矩阵 计算习题及答案

合集下载

矩阵及其运算课后习题答案

矩阵及其运算课后习题答案

第二章 矩阵及其运算课后习题答案1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y 2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换. 解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫⎝⎛--=111111111A ,,150421321⎪⎪⎪⎭⎫⎝⎛--=B 求.23B A A AB T 及- 解 A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算以下乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635(2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫⎝⎛---=632142(4)⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=(6) ⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫⎝⎛=2101B ,问: (1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗? 解 (1)⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B . 则⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA BA AB ≠∴ (2) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛43011288611483⎪⎭⎫ ⎝⎛=27151610 故2222)(B AB A B A ++≠+ (3) =-+))((B A B A =⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛10205222⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛430111483⎪⎭⎫ ⎝⎛7182故 22))((B A B A B A -≠-+6.举反列说明以下命题是错误的: 〔1〕假设02=A ,则0=A ;〔2〕假设A A =2,则0=A 或E A =; 〔3〕假设AY AX =,且0≠A ,则Y X =. 解 (1) 取⎪⎭⎫⎝⎛=0010A , 02=A ,但0≠A (2) 取⎪⎭⎫⎝⎛=0011A , A A =2,但0≠A 且E A ≠ (3) 取⎪⎭⎫⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫⎝⎛=1011Y . AY AX =且0≠A 但Y X ≠. 7.设⎪⎭⎫⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=12011011012λλλA ; ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A利用数学归纳法证明: ⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A k k由数学归纳法原理知:⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫ ⎝⎛=λλλ001001A ,求kA .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明:当2=k 时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵. 证明 已知:A A T =则 AB B B A B A B B ABB T T T T TT T T===)()(从而 AB B T 也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =. 证明 由已知:A A T = B B T =充分性:BA AB =⇒A B AB TT=⇒)(AB AB T=即AB 是对称矩阵. 必要性:AB ABT=)(⇒AB A B T T =⇒AB BA =.11.求以下矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121; (4)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解 (1) ⎪⎭⎫⎝⎛=5221A , 1=A ..1 ),1(2 ),1(2 ,522122111=-⨯=-⨯==A A A A⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=*122522122111A A A A A . *-=A A A 11⎪⎭⎫ ⎝⎛--=1225(2) 01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎭⎫⎝⎛-=-θθθθcos sin sin cos 1A(3) 2=A , 故1-A 存在 024312111==-=A A A 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎭⎫⎝⎛=n a a a A 0021. 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112.解以下矩阵方程:(1) ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311111012112X ; (3) ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; (4) ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021********0100001100001010X .解(1) ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--=12642153⎪⎭⎫⎝⎛-=80232 (2) 1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122 (3) 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4) 11010100001021102341100001010--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解以下线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x14.设O A k =(k 为正整数), 证明:121)(--++++=-k A A A E A E . 证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A . 所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒- 又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设A 为3阶矩阵,21=A ,求*13)2(A A --。

