成人高考高等数学
2023年成人高考高等数学(一)真题及答案
2023年成人高考高等数学(一)真题及答案2023年成人高考高等数学(一)真题及答案成考高等数学一和二区别有哪些学习内容不同:《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等。
),《高数二》主要学概率统计、线性代数等内容。
对知识的掌握程度要求不同:《高数》(一)和《高数》(二)的区别主要是对知识的掌握程度要求不同。
《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。
《高数(二)只要求掌握正弦变换、正切变换等。
考核内容不同:高等数学(一)考核内容中有二重积分,而高等数学(二)对二重积分并不做考核要求。
高等数学(一)有无穷级数、常微分方程,高等数学(二)均不做要求。
成考高等数学一和二哪个比较简单高数一要比高数二难些,如果对于高数不太懂的话,还是建议选择考高数二的。
而高数二紧要考两个实质,分别是线性代数和概率统计。
成考专升本专业课考高数(二)的学科大类有:经济学、管理学以及生物科学类、地理科学类、心理学类、药学类等。
成人高考的入学形式是严进宽出,所以要求考生需要通过入学考试,要是基础比较差的,可能会有难度。
建议平时可以看看书,提前学习下相关的知识。
2023成人高考考试时间是什么时候2023年成人高考考试时间为10月21日-10月22日,各科考试安排如下:2023年成人高考高起本、高起专考试时间日期/时间10月21日10月22日9:00-11:00语文外语14:30-16:30数学史地(高起*科)理化(高起本理科)2023年成人高考专升本考试时间日期/时间10月21日10月22日9:00-11:30政治大学语文艺术概论高等数学(二)民法教育理论生态学基础医学综合14:30-17:00英语。
成人高考专升本高等数学一答题技巧
成人高考专升本高等数学一答题技巧高等数学是成人高考专升本考试中的一门重要科目,对于许多考生来说,高等数学可能是一个难点。
为了帮助考生在高等数学一科中取得更好的成绩,以下是一些答题技巧供考生参考。
1.充分理解题目:在开始解答问题之前,首先要仔细阅读并理解问题的要求。
清楚题目中所给出的条件和要求,确定解题目标,避免在解答过程中偏离题目的方向。
2.画图分析:对于需要进行几何分析的问题,画图可以帮助我们更好地理解问题。
只要能够合理地反映题目中给出的条件,画图可以使问题变得更加具体,从而更容易找到解题思路。
3.查找相关公式和定理:高等数学中有许多公式和定理,熟练掌握并正确运用它们对于解答问题非常重要。
在做题之前,可以提前整理相关公式和定理,以备不时之需。
4.分析解题思路:在实际解答问题之前,要先分析解题思路。
可以将问题分解为更小的子问题,分析每个子问题的解决方法,确定解题的整体思路。
这样可以使问题更加清晰,有针对性地进行解答。
5.步骤清晰有序:在解答问题的过程中,要使步骤清晰有序。
先列出所给条件和问题要求,然后根据问题的特点选择合适的方法和步骤。
如果需要,可以画出解题思路的流程图,有助于理清思路。
6.注意计算细节:在解答问题时,要注重计算的细节。
小数点、符号等方面的疏忽可能导致最后结果的偏差,因此要仔细核对计算过程,确保答案的正确性。
7.注意题目中的要求:在解答问题时,要特别注意题目中给出的要求。
有些题目可能需要写出详细的证明过程,有些题目可能需要将结果进行化简,而有些题目可能只需要问答形式的简要解答。
确保按照题目要求进行答题,避免由于不注意而失分。
8.多做题目,多进行练习:高等数学的学习需要不断的练习和实践。
通过多做题目,可以熟悉各类问题的解题思路和方法,加深对知识点的理解,提高解题的速度和准确性。
9.对错反思,总结经验:在做完一道题目后,要对答案进行反思,并找到解题中的错误和不足之处。
及时进行总结和归纳,以免在类似的问题上再次出现相同的错误。
2023年成人高考专升本高等数学(一)试题及答案详解
