第三节分部积分法

合集下载

高等数学 第四章 第三节 分部积分法

高等数学 第四章 第三节 分部积分法

(再次使用分部积分法)u x , e x dx dv
x e 2( xe e ) C .
2 x x x
结论
若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函 数为 u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx . 2 x dv 解 令 u arctan x , xdx d
微分部分
积分部分
+
x
2
cos x
sin x
cos x
sin x
2x
2
结束
0
+
2 2 x cos xdx x sinx 2 x cos x 2 sinx C
例13 求积分 x e dx .
微分部分

2
x
竖式算法
选 u x 2 , v' e x
积分部分
+
x
2
e
x
2x
sec x tan x tan x sec xdx
2
sec x tan x (sec 2 x 1) sec xdx
这是一个 sec x tan x (sec 3 x tan x )dx 循环积分
sec x tan x I ln cos x
1 解出I即可 I (se cx tan x lncos x ) C 2
2 x e e
2 x2
x2
C.
例9
解:原式 x ln(1 x ) xd ln(1 x )
2 2
求 ln( x 1)dx
2
2x x ln( 1 x ) x dx 2 1 x

第3节 分部积分法

第3节 分部积分法

1 所以 sec xdx (sec xtanx ln sec x tanx ) C . 2
3
34
高等数学

戴本忠
17
1 例10 求 I n 2 2 n dx , 其中 n 为正整数 . (x a ) 解 当 n 1 时, 根据分部积分法 1 ( x 2 a 2 ) n 1 dx
高等数学

戴本忠
例9 解
求 sec 3 xdx .
3 sec xdx sec xdtan x
(tan x)sec2x (sec x)secxtanx
sec xtanx sec xtan 2 xdx sec xtanx sec x (sec 2 x 1)dx sec xtanx sec 3 xdx sec xdx sec xtanx ln sec x tanx sec 3 xdx .

戴本忠
10
例2

求 xe x dx .
令 u x, dv e dx,
x
那么 du dx, v e x .
x x x x x x x e d x x e e d x x e e C e ( x 1) C .
例3 解
求 x 2e x d x .
1 x 2 arctan x 1 x 2 d(arctan x )
1 x arctan x
2
34
1 1 x 2 dx 1 x
2
高等数学

戴本忠
21
1 x arctan x
2
1 dx 2 1 x 令 x tan t

高等数学第四章第三节分部积分法课件.ppt

高等数学第四章第三节分部积分法课件.ppt

原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx
tan x lncos x tan x x C
例7. 求
解: 令 x t , 则 x t2 , dx 2t d t
原式 2 t e t d t 令 u t , v et 2(t et et ) C 2e x ( x 1) C
则 u 1 , v 1 x2
x
2
原式 = 1 x2 ln x 1 x dx
2
2
1 x2 ln x 1 x2 C
2
4
例3. 求 x arctan x dx.
解: 令 u arctan x, v x

u
1
1 x
2
,
v 1 x2 2
∴ 原式 1 x2 arctan x 1
2
2
cos sin
x x
dx
cos sin
x x
dx
cos sin
x x
dx
1,
1
cos sin
x x
dx
得0=1
ln sin x C
答: 不定积分是原函数族 , 相减不应为 0 . 求此积分的正确作法是用换元法 .
再令 u cos x , v ex , 则 u sin x , v ex
ex sin x ex cos x ex sin x dx

原式 =
1 2
e
x
(sin
x
cos
x)
C
说明: 也可设
为三角函数 , 但两次所设类型
必须一致 .
解题技巧:
把被积函数视为两个函数之积 ,