矩阵理论习题与答案

矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。

为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。

一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。

答案:矩阵的转置是将其行和列互换得到的新矩阵。

所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。

2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。

答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。

3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。

答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。

计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。

解特征多项式得到特征值λ1 = 5,λ2 = -1。

然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。

对于λ2 = -1,解得特征向量v2 = [1, -1]。

所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。

二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。

答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。

计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。

然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。

接下来,求解对称矩阵的特征值和特征向量。

将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。

最后,计算D^T和U的乘积D^TU,得到正交矩阵V。

矩阵-计算习题及答案

矩阵-计算习题及答案

1、选择题1〕下列变量中A是合法的.A. Char_1,i,jB.x*y,a.1C. X\y,a1234D. end, 1bcd 2〕下列C是合法的常量.A. 3e10B. 1e500C. -1.85e-56D. 10-23〕x=uint8<1.2e10>,则x所占的字节是D个.A. 1B. 2C. 4D. 84〕已知x=0:10,则x有B个元素.A. 9B. 10C. 11D. 125〕产生对角线元素全为1其余为0的2×3矩阵的命令是C.A. Ones<2,3>B. Ones<3,2>C. Eye<2,3>D. Eye<3,2>6〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则a<:,end>是指C.A.所有元素B. 第一行元素C. 第三列元素D. 第三行元素7〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行a<:,1>=[] 命令后C.A.a变成行向量B. a数组成2行2列C. a数组成3行2列D. a数组没有元素8〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行命令mean<a>是B.A. 计算a的平均值B. 计算a每列的平均值C. 计算a每行的平均值D.a数组增加一列平均值9〕已知x是一个向量,计算ln<x>的命令是B.A. ln<x>B. log<x>C. Ln<x>D. lg10<x>10〕当a=2.4时,使用取整函数得到3,则该函数名是C.A.fixB. roundC. ceilD. floor11〕已知a=0:4,b=1:5,下面的运算表达式出错的是D.A. a+bB. a./bC. a'*bD. a*b12〕已知a=4,b=‘4’,下面说法错误的是C.A. 变量a比变量b占用的空间大B. 变量a、b可以进行加减乘除运算C. 变量a、b数据类型相同D. 变量b可以用eval计算13〕已知s=‘显示"hello〞’,则s 元素的个数是A.A. 12B. 9C. 7D. 1814〕运行字符串函数strncmp<'s1','s2',2>,则结果为B.A. 1B. 0C. trueD. fales15〕命令day〔now〕是指C.A. 按日期字符串格式提取当前时间B. 提取当前时间C. 提取当前时间的日期D. 按日期字符串格式提取当前日期16〕有一个2行2列的元胞数组c ,则c〔2〕是指D.A. 第1行第2列元素内容B. 第2行第1列元素内容C. 第1行第2列元素 D .第2行第1列元素17〕以下运算中哪个运算级别最高B.A. *B. ^C. ~=D. /18〕运行命令bitand 〔20,15〕的结果是C.A. 15B. 20C. 4D. 519〕使用检测函数isinteger 〔15〕的结果是B.A. 1B. 0C. trueD. fales20〕计算三个多项式s1、s2和s3的乘积,则算式为C.A. conv<s1,s2,s3>B. s1*s2*s3C. conv<conv<s1,s2>,s3>D. conv<s1*s2*s3> 以下写出MATLAB 命令序列,并给出结果2.复数向量a=2+3i,b=3-4i,计算a+b,a-b,c=a*b,d=a/b,并计算变量c 的实部、虚部、模和相角.3.用 from:step:to 的方式和linspace 函数分别得到0~4π步长为0.4π的变量x1,0~4π分成10个点的变量x2.4.输入矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭,使用全下标方式提取元素3,使用单下标方式提取元素8,取出后两行子矩阵块,使用逻辑矩阵提取1379⎛⎫ ⎪⎝⎭. 5.输入a 为3×3的魔方阵,b 为3×3的单位阵,将他们生成3×6的大矩阵c 、6×3的大矩阵d,将d 的最后一行提取生成小矩阵e.6.矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭用flipud 、fliplr 、rot90、diag 、triu 和tril 进行操作.并求其转置、秩、逆矩阵、矩阵的行列式值与三次幂.8.解线性方程组1234124123412342328368773225x x x x x x x x x x x x x x x -++=⎧⎪++=⎪⎨-++=⎪⎪+-+=⎩. 9.输入字符串变量a 为‘hello ’,将其每个字符后移4个,如‘h ’变为‘l ’,然后再逆序存入变量b.10 计算函数2()10sin(4)t f t e t =-,其中t X 围为0到20,步长为0.2,g 〔t 〕为f 〔t 〕大于0的部分,计算g 〔t 〕的值.11.矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭,使用数组信息获取函数求其行列数、元素个数,是否为稀疏矩阵、是否为字符型.。

矩阵及其运算课后习题答案(最新整理)

矩阵及其运算课后习题答案(最新整理)

用数学归纳法证明:
当 k 2 时,显然成立. 假设 k 时成立,则 k 1时,
k
Ak 1
Ak
A
0
0
kk 1
k 0
k
(k 1) k 2 kk 1 k
2
0 0
1 0
0 1
k1 0 0
k 由数学归纳法原理知: Ak 0 0
kk 1
k 0
k(k 1) k2
2 kk 1
k
(k 1)k1
k 1 0
(k 1)k k1
2 (k 1)k1
k 1
9.设 A, B 为 n 阶矩阵,且 A 为对称矩阵,证明 BT AB 也是对称矩阵.
证明 已知: AT A

( ) ( ) BT AB T BT BT A T BT AT B BT AB
从而 BT AB 也是对称矩阵.
2 y3,
x3 4 y1 y2 5 y3,
y1 y2
3z1 z2 2z1 z3 ,
,
y3 z2 3z3,
求从 z1, z2 , z3 到 x1, x2 , x3 的线性变换.
解 由已知
x1 x2 x3
2 2 4
0 3 1
152
y1 y2 y2
2 2 4
0 3 1
y2 y2

y1 y2 y2
2 3 3
2 1 2
11 x1
53
x2 x3
7 6 3
4 3 2
9 7 4
y1 y2 y3
y1 y2
7x1 4x2 9x3 6x1 3x2 7x3
y3 3x1 2x2 4x3
2.已知两个线性变换
x1 x2

线性代数矩阵练习题参考答案

线性代数矩阵练习题参考答案

《线性代数》第二章练习题参考答案8、设矩阵A满足A2+A-4E=O,则(A-E)-1=(A+2E) 一、填空题1、设A=⎛ 12 ⎫⎛3-2⎫⎛⎝-13⎪⎪⎭,B= ⎝21⎪⎪⎭,则 3A+2B =⎛ 92⎫⎝111⎪⎭; AB =⎛ 70⎫⎝35⎪⎭;BT= 3⎝-2⎛19-3⎫2、设矩阵A=⎛ -15⎫⎪,8⎪⎝13⎭B=⎛ 31⎫则⎛-614⎫-1 -8⎝-20⎪,⎭3A-B= ⎝59⎪,⎭AB= 11⎪⎪。