2023年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第I卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,5x-si n5x是x的【】A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量2.设y=√2x+1,则y'=【】A.B.C.D.3.设y=e*,则d y=】【A.er d x B.-e^d x C.e'd x D.一e'd x~4.设函数在x =0处连续,则b=【】A.2C.0B.1D.—15.【】A.s i nx+CB.—s i n x+CC.c o s x+CD.—c o s x+C6.【】A.2B.1C.D.0【】7.设,则D.A.C.8.幂级数【】的收敛域是D.[-1,1]B.(-1,1)C.(-1,1)A.(-1,1)【】在平面3x-2y+z-7=0上,则k=9.已知直线A.0B.1C.2D.3【】10.微分方程y"+y=e²r的一个特解是A.B.C.D.第Ⅱ卷(非选择题,共110分)(t为参数),二、填空题(11~20小题,每小题4分,共40分)贝12.设13.设y=x+e²,则y”=14.设y=x+s i n x,则y'=15.16.17.设z=e²,则d z=18.过点(0,1,1)且与直线垂直的平面方程为19.设区域D=((x,y)|O≤x≤2,-l≤y≤1},则20.微分方程xy'+y=0满足初始条件y(1)=1的解为y=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)计算22.(本题满分8分)计23.(本题满分8分)求微分方程的通解.25.(本题满分8分)求函数f(x)=x²e*的单调区间和极值.26.(本题满分10分)设D是由曲线y=1-x²(x≥0),x=0,y=0所围成的平面图形.(1)求D的面积S;(2)求D绕x轴旋转一周所得旋转体的体积V.,其中D是由曲线y=√1-x²,y=x,y=-x所围成的闭区域.计28.(本题满分10分)已知函数f(x)连续,且满参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】,故5x-sin5x是x的高阶无穷小量.2.【答案】D【考情点拨】本题考查了复合函数求导的知识点.【应试指导】3.【答案】B【考情点拨】本题考查了微分的知识点.【应试指导】dy=(e*)'dx=-e*dx,4.【答案】B【考情点拨】本题考查了分段函数连续性的知识点.【应试指导】因f(x)在x=0处连续,则有b=1.5.【答案】D【考情点拨】本题考查了不定积分的知识点.【应试指导】6.【答案】C【考情点拨】本题考查了洛必达法则的知识点.【应试指导】7.【答案】B【考情点拨】本题考查了偏导数的知识点.【应试指导】8.【答案】D【考情点拨】本题考查了幂级数收敛域的知识点.【应试指导】收敛半径,所以幂级数的收敛区间为(-1,1).当x=-1时,级数为收敛的p级数.故该级数的收敛为收敛的交错级数;当x=1时,级数域为[-1,1].9.【答案】C【考情点拨】本题考查了直线与平面的位置关系的知识点.【应试指导】由题可知直线的方向向量s=(k,1,-4),平面的法向量n=(3,-2,1).由于s上n,因此有3k-2-4=0,故k=2.10.【答案】A【考情点拨】本题考查了二阶常系数线性非齐次微分方程特解的知识点.【应试指导】可验证,四个选项中只有A项满足微分方程,故其特解为.二、填空题11.【答案】e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】12.【答案】3【考情点拨】本题考查了参数方程求导的知识点.【应试指导】13.【答案】e'【考情点拨】本题考查了高阶导数的知识点.【应试指导】y'=1+e²,故y”=e².14.【答案】1+c o s x【考情点拨】本题考查了导数的运算的知识点.【应试指导】y'=(x+sinx)'=1+cosx.15.【答案】【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】16.【答案】【考情点拨】本题考查了反常积分的计算的知识点.【应试指导】17.【答案】e²>(y d x+x d y)【考情点拨】本题考查了全微分的知识点.【应试指导】dz= de^>=e²d(x y)=e*(y dx+xdy).18.【答案】x+2y+z-3=0【考情点拨】本题考查了平面点法式方程的知识点.【应试指导】由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.19.【答案】4【考情点拨】本题考查了二重积分的知识点.【应试指导】20.【答案】【考情点拨】本题考查了一阶线性齐次微分方程的知识点.【应试指导】由xy+y=0得,通解为,将y(1)=1代入通解,得C=1,故所求的解为三、解答题21.=1.22.23.由题可知24.25.f(x)的定义域为(-α,+o),f'(x)=2xe+-x2e+=e*(-x2+2x),令f'(x)=0,得xj=0,x2=2.列表如下:20(0,2)(2,+o)x(-α,0)y0+0极小值极大值y由表可知,函数的单调增区间为(0,2);单调减区间为(一~,0),(2,+o).极大值为f(2)=4e2,极小值为f(0)= 0.;27.积分区域用极坐标可表示为28.由两边同时求导得(1+x2)f(x)= sinx+xcosx,所以。
