n +3+2n +32n +1=⎝⎛⎭⎫1-22n +3+⎝⎛⎭⎫1+22n +1=2+2⎝⎛⎭⎫12n +1-12n +3,所以T n =2n +2⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=2n +2⎝⎛⎭⎫13-12n +3,又13>13-12n +3=2n +3-33(2n +3)=2n 3(2n +3)>0, 所以2n <T n <2n +23.[例2] n n S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n };(2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2. 则S n +3=(n +3)a 1+(n +3)(n +2)2d 1, T n =nb 1+n (n -1)2d 2.∵对一切n ∈N *,有S n +3=T n ,∴(n +3)a 1+(n +3)(n +2)2d 1=nb 1+n (n -1)2d 2,即d 12n 2+⎝⎛⎭⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝⎛⎭⎫b 1-12d 2n . ∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.∴c n +1-c n =4n -1+λ(-1)n 2n +2-4n -2-λ(-1)n -12n +1=3·4n -2+λ(-1)n (2n +2+2n +1)=316·22n +6λ(-1)n ·2n . ∵当n ∈N *时,c n +1≥c n 恒成立, 即当n ∈N *时,316·22n +6λ(-1)n ·2n ≥0恒成立. ∴当n 为正奇数时,λ≤132·2n 恒成立, 而132·2n ≥116.∴λ≤116; 当n 为正偶数时,λ≥-132·2n恒成立, 而-132·2n ≤-18,∴λ≥-18. ∴-18≤λ≤116,∴λ的最大值是116.[方法归纳][变式训练](2017·南京三模)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *. (1)若a 1=-1,p =1, ①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p 的取值范围.解:(1)因为p =1,所以a n +1=|1-a n |+2a n +1. ①因为a 1=-1,所以a 2=|1-a 1|+2a 1+1=1, a 3=|1-a 2|+2a 2+1=3, a 4=|1-a 3|+2a 3+1=9.②因为a 2=1,a n +1=|1-a n |+2a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2a n +1=a n -1+2a n +1=3a n , 于是有a n =3n -2(n ≥2) .故当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 ,当n =1时,S 1=-1,符合上式,故S n =3n -1-32,n ∈N *.(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2p >0, 所以a n +1>a n ,即数列{a n }单调递增. (ⅰ)当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. (ⅱ)当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n . 所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 由(ⅰ)可知,r =1,于是有2×3s -2(a 1+2p )=a 1+3t -2(a 1+2p ).因为2≤s ≤t -1, 所以a 1 a 1+2p=2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾. 故此时数列{a n }中不存在三项依次成等差数列. (ⅲ)当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0, 于是a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时2a 2=a 1+a 3,则a 1,a 2,a 3成等差数列. 综上可知,a 1p ≤-1.故a 1p 的取值范围为(-∞,-1].[例3] n ∈N *),其中m ,a ,b 均为实常数.(1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数,2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0, 所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q . 又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去),。