⎝88⎪⎭3、设A为三阶矩阵,且A=2,则2A*-A-1=2724、设矩阵A为3阶方阵,且|A|=5,则|A*|=__25____,|2A|=____40_ ⎛⎛3、设A= 120⎫340⎪⎪,B=⎛ 23-1⎫T86⎫ 1810⎪⎝-121⎪⎭⎝-240⎪⎪⎭,则AB=⎪⎝310⎪⎭⎛11⎫4、设A=1 225⎪⎪,且r(A)=2,则t= 4 ⎝11t⎪⎭⎛ 1233⎫5、若A=3-12⎪06-24⎪⎪则r(A)=_2____ ⎝0000⎪⎭6、设矩阵A=⎛ 1-1 ⎫⎛⎝23⎪⎪⎭,B=A2-3A+2E,则B-1= 01⎫ 2⎪⎝-1-1⎪⎭7、设A是方阵,已知A2-2A-2E=O,则(A+E)-1=3E-A2⎫1⎪⎭ 2⎛102⎫9、设A是4⨯3矩阵且r(A)=2,B= 020⎪⎪,则r(AB)=⎝-103⎪⎭⎛10、设A= 100⎫ 220⎪⎪,则(A*)-1=1⎛100⎫A=1 220⎪⎪⎝345⎪⎭A10 ⎝345⎪⎭⎛⎛ 100⎫11、设A= 300⎫ 140⎪⎪,则(A-2E)-1=-11⎪⎝003⎪⎭220⎪⎪(用分块矩阵求逆矩阵) ⎝001⎪⎭⎛⎛ 520⎫1-20⎫0-2500⎪12、设A= 2100⎪⎪001-2⎪,则A-1=0012⎪⎪ 33⎪⎝0011⎪⎪⎭⎪⎝00-11⎪33⎪⎭13、已知A为四阶方阵,且A=12,则3281⎛⎫⎛2n⎫14、设A= 2⎫3⎪⎛22,A2= 32⎪⎪⎛2-1n⎪⎪,An= 3⎪,A-1= 3-1⎝4⎪⎭⎝42⎪⎭⎝4n⎪⎭⎝⎛ 100⎫⎪⎛00⎛15、若A= 230则A*= 18⎫ -1260⎪=1⎪,A-1 1800⎫⎪,-1260⎪⎝456⎪⎭⎝-2-53⎪⎭18⎝-2-53⎪⎪⎭二、单项选择题⎫⎪⎪4-1⎪⎭1、若A2=A,则下列一定正确的是 ( D ) (A) A=O (B) A=I (C) A=O或A=I (D)以上可能均不成立2、设A,B为n阶矩阵,下列命题正确的是( C )(A)(A+B)=A+2AB+B;(B)(A+B)(A-B)=A-B; 21(A)a;(B);(C)an-1;(D)an。

考博必备 研究生矩阵理论课后答案矩阵分析所有习题

考博必备  研究生矩阵理论课后答案矩阵分析所有习题
习题3-1已知ACnn是正定Hermite矩阵, ,Cn.定义内积 (,)=A*.①试证它 是内积;②写出相应的C-S不等式
①: , A
*
( A )
*
T
( A ) A
* *
*
, ;
( k , ) k A k ( , );
习题3-30
#3-30:若ACnn,则A可唯一地写为 A=B+C,其中BHnn,CSHnn.
证:存在性 取 B=(1/2)(A+A*),C=(1/2)(A-A*), 则显然B,C分别是Hermite矩阵和反Hermite矩阵, 并且满足A=B+C. 唯一性 若 A=B+C,其中BHnn,CSHnn,则 A*=(B+C)*=B*+C*=B-C. 于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕 注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3-14
#3-14:若AHmn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在 前面,则(*)式即给出所需答案.
习题3-20 试证:两个半正定矩阵之和是半正 定;半正定矩阵与正定矩阵之和是正定矩阵