成人高考专升本《高等数学二》公式大全
成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
成人高考成考高等数学(二)(专升本)试卷与参考答案
成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
2024年成人高考专升本高等数学(一)密押题
2024年成考专升本高等数学(一)-密押卷一、选择题:1~12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 221lim x x x x →∞+=+ ( )A. -1B. 0C. 12 D. 12. 设函数 3()5sin f x x x =+, 则 (0)f '= ( )A. 5B. 3C. 1D. 03. 设函数 ()ln f x x x =-, 则 ()f x '= ( )A. xB. 1x -C. 1x D. 11x -4. 函数 32()293f x x x =-+ 的单调递减区间是 ( )A. (3,)+∞B. (,)-∞+∞C. (,0)-∞D. (0,3) 5. 23 d x x =⎰ ( ) A. 23x C + B. 5335x C + C. 53x C + D. 13x C +6. 设函数 ()||f x x =, 则 11()d f x x -=⎰ ( )A. -2B. 0C. 1D. 27. 设 ()f x 为连续函数, 且满足 0()d e 1xx f t t =-⎰, 则 ()f x =() A. x e B. x e 1- C. e 1x + D. 1x +8. 设 ()2214z x y =+, 则 2zx y ∂=∂∂ ( ) A. 2xB. 0C. 2yD. x y +9. (2,1,2),(1,21)=--=-a b , 则 ⋅=a b ( )A. -1B. -3C. 3D. 210. 余弦曲线 cos y x = 在 0,2π⎡⎤⎢⎥⎣⎦ 上与 x 轴所围成平面图形的面积为 ( ) A. 0 B. 1 C. -1 D. 211. 若 lim 0n n a →∞=, 则数项级数 1n n a ∞=∑ ( )A. 收敛B. 发散C. 收玫且和为零D. 可能收玫也可能发散12. 如果区域 D 被分成两个子区域 12,D D , 且12(,)5,(,)1D D f x y dxdy f x y dxdy ==⎰⎰⎰⎰,则 (,)D f x y dxdy =⎰⎰ ( )A. 5B. 4C. 6D. 1二、填空题:13~15小题,每小题7分,共21分13. 32234x t y t ⎧=+⎨=-⎩ 在 1t = 相应的点处切线斜率为 . 14. 求 2x x y = 的全微分 .15. {(,)01,03}D x y x y x =≤≤≤≤-∣, 求D d σ=⎰⎰ .三、解答题:16~18小题,每小题15分,共45分.解答应写出文字说明、证明过程或演算步骤16. 求微分方程 220x y y e'--= 的通解. 17. 求由方程 2y y xe -= 所确定的隐函数 ()y y x = 的导数 0x dydx =.18. 证明: 当 0x 时, 2ln(1)2x x x +-.参考答案1.【答案】D【考情点拨】本题考查了函数极限的知识点.【解析】 222111lim lim 111x x x x x x x →∞→∞++==++. 2. 【答案】 A【解析】可求得 2()35cos f x x x '=+, 则 (0)5f '=.3. 【答案】D【解析】 1()(ln )1f x x x x''=-=-. 4.【答案】D【解析】由题可得 2()6186(3)f x x x x x '=-=-, 令 ()0f x '<, 得 03x <<, 故单调墄区间为 (0,3).5.