《直角三角形的性质和判定》课件
合集下载
湘教版八年级数学下册第一章《直角三角形》优课件
第一章 直角三角形复习
知识点回顾
直角三角形:有一个角是直角的三角形
一、直角三角形的性质:
1.直角三角形的两个锐角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中,30O角所对直角边是斜边的一半;
4.直角三角形两条直角边的平方和等于斜边的平方; (勾股定理)
熟记以下几组勾股数: 3、4、5; 5、12、13; 7、24、25;8、15、17
A
3
B
1
C
4
E
2
D
例4:如图:AD是△ABC中BC边上的高,E 为AC上一点,BE交AD于F,BF=AC, FD=CD,问BE,AC互相垂直么?请说明 理由
A
FE
B
DC
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
3、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm, 则AB=_____cm。
4、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,
AB=a,则DB等于( )
a
a
a
(A) (B) (C) (D)以上结果都不对
2
3
4
想一想
5、下图中的三角形是直角三角形,其余是 正方形,求下列图中字母所表示的正方形的 面积.
二、直角三角形的判定:
1.定义:有一个角是直角的三角形是直角三角形
2. 有两个角是互余的三角形是直角三角形 3. 若三角形中,较小两边的平方和等于较大边的平方,
则这个三角形是直角三角形(勾股定理的逆定理)
三、直角三角形全等的判定:
知识点回顾
直角三角形:有一个角是直角的三角形
一、直角三角形的性质:
1.直角三角形的两个锐角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中,30O角所对直角边是斜边的一半;
4.直角三角形两条直角边的平方和等于斜边的平方; (勾股定理)
熟记以下几组勾股数: 3、4、5; 5、12、13; 7、24、25;8、15、17
A
3
B
1
C
4
E
2
D
例4:如图:AD是△ABC中BC边上的高,E 为AC上一点,BE交AD于F,BF=AC, FD=CD,问BE,AC互相垂直么?请说明 理由
A
FE
B
DC
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
3、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm, 则AB=_____cm。
4、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,
AB=a,则DB等于( )
a
a
a
(A) (B) (C) (D)以上结果都不对
2
3
4
想一想
5、下图中的三角形是直角三角形,其余是 正方形,求下列图中字母所表示的正方形的 面积.
二、直角三角形的判定:
1.定义:有一个角是直角的三角形是直角三角形
2. 有两个角是互余的三角形是直角三角形 3. 若三角形中,较小两边的平方和等于较大边的平方,
则这个三角形是直角三角形(勾股定理的逆定理)
三、直角三角形全等的判定:
1.1直角三角形的性质和判定课件(1)
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°, 所以∠C=90°. 于是△ABC是直角三角形.
图1-2
九龙中学 结论
由此得到:
直角三角形的判定定理:
有两个角互余的三角形是直角三角形.
要点精析: 判定定理的条件是 ( 两个角互余
)。
九龙中学
学以致用:
1、在△ABC中∠A=20°, ∠B=70°,则∠A+∠B= ∠C=__ 90° ,△ABC是
B
D
C
又∵ ∠A +∠B=90° , DCA+ DCB 90 , ∴ B DCB. ∴ CD = BD. 故得 CD = AD = BD = 1 AB. 2
图1-4
∴ 点D 是斜边上的中点,即 CD 是斜边 AB 的中线.
1 从而 CD与CD 重合,且 CD AB. 2
在Rt△ABC中,因为 ∠C=90°,由三角形内角和 定理,可得∠A +∠B=90°.
图1-1
首页
九龙中学
结论
由此得到:
直角三角形的性质:
直角三角形的两个锐角互余.
要点精析: 性质的结论是根据 ( 三角形的内角和定理
)。
性质的条件是 ( 直角三角形
)。
九龙中学
学以致用:
1、在Rt△ABC中 , ∠C=90°, ∠A=40° ,
九龙中学
当堂训练
5.如图,AB∥CD,∠BAC和∠ACD的平分线相交于 H点,E为AC的中点,EH=2. 那么△AHC是直角三 角形吗?为什么?若是,求出AC的长.
解 ∵ AB∥CD
∴∠BAC+∠DCA=180° ∵AH平分∠BAC,CH平分∠ACD 1 ACH 1 DCA ∴ CAH 2 BAC , 2
图1-2
九龙中学 结论
由此得到:
直角三角形的判定定理:
有两个角互余的三角形是直角三角形.