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。

7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。

对于矩阵C = [2 1; 1 2],其行列式det(C)是________。

8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。

对于矩阵D = [4 1; 0 3],其特征值是________。

9. 矩阵的迹是主对角线上元素的和。

对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。

矩阵论习题答案

矩阵论习题答案

矩阵论习题答案矩阵论习题答案在数学领域中,矩阵理论是一门重要的分支,它在各个学科领域都有广泛的应用。

矩阵论习题是学习矩阵理论的重要环节,通过解答这些习题,我们可以更好地理解和运用矩阵的性质和操作。

本文将为大家提供一些常见矩阵论习题的答案,希望能够对大家的学习有所帮助。

1. 习题:计算矩阵的转置。

答案:对于一个m×n的矩阵A,其转置矩阵记为A^T,其行和列互换。

即,如果A的第i行第j列元素为a_ij,则A^T的第i列第j行元素为a_ij。

可以通过编写程序或手动计算来得到转置矩阵。

2. 习题:计算矩阵的逆矩阵。

答案:对于一个可逆矩阵A,其逆矩阵记为A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

可以通过高斯消元法或伴随矩阵法来计算逆矩阵。

3. 习题:计算矩阵的秩。

答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大个数。

可以通过高斯消元法或矩阵的行(或列)简化形式来计算矩阵的秩。

4. 习题:计算矩阵的特征值和特征向量。

答案:对于一个n×n的矩阵A,其特征值和特征向量满足方程A·v = λ·v,其中λ为特征值,v为特征向量。

可以通过求解特征方程det(A - λ·I) = 0来计算特征值,然后将特征值代入方程(A - λ·I)·v = 0来计算特征向量。

5. 习题:计算矩阵的奇异值分解。

答案:对于一个m×n的矩阵A,其奇异值分解为A = U·Σ·V^T,其中U为m×m的正交矩阵,Σ为m×n的对角矩阵,V为n×n的正交矩阵。

可以通过奇异值分解算法来计算矩阵的奇异值分解。

6. 习题:计算矩阵的广义逆矩阵。

答案:对于一个m×n的矩阵A,其广义逆矩阵记为A^+,满足A·A^+·A = A,A^+·A·A^+ = A^+,(A·A^+)^T = A·A^+,(A^+·A)^T = A^+·A。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。

通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。

下面给出一些矩阵练习题及其答案,供大家参考。

1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。

解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。

因此,A 的转置矩阵为 A^T = [4; 2]。

2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。

解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。

通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。

3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。

解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。

特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。

解方程可得特征值λ1 = 1 和λ2 = 3。

特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。

特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。

4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。

解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。

计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。

矩阵的秩表示矩阵中独立的行或列的最大个数。

对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。

通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。

下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。

一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。

答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。

答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。

答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。

已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。

答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。

矩阵习题带答案

矩阵习题带答案

矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。

掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。

在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。

1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。

解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。

因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。

解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。

计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。

解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。

对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。

4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。

解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。

首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。

计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。

矩阵运算练习题及

矩阵运算练习题及

矩阵运算练习题及解答矩阵运算练习题及解答矩阵运算是线性代数中的重要内容之一,它在各个领域都有广泛的应用。

通过对矩阵的加法、乘法等基本运算进行练习,可以帮助我们更好地理解和掌握矩阵运算的相关概念和性质。

本文将为大家提供一些矩阵运算的练习题及其详细解答,以便读者巩固相关知识。

1. 矩阵加法设矩阵A、B分别为:A = [2 3 -1],B = [1 4 2]求矩阵A和B的和。

解答:两个矩阵的和等于对应元素相加。

根据题目给出的矩阵A和B,可以直接进行相加。

A +B = [2+1 3+4 -1+2] = [3 7 1]因此,矩阵A和B的和为[3 7 1]。

2. 矩阵乘法设矩阵A、B分别为:A = [1 2 3],B = [4 5 6]求矩阵A和B的乘积。

解答:两个矩阵相乘的结果可通过将矩阵A的每一行与矩阵B的每一列进行对应元素相乘并相加得到。

A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的乘积为[32]。

3. 转置矩阵设矩阵A为:A = [1 2 3; 4 5 6; 7 8 9]求矩阵A的转置。

解答:转置矩阵是将原矩阵的行变为列,并将列变为行得到的新矩阵。

根据题目给出的矩阵A,可以进行转置操作。

A的转置记为AT,且AT的第i行第j列元素等于A的第j行第i 列元素。

A的转置为:AT = [1 4 7; 2 5 8; 3 6 9]因此,矩阵A的转置为:[1 4 7; 2 5 8; 3 6 9]4. 矩阵的数量积设矩阵A、B分别为:A = [1 2 3],B = [4; 5; 6]求矩阵A和B的数量积。