2018年江苏高考数学二轮复习:专题限时集训6数列有答案

2018年江苏高考数学二轮复习:专题限时集训6数列有答案

专题限时集训(六) 数列(对应学生用书第92页) (限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(四川省凉山州2017届高中毕业班第一次诊断性检测)设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{a n }是常数列,则a =________.-2 [因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a (a +1)=a 2-2,解得a =-2.]2.(江苏省南京市、盐城市2017届高三第一次模拟)设{a n }是等差数列,若a 4+a 5+a 6=21,则S 9=________.63 [由a 4+a 5+a 6=21得a 5=7,所以S 9=9a 1+a 92=9a 5=63.]3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.1 830 [当n =2k 时,a 2k +1+a 2k =4k -1; 当n =2k -1时,a 2k -a 2k -1=4k -3. 所以a 2k +1+a 2k -1=2,所以a 2k +1+a 2k +3=2, 所以a 2k -1=a 2k +3,所以a 1=a 5=…=a 61. 所以a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61) =3+7+11+…+(2×60-1) =30×3+1192=30×61=1 830.]4.(江苏省泰州中学2017届高三上学期第二次月考)等差数列{a n }的前n 项和S n ,若a 1=2,S 3=12,则a 6=________.12 [∵S 3=12,∴S 3=3a 1+3×22d =3a 1+3d =12.解得d =2, 则a 6=a 1+5d =2+2×5=12.]5.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,则a 3=________.3 [∵等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,∴a 133-13-1+a 134-13-1=533,解得a 1=13.则a 3=13×32=3.] 6.(2017·江苏省无锡市高考数学一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,则a 8的值为________.2 [∵等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 11-q 91-q =a 11-q 31-q +a 11-q 61-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2.]7.(2017·江苏省泰州市高考数学一模)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升.1322[设最上面一节的容积为a 1, 由题设知⎩⎪⎨⎪⎧4a 1+4×32d =3,⎝⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫6a 1+6×52d =4,解得a 1=1322.]8.(2017·江苏省淮安市高考数学二模)已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a 2a 3=a 4a 5,S 9=1,则a 1的值是________.【导学号:56394041】-527[设等差数列{a n }的公差为d (d ≠0), ∵a 2a 3=a 4a 5,S 9=1,∴⎩⎪⎨⎪⎧a 1+d a 1+2d =a 1+3d a 1+4d ,9a 1+9×82d =1,解得a 1=-527.]9.(广东湛江市2017届高三上学期期中调研考试)在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3·a 7=________.2 [由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.]10.(2017·江苏省盐城市高考数学二模)记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.31 [若等比数列的公比等于1,由a 1=1,则S 4=4,5S 2=10,与题意不符. 设等比数列的公比为q (q ≠1),由a 1=1,S 4=5S 2,得a 11-q 41-q=5a 1(1+q ),解得q =±2.∵数列{a n }的各项均为正数,∴q =2. 则S 5=1-251-2=31.]11.(广东郴州市2017届高三第二次教学质量监测试卷)在△ABC 中,A 1,B 1分别是边BA ,CB 的中点,A 2,B 2分别是线段A 1A ,B 1B 的中点,…,A n ,B n 分别是线段A n -1A ,B n -1B (n ∈N *,n >1)的中点, 设数列{a n },{b n }满足:向量B n A n →=a n CA →+b n CB →(n ∈N *),有下列四个命题,其中假命题是:________.【导学号:56394042】①数列{a n }是单调递增数列,数列{b n }是单调递减数列; ②数列{a n +b n }是等比数列; ③数列⎩⎨⎧⎭⎬⎫a nb n 有最小值,无最大值;④若△ABC 中,C =90°,CA =CB ,则|B n A n →|最小时,a n +b n =12.③ [由BA n →=⎝ ⎛⎭⎪⎫1-12n BA →=⎝ ⎛⎭⎪⎫1-12n (CA →-CB →),B n B →=12n CB →,B n A n →=B n B →+BA n →=⎝ ⎛⎭⎪⎫1-12n CA →+⎝ ⎛⎭⎪⎫12n -1-1CB →,所以a n =1-12n ,b n =12n -1-1.则数列{a n }是单调递增数列,数列{b n }是单调递减数列,故①正确;数列{a n +b n }即为⎩⎨⎧⎭⎬⎫12n 是首项和公比均为12的等比数列,故②正确;而当n =1时,a 1=12,b 1=0,a n b n 不存在;n >1时,a n b n =2n-12-2n =-1+12-2n 在n ∈N *上递增,无最小值和最大值,故③错误;在△ABC 中,C =90°,CA =CB ,则|B n A n →|2=(a 2n+b 2n )CA →2+2a n b n CA →·CB →=5⎝ ⎛⎭⎪⎫12n -352-15,当n =1时,取得最小值,即有|B n A n →|最小时,a n +b n =12,故④正确.]12.(天津六校2017届高三上学期期中联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n+1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是________.⎝ ⎛⎭⎪⎫-∞,23 [因为a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1⇒1a n +1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n,因为数列{b n }是单调递增数列,所以当n ≥2时b n +1>b n ⇒(n -2λ)·2n>(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23.]13. (山西大学附属中学2017级上学期11月模块诊断)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为________. S 9a 9 [S 17>0⇒17a 1+a 172>0⇒172a 92>0⇒a 9>0, S 18<0⇒18a 1+a 182<0⇒18a 9+a 102<0⇒a 10+a 9<0⇒a 10<0,因此S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9>0,S 10a 10<0,而S 1<S 2<…<S 9,a 1>a 2>…>a 8>a 9,所以S 1a 1<S 2a 2<…<S 8a 8<S 9a 9.] 14.(云南大理2017届高三第一次统测)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *);令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________.5 050 [由a n +1=3a n +2(n ∈N *)可知a n +1+1=3(a n +1),∴a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,∴a n =3n-1,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=1001+1002=5 050.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)(泰州中学2017届高三上学期期中考试)已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)等比数列{b n }满足:b 1=a 1,b 2=a 2-1,若数列c n =a n ·b n ,求数列{c n }的前n 项和S n . [解] (1)设等差数列{a n }的公差为d ,则依题意设d >0.由a 2+a 7=16,得2a 1+7d =16. ① 由a 3a 6=55,得(a 1+2d )(a 1+5d )=55. ②4分由①得2a 1=16-7d 将其代入②得(16-3d )(16+3d )=220.即256-9d 2=220,∴d 2=4,又d >0,∴d =2.代入①得a 1=1,∴a n =1+(n -1)2=2n -1.6分 (2)∵b 1=1,b 2=2,∴b n =2n -1,∴c n =a n b n =(2n -1)2n -1, 8分S n =1·20+3·21+…+(2n -1)·2n -1,2S n =1·21+3·22+…+(2n -1)·2n .两式相减可得:-S n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n=1+2×21-2n -11-2-(2n -1)·2n,∴-S n =1+41-2n -11-2-(2n -1)·2n=1+2n +1-4-(2n -1)·2n=2n +1-3-(2n -1)·2n, ∴S n =3+(2n -1)·2n-2n +1=3+(2n -3)·2n.14分16.(本小题满分14分)(河南省豫北名校联盟2017届高三年级精英对抗赛)已知各项均不相等的等差数列{a n }的前五项和S 5=20,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)若T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,且存在n ∈N *,使得T n -λa n +1≥0成立,求实数λ的取值范围.[解] (1)设数列{a n }的公差为d ,则 ⎩⎪⎨⎪⎧5a 1+5×42d =20,a 1+2d 2=a 1a 1+6d ,即⎩⎪⎨⎪⎧a 1+2d =4,2d 2=a 1d . 2分又因为d ≠0,所以⎩⎪⎨⎪⎧a 1=2,d =1.4分 所以a n =n +1. 5分(2)因为1a n a n +1=1n +1n +2=1n +1-1n +2, 所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n2n +2. 7分因为存在n ∈N *,使得T n -λa n +1≥0成立, 所以存在n ∈N *,使得n2n +2-λ(n +2)≥0成立, 即存在n ∈N *,使λ≤n2n +22成立. 10分又n2n +22=12⎝⎛⎭⎪⎫n +4n+4≤116(当且仅当n =2时取等号),所以λ≤116.即实数λ的取值范围是⎝⎛⎦⎥⎤-∞,116. 14分17.(本小题满分14分)(四川省凉山州2017届高中毕业班第一次诊断性检测)已知数列{a n }满足a 1=1,a n a n +1=2n,n ∈N *.(1)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值a 4+1,求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域;(2)求数列{a n }的通项公式. [解] (1)∵a n a n +1=2n,则a n +1a n +2=2n +1,∴a n +2a n=2, 又a 1=1,故a 1a 2=21,即a 2=2, ∴a 3=2,a 4=4,∴A =a 4+1=5,故f (x )=5sin(2x +φ),4分 又x =π6时,f (x )=5,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1,且0<φ<π,解得φ=π6, ∴f (x )=5sin ⎝⎛⎭⎪⎫2x +π6,6分而x ∈⎣⎢⎡⎦⎥⎤-π12,π2,故2x +π6∈⎣⎢⎡⎦⎥⎤0,7π6,从而sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,综上知f (x )∈⎣⎢⎡⎦⎥⎤-52,5. 8分18.(本小题满分16分)(天津六校2017届高三上学期期中联考)已知各项都是正数的数列{a n }的前n 项和为S n ,S n =a 2n +12a n ,n ∈N *.(1) 求数列{a n }的通项公式;(2) 设数列{b n }满足:b 1=1,b n -b n -1=2a n (n ≥2),数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n ,求证:T n <2;(3)若T n ≤λ(n +4)对任意n ∈N *恒成立,求λ的取值范围.【导学号:56394043】[解] (1)n =1时,a 1=a 21+12a 1,∴a 1=12.⎩⎪⎨⎪⎧S n -1=a 2n -1+12a n -1S n =a 2n +12a n⇒a n =a 2n -a 2n -1+12a n -12a n -1,⇒(a n +a n -1)⎝ ⎛⎭⎪⎫a n -a n -1-12=0,∵a n >0,∴a n -a n -1=12,∴{a n }是以12为首项,12为公差的等差数列.∴a n =12n .4分(2)证明:b n -b n -1=n ,⎩⎪⎨⎪⎧b 2-b 1=2b 3-b 2=3⋮b n -b n -1=n⇒b n -b 1=n +2n -12⇒b n =n n +12.1b n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,即T n <2. (3)由2nn +1≤λ(n +4)得λ≥2nn +1n +4=2n +4n +5,当且仅当n =2时,2n +4n+5有最大值29,∴λ≥29.16分19.(本小题满分16分)(中原名校豫南九校2017届第四次质量考评)设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. [解] (1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式为a n =3n -4.6分(2)S n =-n +3n n -12,2S n +8n +27=3n 2+3n +27,a n +4=3n ;8分(-1)nk <n +1+9n,当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n ;当n 为偶数时,k <n +1+9n,∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n的最小值为7,当n 为偶数时,n =4时,n +1+9n 的最小值为294,∴-7<k <294.16分20.(本小题满分16分)设A (x 1,y 1),B (x 2,y 2)是函数f (x )=12+log 2x1-x 的图象上任意两点,且OM →=12(OA →+OB →),已知点M 的横坐标为12.(1)求证:M 点的纵坐标为定值;(2)若S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n ,n ∈N *,且n ≥2,求S n;(3)已知a n=⎩⎪⎨⎪⎧23,n =1,1S n+1Sn +1+1,n ≥2.其中n ∈N *.T n 为数列{a n }的前n 项和,若T n <λ(S n +1+1)对一切n ∈N *都成立,试求λ的取值范围.【导学号:56394044】[解] (1)证明:∵OM →=12(OA →+OB →),∴M 是AB 的中点.设M 点的坐标为(x ,y ),由12(x 1+x 2)=x =12,得x 1+x 2=1,则x 1=1-x 2或x 2=1-x 1.2分 而y =12(y 1+y 2)=12[f (x 1)+f (x 2)]=12⎝ ⎛⎭⎪⎫12+log 2x 11-x 1+12+log 2x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1+log 2x 21-x 2=12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1·x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 1x 2x 1x 2=12()1+0=12,∴M 点的纵坐标为定值12. 5分(2)由(1),知x 1+x 2=1,f (x 1)+f (x 2)=y 1+y 2=1,S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n 2+…+f ⎝ ⎛⎭⎪⎫n -1n ,S n =f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n , 两式相加,得2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =1+1+…+1n -1,∴S n =n -12(n ≥2,n ∈N *).8分(3)当n ≥2时,a n =1S n +1S n +1+1=4n +1n +2=4⎝⎛⎭⎪⎫1n +1-1n +2.10分T n =a 1+a 2+a 3+…+a n =23+4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=23+4⎝ ⎛⎭⎪⎫13-1n +2=2n n +2. 12分由T n <λ(S n +1+1),得2n n +2<λ·n +22.∴λ>4n n +22=4nn 2+4n +4=4n +4n+4. ∵n +4n≥4,当且仅当n =2时等号成立,∴4n +4n+4≤44+4=12. 因此λ>12,即λ的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16分。