第三节不定积分的分部积分法

第三节不定积分的分部积分法
( x 2 2 x ) sx i2 c n x o ( x 1 ) s 2 sx iC n
( x 2 2 x 2 ) sx i2 c n x ( o x 1 ) s C .
说明1: 口诀(反、对、幂、三、指)
例5 求不定积分 xarctxadxn. 解 xarcxtda xnarcx td a(x2 n2)
2 x 1 c 2 x o 1 s s 2 x i 1 n C .
说明4: 有时应结合换元积分,先换元后再分部;
例 1 2已 知 f(x )的 一 个 原 函 数 是 e x 2,
求 x f(x )d x . 解 xf(x)dxxdf(x)x(fx)f(x)d x,
例1 求不定积分 xexdx.
解 设 ux,dvexdxdex,
xexdx xd(ex)xex exdxxxe exC .
u d vu v vd u,
分部积分法的关键是正确选择 u 和 v .
选择 u 和 v 的原则是: 1)v不v比 复,杂 2)u比u更简. 单
2
说明3: 不定积分可通过解方程求得,但要注意 结果+C;
可连续几次利用多次分部,但每次应 选同一类函数;
例9 求不定积分 se3cxdx. 解 sec3 xdx sexcse2x cdxsexcd(tax)n
se x tca x n ta x d ( nsx ) ec sx e tc a x n ta 2 x s n x e d x c sx e tc a x ( n s 3 x e sx c e ) d x c
f1(x)dxxf1(x)Ff1(x) C.
练习题答案
一 、 1、 xcox ssix nC;

高教社2024高等数学第五版教学课件-4.3 分部积分法

高教社2024高等数学第五版教学课件-4.3 分部积分法

例1 求 න

‫) ( ׬ = ׬‬′ = − ‫)(׬‬′
= − න
= + + .
注 例1如果采用下面的方法,即
2
2 ′
2

න = න ∙ ( ) = − න()′ ∙
1
1
2
1) ]+ ‫׬‬

2 1+(2+1)2
1
2
1) ]+ arctan
2
1
[ 1
4
2 +
+ (2 + 1)2 ] + .
解法二(先用换元法,再用分部积分法,最后再使用凑微分)
令 = 2 + 1, =
−1
,则
2
−1
න 2 + 1 = න (
∴ ‫ ׬‬

= 2
(
− 2 + 2) + .
例10 求 න(2 + 1)
解法一(先用分部积分法,再用第一类换元法——凑微分)
‫( ׬‬2 + 1) = (2 + 1)-‫( ׬‬2 + 1)
2
= 2 + 1 − න

‫ ׬‬2 = ‫ ׬‬2 ( )
= 2 − න ( 2 ) = 2 − 2 න
= 2 + 2 න ( ) = 2 + 2( − ‫) ׬‬
= − + .
例3 求‫ ׬‬
解 令 = , = =
2
,
2

第三节 分部积分法

第三节 分部积分法

第三节分部积分法问题∫=?dx xex解决思路利用两个函数乘积的求导法则.设函数)(x u u =和)(x v v =具有连续导数,(),v u v u uv ′+′=′(),v u uv v u ′−′=′,dx v u uv dx v u ∫∫′−=′.du v uv udv ∫∫−=分部积分公式)()()((x dv x u dx x v u ⋅=′∫∫分部积分法主要过程如下:∫dxx f )(所求积分∫∫−=)()()()()()(x du x v x v x u x dv x u ∫∫′−=dxx v x u x v x u dx x f )()()()()((3)计算新积分(2)分部积分公式(1)拆分被积表达式中, 如果某部分求导后能得到简化,可考虑选为u ,剩下的部分就是dv 。