解答:矩阵的数量积等于矩阵A的行向量与矩阵B的列向量的数量积,即矩阵A与矩阵B的乘积。

A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的数量积为[32]。

5. 矩阵的逆设矩阵A为:A = [1 2; 3 4]求矩阵A的逆。

矩阵理论课后习题答案习题二

矩阵理论课后习题答案习题二

3 0 1 λ⎤ 0 0 ⎡ 2λ ⎡ 0 ⎢ 4λ ⎥ ⎢ 3λ + 6 0 λ + 2 2λ ⎥ c − 2c ⎢ 0 0 0 ⎢ c −3 c ⎢ 0 6λ λ 2λ 0 ⎥ ⎯⎯⎯ →⎢ 0 0 λ ⎢ ⎥ ⎢ 0 λ −1 0 0⎥ 0 λ −1 ⎢ λ −1 ⎢ λ −1 ⎢ ⎢ 0 0⎥ ⎣3λ − 3 1 − λ 2 λ − 2 ⎦ ⎣3 λ −3 1 − λ 2 λ −2
于是不变因子为
d1 (λ ) = d 2 (λ ) = d 3 (λ ) = 1,d 4 (λ ) =
Smith 标准形为
D4 (λ ) D (λ ) = λ (λ − 1),d 5 ( λ )= 5 = λ2 ( λ − 1) 故 该 矩 阵 的 D3 ( λ ) D4 ( λ )
0 1 0 0 0 0 0 0 ⎤ ⎥ 0 0 0 ⎥ 1 0 0 ⎥. ⎥ 0 λ (λ − 1) 0 ⎥ 0 0 λ 2 (λ − 1) ⎥ ⎦
0 0 0 ⎡1 ⎤ ⎢0 λ (λ − 1) ⎥ 0 0 ⎢ ⎥; ⎢0 0 λ( λ − 1) 0 ⎥ ⎢ 2 2⎥ 0 0 λ (λ − 1) ⎦ ⎣0
(3)对矩阵作初等变换
⎡3λ 2 + 2 λ − 3 2 λ −1 λ 2 + 2 λ − 3 ⎤ c − c ⎡3 λ 2 − 2 3 ⎢ 2 ⎥ c1 ⎢ 2 3 − c2 → ⎢4 λ 2 −3 ⎢4λ + 3λ − 5 3λ − 2 λ + 3 λ − 4 ⎥ ⎯⎯⎯ ⎢ λ2 + λ − 4 ⎢ λ2 − 2 λ −2 λ −1 ⎥ ⎣ ⎦ ⎣ 4 2 3 2 ⎡ −λ + 7 λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ ⎢ ⎥ r2 − r1 ⎯⎯⎯⎯→ λ 2 −1 λ −1 0⎥ r1 −( λ 2 −2) r3 ⎢ ⎢ λ2 −2 λ −2 1⎥ ⎣ ⎦ 4 2 3 2 ⎡ −λ + 7λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ 2 ⎢ ⎥ c1 −( λ −2) c 3 ⎯⎯⎯⎯⎯ →⎢ λ 2 −1 λ −1 0⎥ c2 −( λ − 2) c3 ⎢ 0 0 1⎥ ⎣ ⎦ ⎡ −λ 3 + λ 2 − λ −1 −λ3 + 2λ 2 + 4λ − 5 0 ⎤ ⎢ ⎥ c1 −( λ +1) c 2 ⎯⎯⎯⎯ →⎢ 0 λ −1 0⎥ ⎢ 0 0 1⎥ ⎣ ⎦ ⎡λ 3 − λ 2 − λ +1 0 0⎤ ⎡1 2 ⎢ ⎥ r1 ↔ r3 ⎢ r1 + (λ −λ − 5)r2 ⎯⎯⎯⎯⎯ →⎢ 0 λ −1 0 ⎥ ⎯⎯⎯ → ⎢0 r1× (− 1) c1 ↔ c3 ⎢ ⎢ 0 0 1⎥ ⎣0 ⎣ ⎦

线性代数习题册(第二章矩阵及其运算参考答案)

线性代数习题册(第二章矩阵及其运算参考答案)

⇔ αTα = 1
单元 6 逆矩阵、分块矩阵
一、判断题(正确的打√,错误的打×)
1. 可逆矩阵一定是方阵.
(√)
2. 若 A 、 B 为同阶可逆方阵,则 AB 可逆.
(√)
3. 设 A, B 均为可逆矩阵,则 AB 也可逆且 ( AB)−1 = A−1B−1 .
(X)
4. 若 A 可逆,则 AT 也可逆.
分析: |
r1 A|

r2
− | B |,所以
A
+
B
= 0 。
20.

A
=
a11 a21
a12 a22
a13 a23

B
=
a21 a11
a22 a12
a23 a13
0 1 0

P1
=
1
0
0
a31 a32 a33
a31 + a11 a32 + a12 a33 + a13
0 0 1
( A) kA∗
(B) k n−1 A∗
(C ) k n A∗
( D) k −1 A∗
分析:题中对可逆矩阵也要成立,所以不妨设 A 可逆时进行分析。
( ) = (kA)∗ | kA | (= kA)−1 k n | A | ⋅ 1 A−1 = k n−1 | A | A−1 = k n−1 A* k
a31 + a11 a32 + a12 a33 + a13
r1