要点精析: 判定定理的条件是 ( 两个角互余
)。
九龙中学
学以致用:
1、在△ABC中∠A=20°, ∠B=70°,则∠A+∠B= ∠C=__ 90° ,△ABC是
B
D
C
又∵ ∠A +∠B=90° , DCA+ DCB 90 , ∴ B DCB. ∴ CD = BD. 故得 CD = AD = BD = 1 AB. 2
图1-4
∴ 点D 是斜边上的中点,即 CD 是斜边 AB 的中线.
1 从而 CD与CD 重合,且 CD AB. 2
在Rt△ABC中,因为 ∠C=90°,由三角形内角和 定理,可得∠A +∠B=90°.
图1-1
首页
九龙中学
结论
由此得到:
直角三角形的性质:
直角三角形的两个锐角互余.
要点精析: 性质的结论是根据 ( 三角形的内角和定理
)。
性质的条件是 ( 直角三角形
)。
九龙中学
学以致用:
1、在Rt△ABC中 , ∠C=90°, ∠A=40° ,
九龙中学
当堂训练
5.如图,AB∥CD,∠BAC和∠ACD的平分线相交于 H点,E为AC的中点,EH=2. 那么△AHC是直角三 角形吗?为什么?若是,求出AC的长.
解 ∵ AB∥CD
∴∠BAC+∠DCA=180° ∵AH平分∠BAC,CH平分∠ACD 1 ACH 1 DCA ∴ CAH 2 BAC , 2
03880_八年级数学上册《直角三角形的性质》课件
16
45°-45°-90°三角形性质
角度关系
在45°-45°-90°三角形中,两个 锐角均为45°,还有一个直角为
90°。
边长关系
对于45°-45°-90°三角形,若设 直角边长度为a,则另一条直角 边长度也为a,斜边长度为√2a
。
应用场景
在解决与45°-45°-90°三角形相 关的问题时,可以利用这些性质
13
实例分析与解题技巧
2024/1/26
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
14
04
直角三角形中特殊角度计算
2024/1/26
15
30°-60°-90°三角形性质
等。
HL全等条件只适用于直角三角 形,不能用于其他类型的三角形
。
8
SAS与ASA在直角三角形中应用
要点一
SAS(Side-Angle-Side)全等 条件在直角…
如果两个直角三角形的两条边和它们之间的夹角对应相等 ,那么这两个直角三角形全等。
要点二
ASA(Angle-Side-Angle)全 等条件在直…
拓展到解三角形
学习如何使用已知信息(如角度或边长)来解三角形,包括使用正 弦定理、余弦定理等。
实际应用与问题解决
尝试将直角三角形的性质应用于实际问题解决中,如测量、建筑和 物理等领域。
26
THANKS
感谢观看
2024/1/26
27
2 3
测量距离
在航海、地理等领域,可以利用直角三角形计算 两点之间的距离,如利用经纬度计算地球上两点 之间的距离。
45°-45°-90°三角形性质
角度关系
在45°-45°-90°三角形中,两个 锐角均为45°,还有一个直角为
90°。
边长关系
对于45°-45°-90°三角形,若设 直角边长度为a,则另一条直角 边长度也为a,斜边长度为√2a
。
应用场景
在解决与45°-45°-90°三角形相 关的问题时,可以利用这些性质
13
实例分析与解题技巧
2024/1/26
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
14
04
直角三角形中特殊角度计算
2024/1/26
15
30°-60°-90°三角形性质
等。
HL全等条件只适用于直角三角 形,不能用于其他类型的三角形
。
8
SAS与ASA在直角三角形中应用
要点一
SAS(Side-Angle-Side)全等 条件在直角…
如果两个直角三角形的两条边和它们之间的夹角对应相等 ,那么这两个直角三角形全等。
要点二
ASA(Angle-Side-Angle)全 等条件在直…
拓展到解三角形
学习如何使用已知信息(如角度或边长)来解三角形,包括使用正 弦定理、余弦定理等。
实际应用与问题解决
尝试将直角三角形的性质应用于实际问题解决中,如测量、建筑和 物理等领域。
26
THANKS
感谢观看
2024/1/26
27
2 3
测量距离
在航海、地理等领域,可以利用直角三角形计算 两点之间的距离,如利用经纬度计算地球上两点 之间的距离。
八年级下册数学直角三角形的性质和判定课件
图1-3
线段CD 比线段AB短.