范围:一般处理含有多种类型的混合函数。

关键:对被积表达式的适当拆分。

(求导数或微分)∫′⋅dx x v x u )()(旧积分∫′⋅⇒dxx u x v )()(新积分,)()(dx x u x du u ′=⇒)()(x v dx x v dv ⇒′=(求积分或凑微分)u.cos ∫xdx x 求解(1)令,x u =x d xdx dv sin cos ==∫xdx x cos ∫=udv ∫−=vdu uv ∫−=xdx x x sin sin xv dx du sin ,:==则.cos sin C x x x ++=例1解(2)令,cos x u=∫xdx x cos ∫+=xdx x x x sin 2cos 222显然,u,dv 选择不当,积分更难进行.22,sin :xv xdx du =−=则∫xdx x cos ∫−=vdu uv总结若被积函数是幂函数与正(余)弦函数或指数函数的乘积, 可考虑设幂函数为u例2求积分.2∫dx e x x解,2x u =,xxde dx e dv ==∫dx e x x 2∫−=dx xe e x x x 22.)(22C e xe e x xxx+−−=再次使用分部积分法,x u =dxe dv x =),2(xe v xdx du ==),(xe v dx du ==例3求积分.arctan ∫xdx x ∫⋅=xdx x arctan 原式)(arctan 2arctan 222x d xx x ∫−=dx xx x x 222112arctan 2+⋅−=∫dx x x x )111(21arctan 222+−⋅−=∫.)arctan (21arctan 22C x x x x +−−=u dv 2v u ⋅du v ⋅v 熟练以后的写法例4求积分.ln 3∫xdx x 解,ln x u =,443dv xd dx x ==∫xdx x ln 3∫−=x d x x x ln 41ln 4144.161ln 4144C x x x +−=总结若被积函数是幂函数与对数函数或反三角函数的乘积,就考虑设对数函数或反三角函数为.u∫−=dx x x x 3441ln 41例6求积分.sin ∫xdx e x解∫xdx exsin ∫=xxdesin ∫−=)(sin sin x d e x e x x ∫−=xdx e x e xxcos sin ∫−=xxxdex e cos sin ∫−−=)cos cos (sin x d e x e x e xx x ∫−−=xdx e x x e xx sin )cos (sin ∫∴xdx e xsin .)cos (sin 2C x x ex+−=注意循环形式)0,(.)(122>∈+=∫a N n dx a x I nn 求解利用分部积分公式得:时当,1>n ∫−+dx a x n 122)(1例7∫+−++=−dxa x xn a x x n n )()1(2)(222122∫+−+−++=−−dx a x a a x n a x x n n n ])()(1[)1(2)(222122122))(1(2)(211221n n n n I a I n a x x I −−++=∴−−−∫+=dx ax I 2211Q C ax a +=arctan 1])32()([)1(2111222−−−++−=∴n n n I n a x xn a I 的递推公式。

第三节 分部积分

第三节 分部积分

1 3 解: 原式 = ∫ arctan x d x 3 1 3 1 x3 = x arctan x −∫ ⋅ dx 2 3 3 1+ x
1 1 3 x2 1 2 = x arctan x − ∫ dx 2 3 1+ x 2 3 1 1 3 1 (1− ) dx2 = x arctan x − ∫ 2 1+ x 3 6
上页 下页 返回 结束
例3. 求
∫ x ln xdx .
x2 x2 x2 1 dx = ln x−∫ 解: 原式 = ∫ ln x d 2 2 2 x
1 2 1 x2 x2 = ln x − ∫ x dx = ln x − x + C 4 2 2 2
上页
下页
返回
结束
例4. 求
∫x
2
arctan x dx .
∫e
− x2
dx , dx, ∫ ln x
sin x ∫ cos x dx, ∫ x dx,
2
它们的积分可以借助无穷级数来计算,或运用数学软件 它们的积分可以借助无穷级数来计算 或运用数学软件 快速算出. 快速算出
上页
下页
返回
结束
x cos x − sin x 例11. 求 ∫ d x. 2 x
x cos x − sin x cos x sin x 解: ∫ dx = ∫ d x −∫ 2 d x 2 x x x
1 sin x = ∫ dsinx −∫ 2 d x x x 1 sin x 1 = sinx −∫ sinx (− 2 )d x −∫ 2 d x x x x 1 = sinx +C. x
上页
下页
返回
结束
本章主要内容

高等数学4-3-分部积分法

高等数学4-3-分部积分法

2
分部积分法
udv uv vdu 分部积分公式
难求
易求
此公式并没有告诉我们求不定积 分的直接方法,而只是将求一个不定 积分转化为求另外一个不定积分,这 就要求后者积分要比前者更容易求, 否则使用此公式就没有意义了。
3
分部积分法
二、例 题
udv uv vdu
例 求 x cos xdx .
ln
xd
x4 4
1 ln xdx4 1 ( x4 ln x x4d ln x)
4u v 4
1 ( x4 ln x 4
x 3dx)
1 4
x
4
ln
x
1 16
x4
C
.
结论3 若被积函数是幂函数( x )与对数函
数相乘, 将幂函数移入微分号内凑成 v 。
8
例5 求积分 ln xdx. 解 ln xdx
第三节 分部积分法
分部积分公式 例题 小结 作业
1Hale Waihona Puke 第四章 不定积分分部积分法
一、分部积分公式
ln xdx
xexdx
设函数u u( x)及v v( x) 都可导.
(uv) uv uv
uv (uv) uv 两边积分
uvdx uv uvdx
udv uv vdu 分部积分公式
函数相乘, 将幂函数移入微分号内凑成 v 。
10
练习: arctan xdx.
解 arctan xdx
u
v
x arctan x xd arctan x
x
x arctan x 1 x2 dx
x arctan x 1
2
1
1 x2
d(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档