r2
a21 a11
a31 + a11
a22 a12 a32 + a12
a23
a13

矩阵练习题参考答案

矩阵练习题参考答案

第四章 矩阵练习题参考答案1. 解: (1)⎪⎪⎪⎭⎫ ⎝⎛--=218016226AB ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=434014004321212113101012111BA ∴⎪⎪⎪⎭⎫⎝⎛---=-244002222BA AB (2) ⎪⎪⎪⎭⎫ ⎝⎛++++++++++++++++=c b a c b a c b a ac b ac c b a ac b ac c b a c b a AB 322222222222111111a c a b c a ac c b ab c c a c BA b b c b a a bc b b b b c ab b c a a c a b bc a c ac a ⎛⎫++++++⎛⎫⎛⎫⎪ ⎪⎪==++++++ ⎪ ⎪⎪ ⎪⎪ ⎪++++++⎝⎭⎝⎭⎝⎭()22222222222232b aca b c b ab cb a ac cAB BA c bcac b a b c b ab c a c c bcb ac ⎛⎫-++----+-⎪∴-=--++--- ⎪ ⎪----⎝⎭2.解:(1) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛433341255122100131132100131132100131132.(2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--84234421042544212423242335. (3) .0,0010,10112=⎪⎪⎭⎫ ⎝⎛=+=⎪⎪⎭⎫⎝⎛B B B E 其中因为B 与E 的乘积可交换, 所以 .101)(1011⎪⎪⎭⎫ ⎝⎛=+=+=⎪⎪⎭⎫ ⎝⎛n nB E B E nn(4)∵()()()()⎪⎪⎭⎫⎝⎛+++-+=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-θϕθϕθϕθϕθθθθϕϕϕϕcos sin sin cos cos sin sin cos cos sin sin cos∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-ϕϕϕϕϕϕϕϕn n n n ncos sin sin cos cos sin sin cos(5) ()()11231(5)2,3,112310,12,3,1231.11231-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--=-+=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭(6) 原式=()1112122122221112221112,,1222a x a y b x y a x a y b a x a xy a y b x b y c b x b y c ++⎛⎫⎪++=+++++ ⎪ ⎪++⎝⎭(7)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=1111111111111111A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=4000040000400042A ∴122221n nn E n k A A n k -⎧==⎨=+⎩时时 (8) .0,000000100,000100010,32=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+=B B B B E A 其中λ因为λE 与B 可交换,所以.002)1(0)(12122211⎪⎪⎪⎪⎪⎭⎫⎝⎛-=+++=+=-----nn nn n nn n n n n n n n n n n EB C EB C E B E A λλλλλλλλλλ3.(1) ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=101521142801121311222A()2613513803813221222f A A A E E ⎛⎫⎛⎫⎪ ⎪∴=--=-=- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭(2) 222175331512A --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭∴()01215573522=⎪⎪⎭⎫⎝⎛---=+-=A E A A A f4.解:(1) 设,,,a b a c b d a a b X A X X A c d cdc cd +++⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭由0A X X Ac =⇒=,a b bd a d +=+⇒= ∴0a b X a ⎛⎫=⎪⎝⎭,a b 任取。

矩阵习题及答案

矩阵习题及答案

矩阵习题一、选择题1、设有矩阵A3×2、B2×3、C3×4、,下列运算( )有意义.(A). ABC (B). AB-C (C). A+B(D).BC-A.2、设有矩阵A3×2、B2×3、C3×3、D3×3、,下列运算( )无意义.(A). |AB|(B). |BA|(C). |AB|=|A|⋅|B|(D). |CD|=|C|⋅|D| .3、设|A|≠0,下列结论( )无意义.(A). |A*|≠0 (B). |A-1|=|A|-1(C). A对称⇔ A-1对称(D). A-1=1/A.4、若同阶方阵A、B满足(A+B)(A-B)=A2-B2,则( ).(A). A=B (B).A=E (C). AB=BA (D).B=E.5、设A,B为同阶方阵,满足AB=O,则( )有意义.(A). |A|=0或| B|=0 (B).A+B=O (C). A=O或B=O (D). |A|+| B|=0.6、若A*为A的伴随矩阵,则|A*|=( ).(A). |A|n-1(B). |A|n-2(C)|A|n (D). |A| .7、设A,B为同阶对称阵,则AB对称的充要条件为( ).(A).A可逆(B). B可逆(C). |A B|≠0 (D). AB=BA.8、若A、B为n阶方阵,则( ).(A). |A+ B|=|A|+| B| (B). |A B|=| B A |(C). AB=BA (D). (A+B)-1 =A-1+B-1.9、若A、B、A+B为n阶可逆阵,则(A-1+B-1)-1 = ( ).(A). A-1+B-1(B). A+ B (C). B (A+B)-1 A (D). (A+B)-110、若A*为A的伴随矩阵,则(A*)*=( ).(A). |A|n-1 A (B). |A|n+1 A (C).|A|n-2 A. (D). |A|n+2 A .11、若A、B为n阶可逆阵,则 ( )(A). (AB)T=A T B T(B). (A+B)T=A T+ B T(C). (AB)-1 =A-1B-1(D). (A+B)-1 =A-1+B-1.12、设A、B为n阶矩阵,满足(AB) 2=E,则等式( )不成立.(A). A= B-1(B). ABA= B-1(C). BAB =A-1(D). (BA) 2=E .13、设A、B都可逆,且AB=BA,则等式( )不成立。

数学课程矩阵运算练习题及答案

数学课程矩阵运算练习题及答案

数学课程矩阵运算练习题及答案矩阵运算是数学中的一个重要概念,涉及到矩阵的相加、相减、相乘等操作。

通过练习题的方式,可以巩固和提升对矩阵运算的理解与应用能力。

以下是一些常见的矩阵运算练习题以及它们的答案,供大家参考。

1. 矩阵相加已知矩阵A = (1 2 3; 4 5 6; 7 8 9) 和矩阵B = (9 8 7; 6 5 4; 3 2 1),求A + B。

解答:将同一位置上的元素相加,得到:A +B = (1+9 2+8 3+7; 4+6 5+5 6+4; 7+3 8+2 9+1) = (10 10 10; 10 10 10; 10 10 10)2. 矩阵相减已知矩阵A = (1 2; 3 4) 和矩阵B = (5 6; 7 8),求A - B。