1 我测量后发现CD = AB. 2
图1-3
1 如图1-3, 如果中线CD = AB,则有∠DCA = ∠A . 2 由此受到启发,在图1-4 的Rt△ABC中,过直角顶点C作 射线 CD交AB于D,使 ∠ DCA = ∠A , 则 CD = AD .
1.直角三角形的判定定理和性质定理;
2.应用定理进行推理论证解决有关问题.
首页
课后作业
见《学练优》本课“课后巩固提升”
1 AB. 2
图1-4
结论
由此得到:
直角三角形斜边上的中线等于斜边的一半.
例1 已知:如图1-5,CD是△ABC的AB边上的中 AB . 线,且 CD 1 2 求证:△ABC是直角三角形.
图1-5
证明:因为 CD 1 AB= BD= AD , 2 所以 ∠1=∠A,(等边对等角) ∠2=∠B .
3.如图所示,在锐角三角形ABC中,CD,BE分别是AB, AC边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的 度数是( B ). A.150° B.130° C.120° D.100° 解 因为BE,CD是ABC的高, 所以∠BDP=90°,∠BEA=90°. 又∠A=50° , 所以∠ABE=90°-∠A=90°-50°= 40°. 所以∠BPC =∠ABE +∠BDP = 90° + 40°= 130°. 故应选择B.
1 是否对于任意一个Rt△ABC,都有 CD = AB 成立呢? 2
图1-3
图1-4
又∵ ∠A +∠B=90° , DCA+ DCB 90 ,
∴ B DCB.
故得 CD = AD = BD = 1 AB. 2
1.1直角三角形的性质和判定PPT课件
成立呢?
2
∠A如CD图=∠1A,。如于果是中在线图C2中D ,12过ABR,t△即ACBDC =的A直D,角所顶以点
C 作射线 CD′交 AB 于 D′,使 ∠1 = ∠A,则有 AD=CD.
(等角对等边)
图1
图2
又∵∠A +∠B = 90° ( 直角三角形两个角等于90° )
∠1 +∠2 = 90°
∴ ∠B =∠2 ∴ BD=CD (等角对等边)
∴
BD=
AD=CD
1 2
AB.
∴ D′是斜边AB的中点
即CD′就是斜边AB的中线,从而CD′
与CD重合,并且有
CD
1 2
AB.
求证:在直角三角形中,斜边上的中线等于斜边的一半。
如图,在Rt△ABC 中,∠C=90°,D是AB的中点,连结
CD,求证: CD 1 AB
C
2
A 提示:延长CD,使得CD=DE,
D
B
连结BE,
先证△ACD≌ △BED,然
E
后证△ACB≌ △EBC,得
AB=CE,最后说明 CD 1 AB
2
例1 如果三角形一边上的中线等于这条边的一半, 求证:这个三角形是直角三角形.
如图,已知:CD是△ABC的AB 边 求上证的:中△线AB,C且是C直D角 12三AB角形.
第1章 直角三角形
1.1 直角三角形的性质和判定
学习目标
1.了解直角三角形两个锐角的关系.(重点) 2.掌握直角三角形的判定.(难点) 3.会运用直角三角形的性质和判定进行相关计算.(难点)
说一说
1. 在Rt△ABC中,∠C=90°两锐角之和:∠A+∠B=?
1.1 直角三角形的性质和判定(Ⅰ) 课件 2024-2025学年湘教版八年级数学下册
AB,垂足为点D,若∠1=∠2,则△ABC是直角三角形吗?为什么?
【思维切入】ED⊥AB→∠ADE=90°,直角三角形的性质→
∠1+∠A=90°,∠1=∠2→∠2+∠A=90°→△ABC是直角三角形.
【自主解答】△ABC是直角三角形,理由如下:
∵ED⊥AB,∴∠ADE=90°,∴∠A+∠1=90°,∵∠1=∠2,
∴∠A+∠2=90°,
∴△ABC是直角三角形.
【举一反三】
如图,在△ABC中,∠B=30°,∠C=62°,AE平分∠BAC.
(1)求∠BAE的度数;
(2)若AD⊥BC于点D,∠ADF=74°,
证明:△ADF是直角三角形.
【解析】略
重点3
利用直角三角形的性质求线段之间的关系
【典例3】如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的
1
则AD与BC的数量关系是BC=2AD或AD= BC.