【答案】B 【解析】 25333 d 5x x x C =+⎰. 6.【答案】C【解析】 01101221101011()d ()d ?d 122f x x x x x x x x ---=-+=-+=⎰⎰⎰. 7.【答案】A【解析】 0()d e 1xx f t t =-⎰ 两边同时求导, 得 ()()e 1e x x f x '=-=. 8. 【答案】B【解析】 12z x x ∂=∂, 所以 20z x y ∂=∂∂. 9.【答案】D【解析】 a 21(1)2(2)(1)2⋅=⨯+-⨯+-⨯-=b10.【答案】B【解析】由题意得 2200cos sin 1S xdx x ππ===⎰, 故选 B. 11.【答案】D 【解析】 lim 0n n a →∞= 是级数 1n n a ∞=∑ 收敛的必要条件, 但不是充分条件, 从例子 211n n ∞=∑收敛可知 B 错误, 由11n n ∞=∑ 发散可知 A, C 错误, 故选 D. 12.【答案】C 【解析】根据二重积分的可加性, (,)6D f x y dxdy =⎰⎰, 应选 C.13.【答案】 13【解析】 212,6,3dy dx dy dy dt t t dt dt dx dt dx t ===⋅=, 当1t =时, 13dy dx =, 故切线的斜率为 1314.【答案】 22xydx x dy +【解析】 22z z dz dx dy xydx x dy x y∂∂=+=+∂∂. 15.【答案】 52【解析】积分区域为梯形区域,此二重积分的一样即为求梯形面积,故 (23)1522D d σ+⨯==⎰⎰. 16.【答案】 22x x y xe Ce =+ (C 为任意常数)【解析】由通解公式可得,()(2)(2)222222dx dx x x x x x x y e e e dx C e e e dx C xe Ce ----⎡⎤⎰⎰=⋅+=⋅+=+⎢⎥⎣⎦⎰⎰ ( C 为任意常数). 17.【答案】 2e【解析】方程两边同时关于 x 求导得 0y y y e xe y ''--⋅=, 当 0x = 时, 2y =,代人得 200x x dyy e dx '==== 。
2023年成人高考专升本高等数学二试题
2023年成人高考专升本高等数学二试题(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!2023年成人高考专升本高等数学二试题2023年成人高考专升本高等数学二试题(含答案解析)成人高考数学一和二的区别体现在学习内容不同、知识程度要求不同和考试内容不同等方面,一般来说高数二比高数一简单。
2023年成人高考《高数一》真题及答案解析
2023年成人高考《高数一》真题及答案解析2023年成人高考《高数一》真题及答案解析考生回忆版成人高考高等数学一和高等数学二的区别高等数学(一)主要是以《高数》为重点,包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分等;高等数学(二)是经济类、管理类的必考科目,主要考两个内容,分别是线性代数和概率统计。
高等数学(一)主要是以《高数》为重点,包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、空间解析几何与向量代数七章内容,主要贯穿微分学和积分学这条主线,考生复习的重点也是微分学、积分学。
高等数学(二)是经济类、管理类的必考科目,主要考两个内容,分别是线性代数和概率统计,试题主要包含两部分,一部分为高等数学内容,约占92%;另一部分是概率论初步,约占8%。
成人高考数学一难吗?成人高考数学并不是很难,考的都是一些很基础的知识。
文史类数学考试的知识内容共四大部分,即代数、三角、平面解析几何及概率与统计初步。
其中代数部分在考试中约占55%的比例,三角部分约占15%的比例,平面解析几何部分约占20%的比例,概率与统计初步部分约占10%的比例。
理工类数学考试内容共五个部分,前四个部分与文科数学大致相同,但多出了立体几何部分。
理科数学的代数部分,在考试中约占45%的比例,三角部分约占15%的比例,平面解析几何部分约占20%的比例,概率与统计初步约占10%的比例,立体几何部分约占10%的比例。
成人高考没收到录取书是怎么回事?如果你通过教育考试院公布的渠道发现自己已经被录取,但没有收到录取通知书,教务老师认为可能有以下几点:1.录取期间请保持您的个人通信畅通,学校也可能会通过电话或短信提醒您直接到学校指定地点领取。