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题6 数列 Word版含答案

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题6 数列 Word版含答案

专题六数列———————命题观察·高考定位———————(对应学生用书第页).(·江苏高考)等比数列{}的各项均为实数,其前项和为.已知=,=,则=.[设{}的首项为,公比为,则错误!解得(\\(=(),=,))所以=×==.].(·江苏高考)已知{}是等差数列,是其前项和.若+=-,=,则的值是.[法一:设等差数列{}的公差为,由=,知=+=,得+=,即=-.所以=+=-,代入+=-,化简得-+=,所以=,=-.故=+=-+=.法二:设等差数列{}的公差为,由=,知==,所以=.所以由+=,得=-,代入+=-,化简得++=,所以=-.公差=-=+=,故=+=+=.].(·江苏高考)在各项均为正数的等比数列{}中,若=,=+,则的值是.[因为=,=,=,所以由=+得=+,消去,得到关于的一元二次方程()--=,解得=,==×=.].(·江苏高考)设数列满足=,且+-=+(∈*),则数列前项的和为.[由题意有-=,-=,…,--=(≥).以上各式相加,得-=++…+==.又∵=,∴=(≥).∵当=时也满足此式,∴=(∈*).∴==.∴=×=×=.].(·江苏高考)对于给定的正整数,若数列{}满足:-+-++…+-+++…++-++=,对任意正整数(>)总成立,则称数列{}是“()数列”.()证明:等差数列{}是“()数列”;()若数列{}既是“()数列”,又是“()数列”,证明:{}是等差数列.【导学号:】[证明]()因为{}是等差数列,设其公差为,则=+(-),从而,当≥时,-++=+(--)++(+-)=+(-)=,=,所以-+-+-++++++=,因此等差数列{}是“()数列”.()数列{}既是“()数列”,又是“()数列”,因此,当≥时,-+-++++=,①当≥时,-+-+-++++++=.②由①知,-+-=--(++),③+++=+-(-+).④将③④代入②,得-++=,其中≥,所以,,,…是等差数列,设其公差为′.在①中,取=,则+++=,所以=-′,在①中,取=,则+++=,所以=-′,所以数列{}是等差数列.[命题规律]()对等差数列与等比数列基本量的考查是重点,主要考查利用通项公式、前项和公式建立方程组求解,属于低档题,主要是以填空题的形式出现.()对等差数列与等比数列性质的考查是热点,具有“新、巧、活”的特点,考查利用性质解决有关的计算问题,属中低档题,主要是以填空题的形式出现.()数列的通项公式及递推公式的应用也是命题的热点,根据与的关系求通项公式以及利用构造或转化的方法求通项公式也是常考的热点.填空、解答题都有出现.()数列的求和问题,多以考查等差、等比数列的前项和公式、错位相减法和裂项相消法为主,且考查频率较高,是高考命题的热点.填空、解答题都有出现.()数列与函数、不等式的综合问题也是高考考查的重点,主要考查利用函数的观点解决数列问题以及用不等式的方法研究数列的性质,多为中档题,以解答题的形式出现.()数列与解析几何交汇主要涉及点列问题,难度中等及以上,常以解答题形式出现.()数列应用题主要以等差数列、等比数列及递推数列为模型进行考查,难度中等及以上,常以解答题形式出现.———————主干整合·归纳拓展———————(对应学生用书第页)[第步▕核心知识再整合].等差数列()通项公式错误!()前项和公式:==+.()常用性质:①如果数列{}是等差数列,+=+⇒+=+(,,,∈*),特别地,当为奇数时,+=+-=……。

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

3 例2 (1)cos2α+cos2(α+120°)+cos2(α+240°)的值为___2_____. 解析 令α=0°, 则原式=cos20°+cos2120°+cos2240°=32.
解析答案
(2) 如 图 , 在 三 棱 锥 O—ABC 中 , 三 条 棱 OA , OB , OC 两 两 垂 直 , 且 OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体 积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为_S_3_<_S_2<_S_1_.
例4 如图,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC, AB⊥BC,DA=AB=BC= 2,则球O的体积等于____6_π___.
思维升华
解析
答案
跟踪演练 4
(1)1e64 ,2e55 ,3e66 (其中
e
e4 e5 e6
为自然对数的底数)的大小关系是_1_6_<_2_5_<_3_6_.
所以 CD=1,AD=2 2,
所以 tan C=2 2,tan A=tan B= 2,
所以ttaann CA+ttaann CB=4.
解析答案
(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增 函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4, 则x1+x2+x3+x4=__-__8____. 解析 根据函数特点取 f(x)=sinπ4x, 再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.
思维升华
解析答案
跟踪演练3 (1)(2015·湖南)若函数f(x)=|2x-2|-b有两个零点,则实数b 的取值范围是__(_0_,_2_) __. 解析 由f(x)=|2x-2|-b=0, 得|2x-2|=b. 在同一平面直角坐标系中画出y=|2x-2|与y=b 的图象,如图所示. 则当0<b<2时,两函数图象有两个交点,从而函 数f(x)=|2x-2|-b有两个零点.

2018届高考数学理新课标二轮专题复习课件:3-2数列 精品

2018届高考数学理新课标二轮专题复习课件:3-2数列 精品

3.(2016·太原检测)已知数列{an}满足:a1=12,3(11+-aann+1)=
2(1+an) 1-an+1 ,an·an+1<0(n≥1,n∈N*);数列{bn}满足:bn=an+12-
an2(n≥1,n∈N*). (1)求数列{an},{bn}的通项公式; (2)证明:数列{bn}中的任意三项不可能成等差数列.
当 d=-1 时,a3=0 与已知矛盾,d=2. ∵an=a1+(n-1)d=2+2(n-1)=2n.(3 分) 由 bn+Sn=2,得 Sn=2-bn. 当 n=1 时,b1+S1=2,解得 b1=1; 当 n≥2 时,bn=Sn-Sn-1=(2-bn)-(2-bn-1)=bn-1-bn,即 bn=12bn-1. ∴数列{bn}是首项为 1,公比为12的等比数列,故 bn=2n1-1.(6 分)
(2)由(1)知 Sn=2-2n1-1, ∴cn=an2Sn=2n-2nn-1.(7 分) ∴Tn=2(1+2+3+…+n)-(210+221+232+…+2nn-1)=n(n+1) -(210+221+232+…+2nn-1). 令 Rn=210+221+232+…+2nn-1,
则12Rn=211+222+233+…+2nn, 两式相减得12Rn=1+12+212+…+2n1-1-2nn=11--2121n-2nn=2- n+2n 2, ∴Rn=4-n2+n-21 , ∴Tn=n2+n-4+n2+n-21 .(12 分)
(2)∵an·bn=(-1)n-123n×(-1)n+1n=32nn , ∴Tn=3(21+222+233+…+2nn), ∴12Tn=3(212+223+…+n-2n 1+2nn+1), 以上两式相减得:12Tn=3(211+212+…+21n-2nn+1)=3(1-21n- 2nn+1), ∴Tn=6(1-n2+n+21 ).

2018届高考数学文新课标二轮专题复习课件:2-8 数列 精品

2018届高考数学文新课标二轮专题复习课件:2-8 数列 精品
【答案】 n
(2)(2016·福州五校联考)已知数列{an}的前 n 项和为 Sn=pn2 a1+2a2+3a3+…+nan
-2n,n∈N*,bn= 1+2+3+…+n ,若数列{bn}是公差为 2
的等差数列,则数列{an}的通项公式为________.
【解析】 由 Sn=pn2-2n 可知,当 n=1 时,a1=p-2, 当 n≥2 时,an=Sn-Sn-1=2pn-p-2,a1=p-2 适合上式, 因而对任意的 n∈N*,均有 an=2pn-p-2,an+1-an=2p, 因而数列{an}是公差为 2p 的等差数列,a2=3p-2,b1=a1= p-2, b2=a11++22a2=7p- 3 6,b2-b1=7p- 3 6-(p-2)=2,得 p=23, a1=-21.
4.(2016·兰州模拟)已知数列{an},{bn}都是等差数列,Sn,
Tn
分别是它们的前
n
项和,并且Sn=7n+1,则 a2+a5+a17+a22 =
Tn n+3
b8+b10+b12+b16
() 34
A. 5 31
C. 4
B.5 31
D. 5
答案 D 解析 令 Sn=(7n+1)n,Tn=n(n+3),则 an=14n-6,bn= 2n+2,所以ba82++ba150++ab1172++ab2126=2128++6242++22362++33402=351.
(2)(2016·河南六市联考)已知正项数列{an}的前 n 项和为 Sn,
若{an}和{ Sn}都是等差数列,且公差相等,则 a6=( )
11
3
A. 4
B.2
7 C.2
D.1
【 解 析 】 设 {an} 的 公 差 为 d , 由 题 意 得 , Sn = na1+n(n- 2 1)d= d2n2+(a1-d2)n,又{an}和{ Sn}都是