2
直角三角形的这个性质与等腰三角形的“三线合一”常结合在一起考查组成综合
性题目.
【触类旁通】
如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD
于点M,连接AM.
1
(1)求证:EF= AC;
2
(2)若EF⊥AC,求证:AM+DM=CB.
中点,AB=2CD,求证:DG⊥CE.
【自主解答】略
【举一反三】
如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,点E在BC上,且CE=AC,
75°
∠BAE=15°,则∠CDE的大小为________.
5+2思维赋能
【模型溯源】
【思维切入】ED⊥AB→∠ADE=90°,直角三角形的性质→
∠1+∠A=90°,∠1=∠2→∠2+∠A=90°→△ABC是直角三角形.
【自主解答】△ABC是直角三角形,理由如下:
∵ED⊥AB,∴∠ADE=90°,∴∠A+∠1=90°,∵∠1=∠2,
∴∠A+∠2=90°,
∴△ABC是直角三角形.
【举一反三】
如图,在△ABC中,∠B=30°,∠C=62°,AE平分∠BAC.
(1)求∠BAE的度数;
(2)若AD⊥BC于点D,∠ADF=74°,
证明:△ADF是直角三角形.
【解析】略
重点3
利用直角三角形的性质求线段之间的关系
【典例3】如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的
1
则AD与BC的数量关系是BC=2AD或AD= BC.
2
直角三角形的这个性质与等腰三角形的“三线合一”常结合在一起考查组成综合
性题目.
【触类旁通】
如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD
于点M,连接AM.
1
(1)求证:EF= AC;
2
(2)若EF⊥AC,求证:AM+DM=CB.
中点,AB=2CD,求证:DG⊥CE.
【自主解答】略
【举一反三】
如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,点E在BC上,且CE=AC,
75°
∠BAE=15°,则∠CDE的大小为________.
5+2思维赋能
【模型溯源】
直角三角形的性质和判定ppt 人教版
教学楼2栋 教学楼3栋
5 巩固提高,尝试反馈
直角三角形的性质和判 定
1、满足条件∠A= ∠B= ∠C的三角形是(B) A、等腰三角形 B、直角三角形 C、锐角三角形 D、钝角三角形 45 2、在△ABC中,如果∠A+∠B=∠C,且AC=BC,则∠B= _°
3、如图△ABC,∠BAC=90°,E为AC中点,D是BC上 一点,且DE= AC,∠EDC=30°,求 ∠BAD的度数。 30 °
教学楼2栋 教学楼3栋
2 合作交流,解读探究
直角三角形的性质和判 定
A
提出问题: (1)什么2)已知Rt△ABC中,∠C=90°,∠A=30°,你能求 出∠B吗? A
C
B
2 合作交流,解读探究
直角三角形的性质和判 定
A
已知:△ABC中,∠A+∠B=90°, 求证:△ABC是直角三角形。 证明:由三角形的内角和性质, ∠A+∠B+∠C=180°,因为 ∠A+∠B=90°,所以 ∠C=90°, 于是△ABC是直角三角形。
2
2 合作交流,解读探究
直角三角形的性质和判 定
练一练 1、如图,Rt△ABC中,D为斜边AB的中点, 6 若∠A=60°,AC=3cm,则AB= cm 。 2、如图,△ABC中,D为边AB的中点,CD=8cm, AB=16cm,且∠B=40°。则∠A=50 度.
A
60°
A
D
D
B
C
第①题图
C
第②题图
直角三角形的性质2:
直角三角形斜边上的中线等于斜边的一半。
本节课你有哪些收获?
直角三角形的判定1:
有两个角互余的三角形是直角三角形。
直角三角形的判定2:
5 巩固提高,尝试反馈
直角三角形的性质和判 定
1、满足条件∠A= ∠B= ∠C的三角形是(B) A、等腰三角形 B、直角三角形 C、锐角三角形 D、钝角三角形 45 2、在△ABC中,如果∠A+∠B=∠C,且AC=BC,则∠B= _°
3、如图△ABC,∠BAC=90°,E为AC中点,D是BC上 一点,且DE= AC,∠EDC=30°,求 ∠BAD的度数。 30 °
教学楼2栋 教学楼3栋
2 合作交流,解读探究
直角三角形的性质和判 定
A
提出问题: (1)什么2)已知Rt△ABC中,∠C=90°,∠A=30°,你能求 出∠B吗? A
C
B
2 合作交流,解读探究
直角三角形的性质和判 定
A
已知:△ABC中,∠A+∠B=90°, 求证:△ABC是直角三角形。 证明:由三角形的内角和性质, ∠A+∠B+∠C=180°,因为 ∠A+∠B=90°,所以 ∠C=90°, 于是△ABC是直角三角形。
2
2 合作交流,解读探究
直角三角形的性质和判 定
练一练 1、如图,Rt△ABC中,D为斜边AB的中点, 6 若∠A=60°,AC=3cm,则AB= cm 。 2、如图,△ABC中,D为边AB的中点,CD=8cm, AB=16cm,且∠B=40°。则∠A=50 度.