2.可能是你填错了地址信息等,所以你要注意报考学校的官方信息,看你是否在通知单退回的名单上。
3.如果超过一个月没有收到,可以直接联系所报考大学的成人招生办。
成人高考成考高等数学(二)(专升本)试卷及解答参考
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
成人高考高数试题
成人高考高数试题高等数学试题一、选择题(共20小题,每题5分,共100分)1. 已知函数f(x) = 3x^2 + 2x - 5,求f(-1)的值是多少?A. -10B. -9C. 2D. 42. 若f(x) = e^x + 2ln(x),则f'(x)的值为:A. e^x + 2ln(x)B. e^x + 2/xC. -e^x + 2/xD. ln(x)3. 函数f(x) = (x^2 + 3x - 2)/(x - 1)的导数是:A. 2x + 4B. x^2C. 3x^2 + 4x - 3D. x + 14. 设函数f(x) = sin(2x),则f''(x)的值为:A. 2sin(2x)B. 2cos(2x)C. -4sin(2x)D. -4cos(2x)5. 若y = log2(x^3 + 4),则dy/dx的值为:A. 3x^2/(x^3 + 4)B. (3x^2 + 4)/(x^3 + 4)C. 3x/(x^3 + 4)D. (2x^2)/(x^3 + 4)二、填空题(共10小题,每题5分,共50分)1. ∫(3x^2 + 2x + 1)dx = ___________ + C2. lim(x→0) (sinx/x) = ___________3. 若f(x) = e^x + 2x,则f'(1)的值为___________4. 若f(x) = ln(2x + 1),则f''(1)的值为___________5. 设y = e^(2x + 1),则dy/dx的值为___________6. 设f(x) = x^3 - 3x^2 + 5,求f'(3)的值为___________7. 若y = arcsin(2x - 1),则dy/dx的值为___________8. 若f(x) = e^(e^x),则f'(0)的值为___________9. 若y = (x^2 + 1)(x + 2),则dy/dx的值为___________10. 设f(x) = sin(3x - π/6),则f''(π/12)的值为___________三、计算题(共2小题,每题25分,共50分)1. 求曲线y = x^3 - 3x^2 + 2x + 1与x轴所围成的面积。
成人高考高等数学试卷
一、选择题(每题5分,共25分)1. 设函数f(x) = 2x^3 - 3x^2 + 4,求f'(x)的值。
A. 6x^2 - 6x + 4B. 6x^2 - 3x + 4C. 6x^2 - 3x - 4D. 6x^2 + 3x - 42. 已知数列{an}满足an = 3an-1 - 2an-2,且a1 = 1,a2 = 2,求a3的值。
A. 4B. 5C. 6D. 73. 设函数f(x) = x^2 - 2x + 1,求f'(x)在x = 1时的值。
A. 0B. 1C. 2D. 34. 设函数f(x) = e^x + sin(x),求f'(x)的值。
A. e^x + cos(x)B. e^x - cos(x)C. e^x + sin(x)D. e^x - sin(x)5. 设函数f(x) = ln(x),求f'(x)的值。
A. 1/xB. -1/xC. xD. -x二、填空题(每题5分,共25分)6. 设函数f(x) = 2x^3 - 3x^2 + 4,则f'(x) = _______。
7. 数列{an}满足an = 3an-1 - 2an-2,且a1 = 1,a2 = 2,则a3 = _______。
8. 设函数f(x) = x^2 - 2x + 1,则f'(1) = _______。
9. 设函数f(x) = e^x + sin(x),则f'(x) = _______。
10. 设函数f(x) = ln(x),则f'(x) = _______。
三、计算题(每题10分,共30分)11. 求极限:lim(x→0) (x^2 - 1) / (x^3 + 2x^2 + 3x + 4)。
12. 求函数f(x) = x^3 - 3x^2 + 2x - 1的导数。
13. 求函数f(x) = e^x + sin(x)在x = π/2时的导数值。