(江苏专版)18年高考数学二轮复习第1部分知识专题突破专题6数列学案

(江苏专版)18年高考数学二轮复习第1部分知识专题突破专题6数列学案

专题六 数列———————命题观察·高考定位———————(对应学生用书第21页)1.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.32 [设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1-q31-q =74,a1-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.]2.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.20 [法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20. 法二:设等差数列{a n }的公差为d ,由S 5=10,知a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20.]3.(2014·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.4 [因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4.]4.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为______.2011[由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.] 5.(2017·江苏高考)对于给定的正整数k ,若数列{a n }满足:a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”. (1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【导学号:56394035】[证明] (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d=2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此, 当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .② 由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③a n +2+a n +3=4a n +1-(a n -1+a n ).④将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d ′.在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d ′,所以数列{a n }是等差数列. [命题规律](1)对等差数列与等比数列基本量的考查是重点,主要考查利用通项公式、前n 项和公式建立方程组求解,属于低档题,主要是以填空题的形式出现.(2)对等差数列与等比数列性质的考查是热点,具有“新、巧、活”的特点,考查利用性质解决有关的计算问题,属中低档题,主要是以填空题的形式出现.(3)数列的通项公式及递推公式的应用也是命题的热点,根据a n 与S n 的关系求通项公式以及利用构造或转化的方法求通项公式也是常考的热点.填空、解答题都有出现. (4)数列的求和问题,多以考查等差、等比数列的前n 项和公式、错位相减法和裂项相消法为主,且考查频率较高,是高考命题的热点.填空、解答题都有出现. (5)数列与函数、不等式的综合问题也是高考考查的重点,主要考查利用函数的观点解决数列问题以及用不等式的方法研究数列的性质,多为中档题,以解答题的形式出现.(6)数列与解析几何交汇主要涉及点列问题,难度中等及以上,常以解答题形式出现. (7)数列应用题主要以等差数列、等比数列及递推数列为模型进行考查,难度中等及以上,常以解答题形式出现.———————主干整合·归纳拓展———————(对应学生用书第21页) [第1步▕ 核心知识再整合]1.等差数列(1)通项公式⎩⎪⎨⎪⎧a n =a 1+n -d ,a n=a m +n -m d m ,n ∈N *,m ≤n ,d =a n-a mn -m .(2)前n 项和公式:S n =n a 1+a n2=na 1+n n -2d .(3)常用性质:①如果数列{a n }是等差数列,m +n =p +q ⇒a m +a n =a p +a q (m ,n ,p ,q ∈N *),特别地,当n 为奇数时,a 1+a n =a 2+a n -1=……=2a 中.②若等差数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列. ③若等差数列{a n },{b n }的前n 项和为A n ,B n ,则a n b n =A 2n -1B 2n -1.④若等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 仍是等差数列.(4)等差数列的单调性设等差数列{a n }的公差为d ,当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;若d =0,则数列{a n }为常数数列. (5)等差数列的最值若{a n }是等差数列,求前n 项和的最值时, ①若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,则前n 项和S n 最大;②若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,则前n 项和S n 最小.2.等比数列(1)通项公式⎩⎪⎨⎪⎧a n =a 1·q n -1,a n=a m·qn -mm ,n ∈N *,m <n ,q n -m=a n am.(2)前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =,a 1-q n 1-q或a 1-a n q1-q q(3)常用性质:①如果数列{a n }是等比数列m +n =p +q ⇒a m ·a n =a p ·a q (m ,n ,p ,q ∈N *),特别地,当n 为奇数时,a 1·a n =a 2·a n -1=……=a 2中.②等比数列{a n }的前n 项和为S n ,满足S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…成等比数列(其中S n ,S 2n -S n ,S 3n -S 2n ,…均不为0). (4)等比数列的单调性 设等比数列{a n }的公比为q ,当⎩⎪⎨⎪⎧a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,{a n }为递增数列;当⎩⎪⎨⎪⎧a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,{a n }为递减数列;当q =1时,则数列{a n }为常数数列. 3.数列常见通项公式的求法(1)观察法:利用递推关系写出前几项,根据前几项的特点观察、归纳、猜想出a n 的表达式,然后用数学归纳法证明. (2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧S 1 n =,S n -S n -1n(3)公式法:利用等差(比)数列求通项公式.(4)累加法:在已知数列{a n }中,满足a n +1=a n +f (n ),把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{a n }中,满足a n +1=f (n )a n ,把原递推公式转化为a n +1a n=f (n ),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{a n }中,满足a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p ,再利用换元法转化为等比数列求解. 4.数列求和的主要方法(1)公式法:如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.(2)倒序相加法:如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(3)分组转化求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 常见的拆项公式如下: ①分式型1n n +=1n -1n +1,1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2,1nn +n +=12⎣⎢⎡⎦⎥⎤1nn +-1n +n +. ②乘式型n (n +1)=-13[(n -1)n (n +1)-n (n +1)(n +2)],n (n +1)(n +2)=-14[(n -1)n (n +1)(n +2)-n (n +1)(n +2)(n +3)].③阶乘型n n +!=n +-1n +!=1n !-1n +!,C n -1m -1=C n m -C n m -1,k C k n =n C k -1n -1. ④三角函数型tan a n tan a n +1=1-tan a n +1+tan a ntan a n +1+a n,1sin a n sin a n +1=cot a n -cot a n +1sin a n +1-a n ,1cos a n cos a n +1=tan a n +1-tan a nsin a n +1-a n,cos⎣⎢⎡⎦⎥⎤k 2n +12=sin k n +1-sin kn2sink2,sin⎣⎢⎡⎦⎥⎤k 2n +12=cos k n +1-cos kn-2sink2.⑤根式型1n +n +1=n +1-n .(6)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.[第2步▕ 高频考点细突破]【例n S n ,若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n =________.[解析] 由题意得a 1q (q 3-1)=78,a 1(1+q +q 2)=13⇒q (q -1)=6,∵q >0∴q =3,a 1=1,a n =3n -1.[答案] 3n -1[规律方法] 等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式、求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现. [举一反三](江苏省南通中学2017届高三上学期期中考试)设S n 是等比数列{a n }的前n 项的和,若a 3+2a 6=0,则S 3S 6的值是________.【导学号:56394036】2 [a 3+2a 6=0⇒a 6a 3=-12⇒q 3=-12,因此S 3S 6=a 1·1-q 31-q a 1·1-q 61-q =1-q 31-q 6=1+121-14=2.]【例2】 n }的各项均为正数,且满足:a 1a 9=4,则数列{log 2a n }的前9项之和为________.[解析] ∵a 1a 9=a 25=4,∴a 5=2,∴log 2a 1+log 2a 2+…+log 2a 9=log 2(a 1a 2…a 9)=log 2a 95=9log 2a 5=9. [答案] 9[规律方法] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.等差数列(或等比数列)中若出现的是通项与数列和的关系,则优先考虑等差数列(或等比数列)性质m +n =p +q ⇒a m +a n =a p +a q (m ,n ,p ,q ∈N *)(m +n =p +q ⇒a m ·a n =a p ·a q (m ,n ,p ,q ∈N *)). [举一反三](2017届高三七校联考期中考试)设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________. 0或1 [∵S n =kn 2+n ,n ∈N *,∴ 数列{a n }是首项为k +1,公差为2k 的等差数列,a n =2kn +1-k .又对于任意的m ∈N *都有a 22m =a m a 4m ,∴a 22=a 1a 4,(3k +1)2=(k +1)·(7k +1),解得k =0或1.又k =0时a n =1,显然对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列;k =1时a n =2n ,a m =2m ,a 2m =4m ,a 4m =8m ,显然对于任意的m ∈N *,a m ,a 2m ,a 4m 也成等比数列.综上所述,k =0或1.]n n①|a 1|≠|a 2|;②r (n -p )S n +1=(n 2+n )a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0. (1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列.[解] (1)n =1时,r (1-p )(a 1+a 2)=2a 1-2a 1,其中r ,p ∈R ,且r ≠0.又|a 1|≠|a 2|. ∴1-p =0,解得p =1.(2)设a n =ka n -1(k ≠±1),r (n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,∴rS 3=6a 2,2rS 4=12a 3+4a 1,化为:r (1+k +k 2)=6k ,r (1+k +k 2+k 3)=6k 2+2.联立解得r =2,k =1(不合题意),舍去,因此数列{a n }不是等比数列.(3)证明:r =2时,2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,∴2S 3=6a 2,4S 4=12a 3+4a 1,6S 5=20a 4+10a 1.化为:a 1+a 3=2a 2,a 2+a 4=2a 3,a 3+a 5=2a 4.假设数列{a n }的前n 项成等差数列,公差为d . 则2(n -1)⎣⎢⎡⎦⎥⎤na 1+n n -2d +a n +1=(n 2+n )[a 1+(n -1)d ]+(n 2-n -2)a 1,化为a n +1=a 1+(n +1-1)d ,因此第n +1项也满足等差数列的通项公式,综上可得,数列{a n }成等差数列.