解答:将同一位置上的元素相减,得到:A -B = (1-5 2-6; 3-7 4-8) = (-4 -4; -4 -4)3. 矩阵相乘已知矩阵A = (2 1 -3; 0 -2 1) 和矩阵B = (4 -1; 3 2; -2 1),求A × B。

解答:矩阵A的行数与矩阵B的列数相等,因此可以进行矩阵相乘。

按照矩阵相乘的规则,计算得到:A ×B = (2×4+1×3-3×-2 2×-1+1×2-3×1; 0×4-2×3+1×-2 0×-1-2×2+1×1) = (15 -2; -7 -1)4. 矩阵数量乘法已知矩阵A = (2 4; 6 8),求2A。

解答:将矩阵A中的每个元素乘以2,得到:2A = (2×2 2×4; 2×6 2×8) = (4 8; 12 16)5. 矩阵的转置已知矩阵A = (1 2 3; 4 5 6; 7 8 9),求A的转置矩阵AT。

解答:将矩阵A的行与列互换得到其转置矩阵:AT = (1 4 7; 2 5 8; 3 6 9)6. 矩阵的逆已知矩阵A = (1 2; 3 4),求A的逆矩阵A-1。

高等代数矩阵练习题参考答案

高等代数矩阵练习题参考答案

第四章矩阵习题参考答案判断题1. 对于任意刃阶矩阵A, B,有∣A + B∣ = ∣A∣ + ∣B∣.错.2. 如果 A 2=0,则 A = 0.3.如果A + A 2=E 9则A 为可逆矩阵.正确.A +A 2 = E=> A(E + A) = E ,因 1⅛A 可逆,且 AT=A+ E ・4.设都是畀阶非零矩阵,且43 = 0,则的秩一个等于川,一个小于〃・错•由AB = O 可得r(A) + r(B)≤n.若一个秩等于则该矩阵可逆,另一个秩为零,与 两个都是非零矩阵矛盾•只可能两个秩都小于—5. A.B.C 为”阶方阵,^AB = AC.则 B = C.6. A 为 E 矩阵,若r(A) = S 9则存在加阶可逆矩阵P 及"阶可逆矩阵0 ,使PFo正确•右边为矩阵A 的等价标准形,矩阵A 等价于其标准形.1 ',B = <2 I lC= (3 2、 TH -1丿 曰-2, 错•如A =(-1 ,WAB = ACJ0B≠C. 1-1M 2=0^≡Λ≠0.7.“阶矩阵A可逆,则A*也可逆.正礪由A可逆可得IAI H O, 乂AA* = A* A=∖ A∖ E.因此A*也可逆,且(A*)~l = —Λ.IAl8.设A,B为"阶可逆矩阵,则(A5)*=B*A*.正确.(AB)(ABy =IABIE=IAIIBIE 乂(AB)(B* A*) = A(BB^ = A∖B∖ EA*=l B∖ AA^ ^AW B∖ E .因此(AB)(ABr = (AB)(B* A*). ∣⅛ A.B为“阶可逆矩阵可得AB可逆,两边同时左乘式AB的逆可得(Aθ)*=B*A*.二、选择题1.设力是"阶对称矩阵,〃是n阶反对称矩阵(B l =-B),则下列矩阵中为反对称矩阵的是(B ).(A) AB-BA (B) AB + BA (C) (AB)2(D) BAB(A)(D)为对称矩阵,(B)为反对称矩阵,(C)当A,B可交换时为对称矩阵.2.设A是任意一个"阶矩阵,那么(A)是对称矩阵.(A) A I A(B) A-A r (C) A2(D) A1 - A3.以下结论不正确的是(C).(A)如果A是上三角矩阵,则八也是上三角矩阵;(B)如果A是对称矩阵,则也是对称矩阵;(C)如果A是反对称矩阵,则也是反对称矩阵;(D)如果A是对角阵,则A也是对角阵.4.A是m×k矩阵,B是Rxf矩阵,若B的第丿•列元素全为零,则下列结论正确的是(B )(A)AB的第丿•行元素全等于零;(B) A3的第_/列元素全等于零; (C) BA的第丿•行元素全等于零;(D) 34的第丿•列元素全等于零;5.设人B为“阶方阵,E为“阶单位阵,则以下命题中正确的是(D )(A)(A + B)2 =A2 +2AB + B2 (B) A2 - B2 = (A +B)(A-B)(C) (AB)2 =A2B2(D) A2 -E2 =(A + E)(A-E)6.下列命题正确的是(B ).(A)^AB = AC,则B = C(B)^AB = AC f且∣A∣≠0,则B = C(C)若AB = AC,且 A H O,则B = C(D)若AB = AC,且B≠0,C≠0,则B = C7. A是In × H矩阵,B是n × rn矩阵,则(B).(A)当m > n时,必有行列式IABl ≠ O:(B)当m > n时,必有行歹IJ式IABl=O(C)当“ > 川时,必有行列式IABl ≠ 0;(D)当n > m时,必有行列式IABl = 0.A3 为加阶方阵,当m > n时,r(A) ≤ n,r(B) ≤n,因此r(AB) ≤ H < m ,所以IABl = 0.8.以下结论正确的是(C )(A)如果矩阵A的行列式∣A∣ = 0,则A = 0;(B)如果矩阵A满足A'=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、选择题
1)下列变量中 A 是合法的。