A
60°
A
D
D
B
C
第①题图
C
第②题图
直角三角形的性质2:
直角三角形斜边上的中线等于斜边的一半。
本节课你有哪些收获?
直角三角形的判定1:
有两个角互余的三角形是直角三角形。
直角三角形的判定2:
沪科版数学八上13.直角三角形的性质与判定课件(共15张)
B
C
直角三角形的性质(推论1):直角三角形的两锐角互余.
A
应用格式:
在Rt△ABC 中,
∵
∠C =90°,
∴
∠A +∠B =90°.
B
C
直角三角形的表示:
直角三角形可以用符号“Rt△”表示.如:直角三角形ABC 可
以写成Rt△ ABC.
例1 如图,∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与
例3
如图,在△ 中, 是 边上的高, 是 上一点,
交 于点,且∠ = ∠.
求证:△ 是直角三角形.
分析:要证△是直角三角形,只要证明∠ +
∠ = 90°即可.
证明:∵ 是 边上的高,
∴ ∠ + ∠ = 90° .
A.∠A+∠B=∠C
B.∠A-∠B=∠C
C.∠A:∠B:∠C=1:2:3
D.∠A=∠B=3∠C
3.如图所示,△ABC为直角三角形,∠ACB=90°, CD⊥AB,
与∠1互余的角有( C )
A.∠B
B.∠A
C.∠BCD和∠A
D.∠BCD
4.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角
的度数分别为
分析:要证△ 是直角三角形,可证明∠ + ∠ = 90° . 在
△ 中,已知∠ = 90°,∠=∠,易证△是直角三角
形.
Hale Waihona Puke 证明:∵ ∠ = 90°,∴ ∠+ ∠ = 90° .
∵ ∠ =∠,∴ ∠ + ∠ = 90°,
∴ △ 是直角三角形.
2. 直角三角形有什么性质呢?
A
直
角
人教版(部编)八年级数学上册-直角三角形的性质和判定
总结归纳
思考:通过前面的例题,你能画出这些题型的基本 图形吗?
基本图形
AB o
A
B
o D
C
D
∠A=∠D
C
∠A=∠C
二 有两个角互余的三角形是直角三角形
问题:有两个角互余的三角形是直角三角形吗? 如图,在△ABC中, ∠A +∠B=90° , 那么△ABC 是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是 △ABC是直角三角形.
C.∠BCD和∠A
D.∠BCD
7.如图,在直角三角形ABC中,∠ACB=90°,D是 AB上一点,且∠ACD=∠B.求证:△ACD是直角 三角形.
证明:∵∠ACB=90°, ∴∠A+∠B=90°, ∵∠ACD=∠B, ∴∠A+∠ACD=90°, ∴△ACD是直角三角形.
课堂小结
直角三角 形的性质 与判定
八年级数学上(RJ) 教学课件
第十一章 三角形
11.2 与三角形有关的角
11.2.1 三角形的内角
第2课时 直角三角形的性质和判定
导入新课
情境引入
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟 非常团结.可是有一天,老二突然不高兴,发起脾气来,它 指着老大说:“你凭什么度数最大,我也要和你一样 大!”“不行啊!”老大说:“这是不可能的,否则,我们 这个家就再也围不起来了……”“为什么?” 老二很纳闷. 你知道其中的道理吗?
B.50°
C.60°
D.70° 5.具备下列条件的△ABC中,不是直角三角形的是
( D) A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C
直角三角形的性质和判定PPT精选课件
Nhomakorabea2
九龙中学
复习引入
1.直角三角形的定义 有一个是直角的三角形叫直角三角形 2.三角形内角和的性质 三角形内角和等于180°
3.三角形中线的定义 三角形顶点与对边中点的连线段
这节课我们一起探索直角三角形的判定与性质
3
首页
九龙中学
合作探究
如图1-1,在Rt△ABC中, ∠C=90°,两锐角的和等
于多少呢?