[规律方法] (1)定义法:a n +1-a n =d (常数)(n ∈N *){a n }是等差数列;a n +1a n=q (q 是非零常数){a n }是等比数列;(2)等差(比)中项法:2a n +1=a n +a n +2(n ∈N *){a n }是等差数列;a 2n +1=a n ·a n +2(n ∈N *,a n ≠0){a n }是等比数列;(3)通项公式法:a n =pn +q (p ,q 为常数){a n }是等差数列;a n =a 1·qn -1(其中a 1,q 为非零常数,n ∈N *){a n }是等比数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数){a n }是等差数列;S n =Aq n-A (A 为非零常数,q ≠0,1){a n }是等比数列. [举一反三](2017·江苏省盐城市高考数学二模)已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S n n,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列.【导学号:56394037】[解] (1)∵数列{a n }是公差为2的等差数列,∴a n =a 1+2(n -1),S nn=a 1+n -1. ∴(n +2)c n =a 1+2n +a 1+n +2-(a 1+n -1)=n +2,解得c n =1.(2)证明:由(n +1)b n =a n +1-S n n,可得:n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1, 相减可得:a n +2-a n +1=(n +2)b n +1-nb n , 可得:(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n=n +b n +1-nb n2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).∵b n ≤λ≤c n ,∴λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.∴(n +1)λ=a n +1-S n n ,(n +2)λ=12(a n +1+a n +2)-S nn,相减可得:12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1),∴数列{a n }是等差数列.【例n q >1,且满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.[解] (1)∵a 3+2是a 2,a 4的等差中项,∴2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,可得a 3=8,∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n.(2)∵b n =a n log 12a n =2n log 122n =-n ·2n,∴S n =-(1×2+2×22+…+n ·2n),① 2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23…+2n -n ·2n +1=-2n1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62,∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.[规律方法] 等差数列、等比数列的综合问题的解题关键仍然是“基本量”方法,其通过方程或者方程组求出数列的基本量,然后再解决后续问题. [举一反三](泰州中学2016-2017年度第一学期第一次质量检测文科)已知各项都为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4.设各项都为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2a 4=a 23=16, 解得a 3=a 1q 2=4,② 由①②得3q 2-4q -4=0, 解得q =2或q =-23(舍去),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)×20+2×2+(3+1)×22+4×23+(5+1)×24+…+[(n -1)+1]×2n -2+n ×2n -1=(20+2×2+3×22+4×23+…+n ×2n -1)+(20+22+…+2n -2),设H n =20+2×2+3×22+4×23+…+n ×2n -1,③则2H n =2+2×22+3×23+…+(n -1)×2n -1+n ×2n,④③-④,得-H n =20+2+22+23+…+2n -1-n ×2n=1-2n1-2-n ×2n =(1-n )×2n-1,∴H n =(n -1)×2n+1,∴T n =(n -1)×2n+1+1-41-4=⎝ ⎛⎭⎪⎫n -23×2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)×2n -1=⎝⎛⎭⎪⎫n -53×2n -1+23+(n +1)×2n -1=⎝⎛⎭⎪⎫2n -23×2n -1+23,经检验,T 1=2符合上式.∴T n=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫2n -23×2n -1+23,n 为奇数,⎝ ⎛⎭⎪⎫n -23×2n+23,n 为偶数.【例5】 ({a n },若2a 4+a 3-2a 2-a 1=8,则2a 8+a 7的最小值为________.[解析] 设{a n }的公比为q ,由2a 4+a 3-2a 2-a 1=8,得(2a 2+a 1)q 2-(2a 2+a 1)=8,所以(2a 2+a 1)(q 2-1)=8,显然q 2>1,2a 8+a 7=(2a 2+a 1)q 6=8q 6q 2-1,令t =q 2,则2a 8+a 7=8t 3t -1,设函数f (t )=8t 3t -1(t >1),f ′(t )=8t 2t -t -2,易知当t ∈⎝ ⎛⎭⎪⎫1,32时f (t )为减函数,当t ∈⎝ ⎛⎭⎪⎫32,+∞时,f (t )为增函数时,所以f (t )的最小值为f ⎝ ⎛⎭⎪⎫32=54,故2a 8+a 7的最小值为54. [答案] 54[规律方法] (1)在处理数列单调性问题时应利用数列的单调性定义,即“若数列{a n }是递增数列⇔∀n ≥1,a n +1≥a n 恒成立”;(2)数列a n =f (n )的单调性与y =f (x ),x ∈[1,+∞)的单调性不完全一致;(3)当数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题. [举一反三](南京市2016届高三年级模拟考试)已知数列{a n }是递增数列,且对n ∈N *,都有a n =n 2+λn 恒成立,则实数λ的取值范围是________.【导学号:56394038】(-3,+∞) [利用递增数列的定义,a n +1>a n ,a n +1-a n =2n +1+λ>0⇒λ>-2n -1,n ∈N *恒成立,则λ>-3.(注:本题易错的解法是根据数列所对应的函数单调性a n =n 2+λn =⎝⎛⎭⎪⎫n +λ22-λ24,然后-λ2≤1⇒λ≥-2.由数列是递增数列去断定数列对应的函数是递增函数,是错误的)]【例6】 n a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________. [解析] 由a n +1=a n (1-a n +1)得:1a n +1-1a n=1,因此数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,所以1a n=n ,即a n =1n ,b n =a n a n +1=1nn +=1n -1n +1,所以S 10=b 1+b 2+…+b 10=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫110-111=1-111=1011.[答案]1011[规律方法] (1)通常情况下数列的第(1)题是需要求数列的通项公式,而且其中也设出一个新的数列,我们在做的过程中,要把这个条件作为一种提示,配凑成这种新的数列,即可解决;若题中没有设出这样的新数列,可以看知识整合中6种求通项公式的方法;(2)对于数列求和,需要先判断用哪种求和的方法,然后进行求解. [举一反三](无锡市普通高中2017届高三上学期期中基础性检测)设数列{a n }的前n 项和为S n ,已知4S n =2a n -n 2+7n (n ∈N *),则a 11=________.-2 [由题设4S n =2a n -n 2+7n (n ∈N *)可得4S n -1=2a n -1-(n -1)2+7(n -1),将以上两式两边相减可得4a n =2a n -2a n -1-2n +1+7,即a n =-a n -1-n +4,所以a n +a n -1=-n +4,又因为a 1=3,所以a 2=-3-2+4=-1,故a 3=1-3+4=2,依次可推得a 11=-2.]【例7】 (n S n ,且S n +a n =4,n ∈N *.(1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列?若存在,求出C 的值;若不存在,请说明理由;(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22成立,求证:数列 {b n }是等差数列. [解] (1)a 1=4-a 1,所以a 1=2, 由S n +a n =4得n ≥2时,S n -1+a n -1=4, 两式相减得,2a n =a n -1,a n a n -1=12. 数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n(n ∈N *).(2)由于数列{d n }是常数列,d n =c n +log C a n =2n +3+(2-n )log C 2=2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数列,只有2-log C 2=0;解得C =2,此时d n =7.(3)证明:b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22.①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝ ⎛⎭⎪⎫12n -1-n +12,② ②式两边同时乘以12得,b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝ ⎛⎭⎪⎫12n -n +14.③①式减去③式得,b n a 1=-n -34,所以b n =-n 8-38,且b n +1-b n =-18.所以数列{b n }是以-12为首项,公差为-18的等差数列.[举一反三](南京市2017届高三年级学情调研)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2a 3=15,S 4=16. (1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1.①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.[解] (1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧a 1+da 1+2d =15,4a 1+6d =16,解得⎩⎪⎨⎪⎧a 1=1d =2或⎩⎪⎨⎪⎧a 1=7d =-2(舍去).所以a n =2n -1.(2)①因为b 1=a 1,b n +1-b n =1a n a n +1,所以b 1=a 1=1,b n +1-b n =1a n a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎪⎫1-13,b 3-b 2=12⎝ ⎛⎭⎪⎫13-15,……b n -b n -1=12⎝ ⎛⎭⎪⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -1=n -12n -1, 所以b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式.故b n =3n -22n -1,n ∈N *.②假设存在正整数m 、n (m ≠n ),使得b 2,b m ,b n 成等差数列,则b 2+b n =2b m . 又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+⎝ ⎛⎭⎪⎫32-14n -2=2⎝ ⎛⎭⎪⎫32-14m -2,即12m -1=16+14n -2, 化简得:2m =7n -2n +1=7-9n +1.当n +1=3,即n =2时,m =2,不符合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.【例8】 n n S n =t (S n-a n +1)(t 为常数,且t ≠0,t ≠1). (1)求{a n }的通项公式;(2)设b n =a 2n +S n ·a n ,若数列{b n }为等比数列,求t 的值;(3)在满足条件(2)的情形下,设c n =4a n +1,数列{c n }的前n 项和为T n ,若不等式12k 4+n -T n≥2n -7对任意的n ∈N *恒成立,求实数k 的取值范围.[解] (1)当n =1时,S 1=t (S 1-a 1+1),得a 1=t .