A. Char_1,i,j
B.x*y,a.1
C. X\y, a1234
D. end, 1bcd
2)下列 C 是合法的常量。

A. 3e10
B. 1e500
C. -1.85e-56
D. 10-2
3)x=uint8(1.2e10),则x所占的字节是 D 个。

A. 1
B. 2
C. 4
D. 8
4)已知x=0:10,则x有 B 个元素。

A. 9
B. 10
C. 11
D. 12
5)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。

A. Ones(2,3)
B. Ones(3,2)
C. Eye(2,3)
D. Eye(3,2)
6)a=
123
456
789
⎛⎫



⎝⎭
,则a(:,end)是指 C 。

A.所有元素
B. 第一行元素
C. 第三列元素
D. 第三行元素
7)a=
123
456
789
⎛⎫



⎝⎭
,则运行a(:,1)=[] 命令后 C 。

A.a变成行向量
B. a数组成2行2列
C. a数组成3行2列
D. a数组没有元素
8)a=
123
456
789
⎛⎫



⎝⎭
,则运行命令mean(a)是 B 。

A. 计算a的平均值
B. 计算a每列的平均值
C. 计算a每行的平均值
D.a数组增加一列平均值
9)已知x是一个向量,计算ln(x)的命令是 B 。

A. ln(x)
B. log(x)
C. Ln(x)
D. lg10(x)
10)当a=2.4时,使用取整函数得到3,则该函数名是 C 。

A.fix
B. round
C. ceil
D. floor
11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。

A. a+b
B. a./b
C. a'*b
D. a*b
12)已知a=4,b=‘4’,下面说法错误的是 C 。

A. 变量a比变量b占用的空间大
B. 变量a、b可以进行加减乘除运算
C. 变量a、b数据类型相同
D. 变量b可以用eval计算
13)已知s=‘显示“hello”’,则s 元素的个数是 A 。

A. 12
B. 9
C. 7
D. 18
14)运行字符串函数strncmp('s1','s2',2),则结果为 B 。

A. 1
B. 0
C. true
D. fales
15)命令day(now)是指 C 。

A. 按日期字符串格式提取当前时间
B. 提取当前时间
C. 提取当前时间的日期
D. 按日期字符串格式提取当前日期
16)有一个2行2列的元胞数组c ,则c(2)是指 D 。

A. 第1行第2列元素内容
B. 第2行第1列元素内容
C. 第1行第2列元素 D .第2行第1列元素
17)以下运算中哪个运算级别最高 B 。

A. *
B. ^
C. ~=
D. /
18)运行命令bitand(20,15)的结果是 C 。

A. 15
B. 20
C. 4
D. 5
19)使用检测函数isinteger(15)的结果是 B 。

A. 1
B. 0
C. true
D. fales
20)计算三个多项式s1、s2和s3的乘积,则算式为 C 。

A. conv(s1,s2,s3)
B. s1*s2*s3
C. conv(conv(s1,s2),s3)
D. conv(s1*s2*s3)
以下写出MATLAB命令序列,并给出结果
2.复数向量a=2+3i,b=3-4i,计算a+b,a-b,c=a*b,d=a/b,并计算变量c的实部、虚部、模和相角。

3.用from:step:to的方式和linspace函数分别得到0~4π步长为0.4π的变量x1,0~4π分成10个点的变量x2。

4.输入矩阵a=
123
456
789
⎛⎫



⎝⎭
,使用全下标方式提取元素3,使用单下标方式提取元素8,取
出后两行子矩阵块,使用逻辑矩阵提取
13
79
⎛⎫ ⎪⎝⎭。

5.输入a 为3×3的魔方阵,b 为3×3的单位阵,将他们生成3×6的大矩阵c 、6×3的大矩阵d ,将d 的最后一行提取生成小矩阵e 。

6.矩阵a=
123
456
789
⎛⎫



⎝⎭
用flipud、fliplr、rot90、diag、triu和tril进行操作。

并求其转置、秩、
逆矩阵、矩阵的行列式值及三次幂。

8.解线性方程组
1234
124
1234
1234 2328
36
87 73225
x x x x
x x x
x x x x
x x x x
-++=

⎪++=


-++=

⎪+-+=
⎩。

9.输入字符串变量a 为‘hello ’,将其每个字符后移4个,如‘h ’变为‘l ’,然后再逆序存入变量b 。

10 计算函数2()10sin(4)t f t e t =-,其中t 范围为0到20,步长为0.2,g (t )为f (t )大于0的部分,计算g (t )的值。

11.矩阵a=
123
456
789
⎛⎫



⎝⎭
,使用数组信息获取函数求其行列数、元素个数,是否为稀疏矩阵、
是否为字符型。

相关文档
最新文档