2023年成人高考专升本高等数学(二)真题+参考答案解析
2023年成人高等学校招生全国统一考试专升本高等数学(二)真题一、选择题(1~10小题,每题4分,共40分。
在每小给出的四个选项中,只有一是符合题目要求的)1.x→∞x2+1 x2+xlim=()A.-1B.0C.12D.12.设f(x)=x3+5sin x,f'(0)=()A.5B.3C.1D.03.设f(x)=ln x-x,f'(x)=()A.xB.x-1C.1x D.1x-14.f(x)=2x3-9x2+3的单调递减区间为()A.(3,+∞)B.(-∞,+∞)C.(-∞,0)D.(0,3)5.x23dx=()A.x32+CB.35x53+C C.x53+C D.x13+C6.设函数f(x)=x ,则1-1f(x)dx=()A.-2B.0C.1D.27.连续函数f(x)满足x0f(t)dt=e x-1,求f'(x)=()A.e xB.e x-1C.e x+1D.x+18.设z=e xy,dz=()A.e xy dx+e xy dyB.e x dx+e y dyC.ye xy dx+xe xy dyD.e y dx+e x dy9.设z=14(x2+y2),∂2z∂x∂y=()A.x2B.0 C.y2D.x+y10.扔硬币5次,3次正面朝上的概率是()A. B. C. D.二、填空题(11~20小题,每题4分,共40分)11.x→31+x-2x-3=lim。
12.x→∞(x+1 x-1)lim x=。
13.f(x)=e2x,则f(n)(0)=。
14.f(x)=x2-2x+4在(x0,f(x))处切线与直线y=x-1平行,x=。
15.曲线y=xe x的拐点坐标为。
16.y=2x1+x2的垂直渐近线是。
17.xx2+4dx=。
18.曲线y=x2与x=y2所围成图形的面积是。
19.+∞0xe-x2dx=。
20.z=x2+y2-x-y-xy的驻点为。
三、解答题(21~28小题,共70分。
成人高考数学知识点
成人高考数学知识点成人高考数学是指成人参加高等教育自学考试(成人高考)中的数学科目。
成人高考数学内容涵盖了初等数学、线性代数、高等数学等多个方面的知识点。
下面将详细介绍成人高考数学的知识点,包括初等数学、线性代数和高等数学。
一、初等数学(约占总分的60%)初等数学是成人高考数学的基础,主要包括整式、分式、代数式、方程与不等式、函数与图像、平面向量、立体几何、数列等内容。
具体知识点如下:1. 整式与分式:整式的概念和运算,分式的概念、四则运算及其应用。
2. 代数式:代数式的概念,项、因式、倍式和因式分解,最大公因式和最小公倍数。
3. 方程与不等式:一元一次方程与一元一次不等式的解法,二次方程的解法,二元一次方程组与不等式组的解法。
4. 函数与图像:函数的概念,一元函数的表示方法及其图像,函数的奇偶性和周期性,函数的运算、复合函数和反函数。
5. 平面向量:向量的概念,向量的表示、模长和方向角,向量的运算和数量积、几何应用。
6. 立体几何:多面体的性质,棱柱、棱锥、圆台、圆锥、球体等的表面积和体积计算。
7. 数列:数列的概念,等差数列和等比数列的通项公式、前n项和等差中项等计算。
二、线性代数(约占总分的20%)线性代数是成人高考数学的重要组成部分,主要包括矩阵与行列式、向量空间和线性映射等内容。
具体知识点如下:1. 矩阵与行列式:矩阵的概念,矩阵的运算、转置、逆矩阵及其应用,行列式的概念、性质和计算方法。
2. 向量空间:向量空间的定义,线性相关性与线性无关性,基和维数,线性变换和线性方程组。
3. 线性映射:线性映射的概念和性质,线性映射的矩阵表示,特征值和特征向量。
三、高等数学(约占总分的20%)高等数学是成人高考数学的核心内容,主要包括微积分、数理方程和级数等内容。
具体知识点如下:1. 微积分:函数的极限与连续性,导数与微分,高阶导数,不定积分和定积分,微分方程。
2. 数理方程:一阶常微分方程的解法,高阶常微分方程的解法,常系数线性齐次常微分方程的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成人高考高等数学
定积分的换元积分法证明等式,利用定积分的几何应用求平面图形的面积和平面图形绕坐标轴旋转得到的旋转体的体积,以及二元函数的无条件极值与条件极值等。
3.讲究学习方法,追求学习效益。
要加强练习,注重解题思路和解题技巧的训练,对基本概念、基本理论、基本性质进行多侧面、多层次、由此及彼、由表及里的辨析。