当n ≥2时,由S n =t (S n -a n +1),即(1-t )S n =-ta n +t ,① 得(1-t )S n -1=-ta n -1+t ,②①-②,得(1-t )a n =-ta n +ta n -1,即a n =ta n -1,∴a na n -1=t (n ≥2),∴{a n }是等比数列,且公比是t ,∴a n =t n. (2)由(1)知,b n =(t n )2+t-t n1-t·t n,即b n =t 2n +t n +1-2t 2n +11-t,若数列{b n }为等比数列,则有b 22=b 1·b 3, 而b 1=2t 2,b 2=t 3(2t +1),b 3=t 4(2t 2+t +1),故[t 3(2t +1)]2=(2t 2)·t 4(2t 2+t +1), 解得t =12,再将t =12代入b n ,得b n =⎝ ⎛⎭⎪⎫12n,由b n +1b n =12,知{b n }为等比数列,∴t =12. (3)由t =12,知a n =⎝ ⎛⎭⎪⎫12n ,∴c n =4⎝ ⎛⎭⎪⎫12n+1,∴T n =4×12⎝ ⎛⎭⎪⎫1-12n 1-12+n =4+n -42n ,由不等式12k 4+n -T n ≥2n -7恒成立,得3k ≥2n -72n 恒成立,设d n =2n -72n ,由d n +1-d n =2n -52n +1-2n -72n =-2n +92n +1,∴当n ≤4时,d n +1>d n ,当n >4时,d n +1<d n , 而d 4=116,d 5=332,∴d 4<d 5,∴3k ≥332,∴k ≥132.[规律方法] 数列与不等式交汇命题,不等式常作为证明或求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用. [举一反三](江苏省南通中学2017届高三上学期期中考试)设公差不为零的等差数列{a n }的前5项和为55,且a 2,a 6+a 7,a 4-9成等比数列. (1)求数列{a n }的通项公式; (2)设数列b n =1a n -a n -,求证:数列{b n }的前n 项和S n <12.[解] (1)设等差数列的首项为a 1,公差为d , 则⎩⎪⎨⎪⎧5a 1+5×42d =55a 1+5d +a 1+6d 2=a 1+d a 1+3d -⇒⎩⎪⎨⎪⎧a 1=7d =2或⎩⎪⎨⎪⎧a 1=11d =0(舍去),故数列{a n }的通项公式为a n =7+2(n -1),即a n =2n +5.(2)证明:由(1)a n =2n +5, 得b n =1a n -a n -=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.S n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.【例9】 (2017·海安模拟)设函数f n (x )=-1+x +22+32+…+n2(x ∈R ,n ∈N *),证明:(1)对每个n ∈N *,存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n ()x n =0;(2)对任意p ∈N *,由(1)中x n 构成的数列{}x n 满足0<x n -x n +p <1n.【导学号:56394039】[证明] (1)对每个n ∈N *,当x >0时,f n ′(x )=1+x2+…+x n -1n>0,则f n (x )在(0,+∞)内单调递增,而f 1(1)=0,当n ≥2时,f n (1)=122+132+…+1n 2>0,故f n (1)≥0,又f n ⎝ ⎛⎭⎪⎫23=-1+23+∑k =2n⎝ ⎛⎭⎪⎫23kk 2≤-13+14∑k =2n⎝ ⎛⎭⎪⎫23k=-13+14·⎝ ⎛⎭⎪⎫232⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=-13·⎝ ⎛⎭⎪⎫23n -1<0,所以对每个n ∈N *,存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n (x n )=0.(2)当x >0时,f n +1(x )=f n (x )+x n +1n +2>f n (x ),并由(1)知f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增知,x n +1<x n ,故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n . 对任意p ∈N *,f n (x n ) =-1 + x n + x 2n22 + … + x 2nn2 =0.①f n +p (x n +p ) =-1 + x n +p +x 2n +p22+…+x n n +p n 2+x n +1n +pn +2+…+x n +pn +pn +p2=0.②①-②并移项,利用0<x n +p <x n ≤1,得x n -x n +p =∑k =2nx k n +p -x k n k 2+∑k =n +1n +p x k n +p k 2≤∑k =n +1n +px k n +pk 2 ≤∑k =n +1n +p1k 2<∑k =n +1n +p1k k -=1n -1n +p <1n. 因此,对任意p ∈N *,0<x n -x n +p <1n.[规律方法] 对于数列、函数、不等式的问题.可以利用函数的单调性,结合极限思想解决问题;也可以利用均值不等式等号成立的条件,结合极限思想获得思路;也可以利用方程进行等量变换,减少未知量,确定参数的取值范围;也可以等价转化不等关系为恒成立问题,利用函数最值得到解法;还可以利用函数的性质,数形结合,求出参数的取值范围. [举一反三](2017·如皋月考)已知二次函数f (x )=ax 2+bx +c 的图象通过原点,对称轴为x =-2n (n ∈N *).f ′(x )是f (x )的导函数,且f ′(0)=2n (n ∈N *) . (1)求f (x )的表达式(含有字母n );(2)若数列{a n }满足a n +1=f ′(a n ),且a 1=4,求数列{a n }的通项公式; (3)在(2)的条件下,若b n =n ·2a n +1-a n2,S n =b 1+b 2+…+b n ,是否存在自然数M ,使得当n >M 时n ·2n +1-S n >50恒成立?若存在,求出最小的M ;若不存在,说明理由.[解] (1)由已知,可得c =0,f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =2n ,b2a=2n , 解之得a =12,b =2n .∴f (x )=12x 2+2nx .(2)∵a n +1=a n +2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2(1+2+3+…+n -1)+4=2×n n -12+4=n 2-n +4.(3)a n +1-a n =(n +1)2-(n +1)+4-(n 2-n +4)=2n , ∴b n =n ·2a n +1-a n2=n ·2n.S n =1·21+2·22+3·23+…+n ·2n ,①2S n =1·22+2·23+3·24+…+n ·2n +1.②①-②得:-S n =21+22+…+2n -n ·2n +1=2n +1-2-n ·2n +1,∴n ·2n +1-S n =2n +1-2>50,即2n +1>52,当n ≥5时,2n +1>52.∴存在M =4,使得当n >M 时,n ·2n +1-S n >50恒成立.[第3步▕ 高考易错明辨析]1.忽视n 的取值范围致误已知数列{a n }中,a 1=1,前n 项的和为S n ,对任意的自然数n ≥2,a n 是3S n -4与2-32S n -1的等差中项.求通项a n . [错原] 忽视了a n +1a n =-12成立的前提n ≥2,只能说明数列从第2项起为等比数列,至于整个数列{a n }是否为等比数列还需验证a 2a 1是否等于-12,这种在解答过程中忽视数列“定义域”限制而致错的题目频率是非常高的,应引起足够的重视.[正解] 由已知,当n ≥2时,2a n =(3S n -4)+⎝ ⎛⎭⎪⎫2-32S n -1,又a n =S n -S n -1, 得a n =3S n -4(n ≥2),a n +1=3S n +1-4,以上两式相减得a n +1-a n =3a n +1, ∴a n +1a n =-12, ∴a 2,a 3,…,a n ,…成等比数列,其中a 2=3S 2-4=3(1+a 2)-4.即a 2=12,q =-12,∴当n ≥2时,a n =a 2qn -2=12·⎝ ⎛⎭⎪⎫-12n -2=-⎝ ⎛⎭⎪⎫-12n -1, ∴a n =⎩⎪⎨⎪⎧1, n =1,-⎝ ⎛⎭⎪⎫-12n -1, n ≥2.2.求等比数列的公比时忽视隐含条件致误已知一个等比数列的前四项之积为116,第2,3项的和为2,求这个等比数列的公比.[错原] 设这四个数为a q 3,a q,aq ,aq 3,公比为q 2,就等于规定了这个等比数列各项要么同为正,要么同为负,但题中q 可以为负! [正解] 依题意,设这四个数为a ,aq ,aq 2,aq 3,则⎩⎪⎨⎪⎧a 4q 6=116,aq +aq 2= 2.解得q =3±22或q =-5±2 6. 3.解数列问题时由思维定势导致错误已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是________. [错原] 默认q >0,遗漏当q <0时的情况.所以需要分q 为正、负两种情况. [正解] 因为等比数列{a n }中a 2=1, 所以S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1+q +1q =1+q +1q;当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3; 当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2-q⎝ ⎛⎭⎪⎫-1q =-1;所以S 3∈(-∞,-1]∪[3,+∞).———————专家预测·巩固提升———————(对应学生用书第27页)1.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S nn =2×a n n+1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=________.3 [由定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x )知,f ⎝ ⎛⎭⎪⎫x -32=f ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫32-x =-f ⎝ ⎛⎭⎪⎫32-x =-f (x ),所以f (x -3)= f ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -32-32= -f ⎝ ⎛⎭⎪⎫x -32=-(-f (x ))=f (x ),所以f (x )的周期为3,由S n n =2×a n n +1得,S n=2a n +n ,当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-(n -1),所以a n =2a n -1-1,所以a 2=-3,a 3=-7,a 4=-15,a 5=-31,a 6=-63,所以f (a 5)+f (a 6)=f (-31)+f (-63) =-f (3×10+1)-f (3×21+0)=-f (1)-f (0)=-f (1-3)-0 =-f (-2)=3.]2.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=a n +c n 2,c n + 1=a n +b n2,则∠A n 的最大值是________.π3 [由b n +1=a n +c n 2,c n +1=a n +b n2得b n +1+c n +1=a n +c n 2+a n +b n 2=12(b n +c n )+a n ,又a n +1=a n =a 1,所以b n +1+c n +1-2a 1=12(b n+c n -2a 1),而b 1+c 1=2a 1,所以b n +c n =2a 1,所以cos ∠A n =b 2n +c 2n -a 2n 2b n c n =b n +c n 2-a 2n -2b n c n2b n c n =3a 212b n c n-1≥3a 212⎝ ⎛⎭⎪⎫b n +c n 22-1=3a 212a 21-1=12,所以∠A n 的最大值是π3.]3.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c .若内角A ,B ,C 依次成等差数列,且a 和c 是-x 2+6x -8=0的两根,则S △ABC =________. 23 [∵内角A ,B ,C 依次成等差数列,∴B =60°, ∵a 和c 是-x 2+6x -8=0的两根,∴a =2,c =4, ∴S △ABC =12ac sin B =12×2×4×32=2 3.]4.(改编题)函数 f 1(x )=x 3,f 2(x )=⎩⎪⎨⎪⎧2x 2,x ∈⎣⎢⎡⎦⎥⎤0,12,log 14x ,x ∈⎝ ⎛⎦⎥⎤12,1,f 3(x )=⎩⎪⎨⎪⎧31-2x,x ∈⎣⎢⎡⎦⎥⎤0,12,1,x ∈⎝ ⎛⎦⎥⎤12,1,f 4(x )=14|sin(2πx )|,等差数列{a n }中,a 1=0,a 2 015=1,b n =|f k (a n +1)-f k (a n )|(k=1,2,3,4),用P k 表示数列{b n }的前2 014项的和,则P 1,P 2,P 3,P 4的关系为________.【导学号:56394040】P 4<1=P 1=P 2<P 3=2 [{a n }是等差数列,且a 1=0,a 2 015=1,可知该数列为递增数列,且a 1 008=12,a 504<14,a 505>14.对于f 1(x )=x 3,该函数在[0,1]上为增函数,于是有f 1(a n +1)-f 1(a n )>0, 于是b 1=f 1(a n +1)-f 1(a n ),所以P 1=f 1(a 2 015)-f 1(a 1)=1-0=1.对于f 2(x ),该函数在⎣⎢⎡⎦⎥⎤0,12上递增,在⎝ ⎛⎦⎥⎤12,1上递减,于是P 2=f 2(a 1 008)-f 2(a 1)+f 2(a 1 008)-f 2(a 2 015)=12-0+12-0=1.21 对于f 3(x ),该函数在⎣⎢⎡⎦⎥⎤0,12上递减,在⎝ ⎛⎦⎥⎤12,1上为常数, 类似有P 3=f 3(a 1)-f 3(a 1 008)=f 3(0)-f 3⎝ ⎛⎭⎪⎫12=3-1=2. 对于f 4(x ),该函数在⎣⎢⎡⎦⎥⎤0,14和⎣⎢⎡⎦⎥⎤12,34递增,在⎣⎢⎡⎦⎥⎤14,12和⎣⎢⎡⎦⎥⎤34,1上递减,且是以12为周期的周期函数,故只需讨论⎣⎢⎡⎦⎥⎤0,12的情况,再2倍即可,仿前可知,P 4=2[f 4(a 504)- f 4(a 1)+ f 4(a 505)- f 4(a 1008)]<2⎝ ⎛⎭⎪⎫14sin π2-14sin 0+14sin π2-14sin π=1, 故P 4<1,则P 4<1=P 1=P 2<P 3=2.]。