如由导数与微分的概念推广到偏导数与全微分的概念,由不定积分与定积分的概念推广到二重积分的概念,比较它们之间的异同,分析它们之间的内在联系与本质区别。
只要把这些关系理清,则可从掌握导线与微分的运算上升到掌握偏导数与全微分的运算,从掌握不定积分与定积分的运算上升到二重积分的运算。
学习无穷级数时要注意以极限为工具,判断无穷级数的收敛性是以limn→∞Sn是否存在为依据的,数项级数收敛的必要条件是limn→∞un=0.此外,正项级数收敛性的判定,极限形式的比较判别法、达朗贝尔比值法,以及求幂级数的收敛半径、收敛区间,都涉及到极限的计算。
常微分方程可看作是积分的应用,求解可分离变量的微分方程时,在分离变量后需两边同时积分,用公式法或常数变易法求解一阶线性微分方程时也需求不定积分。
4.加强练习,熟悉考题中的各种题型,掌握选择题、填空题和解答题等不同题型的解题方法与解题技巧。
对基本公式、基本方法、基本技能要进行适度、适量的练习,在做题的过程中熟悉运算公式和运算法则,在练习的过程中加强理解与记忆。
理解和记忆是相辅相承的,在理解中加深记忆,记忆有助于更深入地理解,理解愈深,记忆愈牢。
练习中应注意分析与类比,掌握思考问题和解决问题的正确方法。
学会总结与归纳,寻求一般性的解题规律及解题方法,提高解题能力。
如何复习专升本《高等数学》
1.考生要在成人高考中取得好成绩,必须深刻理解《复习考试大纲》所规定的内容及相关的考核要求,在知识内容上要分清主次、突出重点。
在考核要求方面,弄清要求的深度和广度。
要全面复习、夯实基础,要将相关知识点进行横向和纵向的梳理,建立知识网络,对考试大纲所列知识点,力求做到心中有数、融会贯通。
2.注意以《大纲》为依据,弄清《高等数学》(一)和《高等数学》(二)在知识内容及相关考核要求上的区别。
这种区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。
如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n 阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。
其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。
从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。
共计45分左右。
所以理科、工科类考生应按照《大纲》的要求全面认真复习。
3.考生要加强对高等数学中基本概念、基本方法和基本技能的理解和掌握,要努力提高运用数学知识分析问题和解决问题的能力,特别是综合运用知识解决实际问题的能力。
4.要在学习方法上追求学习效益。
加强练习,注重解题思路和解题技巧的培养和训练,对基本概念、基本理论、基本性质能进行多侧面、多层次、由此及彼、由表及里的思索和辨析,对基本公式、基本方法、基本技能要进行适度、适量的练习,在练习中加强理解和记忆,理解和记忆是相辅相承的,理解中加深记忆,记忆有助于更深入地理解,死记硬背是暂时的,只有理解愈深,才能记忆愈牢。
5.加强练习,熟悉考试中各种题型,要掌握选择题、填空题和解答题等不同题型的解题方法与技巧。
练习中要注意分析、总结、归纳、类比,掌握思考问题和处理问题的正确方法,寻求一般性的解题规律,从而提高解题能力。
在专升本考试中,《高等数学》是一门重要的公共基础课程,也是考试成绩上升空间较大的一门课程。
学好数学同学好其他学科一样,都要付出辛勤的汗水和艰辛的努力。
第一讲函数、连续与极限
一、理论要求
1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)
几类常见函数(复合、分段、反、隐、初等函数)
2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理
会用等价无穷小和罗必达法则求极限
3.连续
函数连续(左、右连续)与间断理解并会应用闭区
间上连续函数的性质(最值、有界、介值)
二、题型与解法
A.极限的求法(1)用定义求
(2)代入法(对连续函数,可用因式分解或有理化消除零因子)
(3)变量替换法
(4)两个重要极限法
(5)用夹逼定理和单调有界定理求
(6)等价无穷小量替换法
(7)洛必达法则与Taylor级数法
(8)其他(微积分性质,数列与级数的性质)。