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题六 解析几何 第2讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题六 解析几何 第2讲 精品

例1 (1)△ABC的两个顶点为A(-4,0),B(4,0),△ABC周长为18,则C 点轨迹方程为__2x_52_+__y9_2=__1_(_y_≠__0_) ___. 解析 ∵△ABC的两顶点A(-4,0),B(4,0),周长为18, ∴AB=8,BC+AC=10. ∵10>8,∴点C到两个定点的距离之和等于定值,满足椭圆的定义, ∴点C的轨迹是以A,B为焦点的椭圆,∴2a=10,2c=8,∴b=3. ∴椭圆的标准方程是2x52 +y92=1(y≠0).
解析答案
(2)在平面直角坐标系中,已知△ABC 的顶点 A(-4,0)和 C(4,0),顶点 B
在椭圆2x52 +y92=1
sin 上,则
A+sin sin B
C
5
=____4____.
解析 由椭圆方程知其焦点坐标为(-4,0)和(4,0),
恰分别为△ABC的顶点A和C的坐标,
由椭圆定义知BA+BC=2a=10,
∴(m2+n)·(3m2-n)>0,解得-m2<n<3m2, 由双曲线性质,知c2=(m2+n)+(3m2-n)=4m2(其中c是半焦距), ∴焦距2c=2×2|m|=4,解得|m|=1,∴-1<n<3.
解析答案
1 23 4
2.(2016·天津改编)已知双曲线x42-by22=1(b>0),以原点为圆心,双曲线的
押题依据
解析答案
返回
例 3 (2015·江苏改编)如图,在平面直角坐标系 xOy 中, 已知椭圆ax22+by22=1(a>b>0)的离心率为 22,且右焦点 F 到直线 l:x=-ac2的距离为 3. (1)求椭圆的标准方程; 解 由题意,得ac= 22且 c+ac2=3,

2018年高考数学理科江苏专版二轮专题复习与策略课件:

2018年高考数学理科江苏专版二轮专题复习与策略课件:

模板1| 三角函数的周期性、单调性及最值问题 【例1】 (满分 3 14分)设函数f(x)= 2 - 3sin2ωx-sin ωxcos ωx(ω>0),且y
π =f(x)图象的一个对称中心到最近的对称轴的距离为4.
3π (1)求ω的值;(2)求f(x)在区间π, 2 上的最大值和最小值.
AB=2CD [解题指导] (1)M是AB中点,四边形ABCD是等腰梯形 ――→ ⇒▱AMC1D1→C1M∥平面A1ADD1 (2)CA,CB,CD1两两垂直→建立空间直角坐标系,写各点坐标→求平面 ABCD的法向量→将所求两个平面所成的角转化为两个向量的夹角
——————————
[规范解答示例]
——————
—————————
2C 2A
[规范解答示例] ————————
1+cos C 1+cos A 3 (1)证明:因为acos 2 +ccos 2 =a· 2 +c· 2 =2b, 所以a+c+(acos C+ccos A)=3b,4分
2 2 2 a2+b2-c2 b + c - a 故a+c+ +c· 2bc =3b,整理得a+c=2b, a· 2ab
[解题指导] 围→求f(x)的最值
化简变形→f(x)=Asin(ωx+φ)→根据周期求ω→确定ωx+φ的范
————
[规范解答示例] ————
3 (1)f(x)= 2 - 3sin2 ωx-sin ωxcos ωx 1-cos 2ωx 1 3 = 2 - 3· -2sin 2ωx2分 2 3 1 = 2 cos 2ωx-2sin 2ωx
因此M 3 1 , , 0 , 2 2
8分
3 1 3 1 → → → 所以MD1=- ,- , 3,D1C1=MB=- , ,0 . 10分 2 2 2 2

2018届高考数学理二轮复习江苏专用课件:专题三 数 列 第2讲 精品

2018届高考数学理二轮复习江苏专用课件:专题三 数 列 第2讲 精品
要使数列{an}是等差数列,则④式右边λ1 an 为常数,即 an+1-
an 为常数,④式左边 an+1-an=0,an=0,与 a1=1 矛盾. 综上可得,当 λ=0 时,数列{an}为等差数列,且a1+a3, 当 λ=0 时,a1=a2=a3=0,满足 2a2=a1+a3, 此时 Sn=an,则 Sn+1=an+1,故 an=0,
探究提高 (1)以数列为背景的不等式恒成立问题,多与数 列求和相联系,最后利用数列或数列对应函数的单调性求 解.(2)以数列为背景的不等式证明问题,多与数列求和有关, 常利用放缩法或单调性法证明.(3)当已知数列关系式时,需 要知道其范围时,可借助数列的单调性,即比较相邻两项 的大小即可.
【训练 1】 (2016·洛阳二模)已知数列{an}中,a2=2,Sn 是其前 n 项和,且 Sn=n2an. (1)求数列{an}的通项公式; (2)若正项数列{bn}满足 an=log2b2n2,设数列abnn的前 n 项和为 Tn,求使得2n-+T1n>30 成立的正整数 n 的最 小值.
热点二 有关数列中计算的综合问题 【例 2】 (2016·镇江期末)已知数列{an}的各项都为自然数,
前 n 项和为 Sn,且存在整数 λ,使得对任意正整数 n 都有 Sn=(1+λ)an-λ 恒成立. (1)求 λ 的值,使得数列{an}为等差数列,并求数列{an} 的通项公式; (2)若数列{an}为等比数列,此时存在正整数 k,当 1≤k
j
<j 时,有ai=2 016,求 k.
i=k
解 (1)法一 因为 Sn=(1+λ)an-λ,① 所以 Sn+1=(1+λ)an+1-λ,② 由②-①得 λan+1=(1+λ)an,③ 当 λ=0 时,an=0,数列{an}是等差数列. 当 λ≠0 时,a1=(1+λ)a1-λ,a1=1,且 an+1-an=1λan,④
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点五 复杂数列的通项公式与求和问题
(对应学生用书第71页)
数列在高考中占重要地位,应当牢记等差、等比的通项公式,前n 项和公式,等差、等比数列的性质,以及常见求数列通项的方法,如累加、累乘、构造等差、等比数列法、取倒数等.数列求和问题中,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题. 一、数列的通项公式
数列的通项公式在数列中占有重要地位,是数列的基础之一,在高考中,等差数列和等比数列的通项公式,前n 项和公式以及它们的性质是必考内容,一般以填空题的形式出现,属于低中档题,若数列与函数、不等式、解析几何、向量、三角函数等知识点交融,难度就较大,也是近几年命题的热点. 1.由数列的递推关系求通项
由递推关系求数列的通项的基本思想是转化,常用的方法: (1)a n +1-a n =f (n )型,采用叠加法. (2)
a n +1
a n
=f (n )型,采用叠乘法. (3)a n +1=pa n +q (p ≠0,p ≠1)型,转化为等比数列解决. 2.由S n 与a n 的关系求通项a n
S n 与a n 的关系为:a n =⎩
⎪⎨
⎪⎧
S n
n =,
S n -S n -1 n
【例1】 (2017·江苏省南京市迎一模模拟)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *
).
(1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;
(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n ,求满足不等式T n -2
2n -1
>2 010
的n 的最小值.
[解] (1)证明:当n =1时,2a 1=a 1+1,∴a 1=1. ∵2a n =S n +n ,n ∈N *
,∴2a n -1=S n -1+n -1,n ≥2,
两式相减得a n =2a n -1+1,n ≥2,即a n +1=2(a n -1+1),n ≥2, ∴数列{a n +1}为以2为首项,2为公比的等比数列,
∴a n +1=2n ,∴a n =2n -1,n ∈N *
; (2)b n =(2n +1)a n +2n +1=(2n +1)·2n
, ∴T n =3·2+5·22
+…+(2n +1)·2n
, ∴2T n =3·22
+5·23+…+(2n +1)·2
n +1

两式相减可得-T n =3·2+2·22
+2·23
+…+2·2n
-(2n +1)·2n +1

∴T n =(2n -1)·2n +1
+2,

T n -22n -1
>2 010可化为2n +1
>2 010, ∵210
=1 024,211
=2 048
∴满足不等式T n -2
2n -1
>2 010的n 的最小值为10.
[点评] 利用a n =S n -S n -1求通项时,注意n ≥2这一前提条件,易忽略验证n =1致误,当n =1时,a 1若适合通项,则n =1的情况应并入n ≥2时的通项;否则a n 应利用分段函数的形式表示. 二、数列的求和
常见类型及方法
(1)a n =kn +b ,利用等差数列前n 项和公式直接求解; (2)a n =a ·q
n -1
,利用等比数列前n 项和公式直接求解;
(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和;
(4)a n =b n ·c n ,数列{b n },{c n }分别是等比数列和等差数列,采用错位相减法求和. 【例2】 (扬州市2017届高三上学期期末)已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *
,a n +1-a n =2(b n +1-b n )恒成立. (1)若A n =n 2,b 1=2,求B n ; (2)若对任意n ∈N *
,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<1
3
成立,求正实数b 1的取值范围;
(3)若a 1=2,b n =2n
,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t
B t
成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.
【导学号:56394102】
[解] (1)因为A n =n 2,所以a n =⎩
⎪⎨⎪⎧
1,n =1,n 2
-n -2
,n ≥2,
即a n =2n -1,
故b n +1-b n =1
2(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,
所以B n =n ·2+12·n ·(n -1)·1=12n 2+3
2
n .
(2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即
b n +1
b n
=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n
1-2
×b 1=b 1(2n
-1),
所以b n +1
a n a n +1=
2
n
b 1n
-n +1

, 因为b n +1
a n a n +1=
b 1·2n
b 1
n

b 12n +1-
=1b 1⎝ ⎛⎭⎪⎫1
2n -1-12n +1-1 所以
b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1
a n a n +1
=1b 1⎝ ⎛⎭⎪⎫121-1-12n +1-1,所以1b 1⎝ ⎛⎭⎪⎫1
21-1-12n +1-1<13恒成立, 即b 1>3⎝


⎪⎫
1-
12n +1
-1,所以b 1≥3.
(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1

所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =2n
+2
n -1
+…+23+22+2=2
n +1
-2,
当n =1时,上式也成立, 所以A n =2
n +2
-4-2n ,又B n =2
n +1
-2,
所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1

假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t
B t
成等差数列, 等价于12-1,s 2-1,t 2-1成等差数列,即2s 2-1=12-1+t
2-1
, 即
2s 2s
-1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1
>1,即2s
<2s +1, 令h (s )=2s
-2s -1(s ≥2,s ∈N *
),则h (s +1)-h (s )=2s
-2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s
<2s +1,所以s =2, 代入2s 2s -1=121-1+t 2t -1得2t
-3t -1=0(t ≥3),
当t =3时,显然不符合要求;
当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *
),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0, 所以不符合要求.
所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t
B t
成等差数列.
[点评] 裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.从而达到求和的目的.要注意的是裂项相消法的前提是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后相互抵消.。

相关文档
最新文档