线段CD 比线段AB短.
我测量后发现CD
=
1 2
AB.
图1-3
11
九龙中学
问题:是否对于任意一个Rt△ABC,都有 CD = 1 AB成立呢?
1
2
分析:如图1-3, 如果中线CD = 2 AB,则有∠DCA = ∠A
方法:由此受到启发,在图1-4 的Rt△ABC中,过直角顶点
C作射线 CDˊ交AB于Dˊ,使∠DˊCA=∠A
要点精析:
性质的前提条件是 ( 一条边上的中线等于这条边上的一半
性质的结论的是 ( 这个三角形是直角三角形
• (二)、过程与方法:通过对几何问题的“操作--探究--讨论--交流--讲评”的学习过程, 提高分析问题和解决问题的能力。
• (三)、情感态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参 与数学思维与交流活动。
• 教学重点难点:
• 重点:直角三角形斜边上的中线性质定理的应用。
• 难点:直角三角形斜边上的中线性质定理的证明思想方法。 • 教法学法:观察、比较、合作、交流、探索
则∠B=—5—0° 则∠B=—6—0°
3、在△ABC中 , ∠C=90°, ∠A—∠B=20°,则∠A= 55° ,
∠B= 35° 。
九龙中学
复习引入
1.直角三角形的定义 有一个是直角的三角形叫直角三角形 2.三角形内角和的性质 三角形内角和等于180°
3.三角形中线的定义 三角形顶点与对边中点的连线段
这节课我们一起探索直角三角形的判定与性质
3
首页
九龙中学
合作探究
如图1-1,在Rt△ABC中, ∠C=90°,两锐角的和等
于多少呢?
线段CD 比线段AB短.
我测量后发现CD
=
1 2
AB.
图1-3
11
九龙中学
问题:是否对于任意一个Rt△ABC,都有 CD = 1 AB成立呢?
1
2
分析:如图1-3, 如果中线CD = 2 AB,则有∠DCA = ∠A
方法:由此受到启发,在图1-4 的Rt△ABC中,过直角顶点
C作射线 CDˊ交AB于Dˊ,使∠DˊCA=∠A
要点精析:
性质的前提条件是 ( 一条边上的中线等于这条边上的一半
性质的结论的是 ( 这个三角形是直角三角形
• (二)、过程与方法:通过对几何问题的“操作--探究--讨论--交流--讲评”的学习过程, 提高分析问题和解决问题的能力。
• (三)、情感态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参 与数学思维与交流活动。
• 教学重点难点:
• 重点:直角三角形斜边上的中线性质定理的应用。
• 难点:直角三角形斜边上的中线性质定理的证明思想方法。 • 教法学法:观察、比较、合作、交流、探索
则∠B=—5—0° 则∠B=—6—0°
3、在△ABC中 , ∠C=90°, ∠A—∠B=20°,则∠A= 55° ,
∠B= 35° 。
八年级数学下册直角三角形的性质和判定ppt课件
方形,得到三个大小不同的正方形,那么这三个正方形的面
积S1、S2、S3之间有什么关系呢?
S3
4 B 3 C A
S2
S1
3
S3
4 B 3
A
S2
C
S1
由图可知,S1=32,S2=42, 为了求S3,我们可以先算 出红色区域内大正方形 的面积,再减去4个小三 角形的面积,得S3=52. ∵32+42=52, ∴S1+S2=S3.
c
A
b
a),于是它们全等(SAS),从而它们的斜边长
相等.设斜边长为c.
B
a
C
5
步骤2:再剪出1个边长为c的正方形,如下图所示.
c
6
步骤3:把步骤1和步骤2中剪出来的图形拼成如图所示的 图形.
由于△DHK≌△EIH,
∴∠2=∠4. 又∵∠1+∠2=90°, ∴∠1+∠4=90°. 又∠KHI=90°, ∴∠1+∠KHI+∠4=180°,即D,H,E在一 条直线上. D
B
D
C
10
练习
1.在Rt△ABC中,∠C=90°. (1)已知a=25,b=15,求c; (2)已知a=5,c=9,求b; (3)已知b=5,c=15,求a.
答案:(1)5 34 ;
(2)2 14 ;
( 3) 10 2 .
11
思考
如图,电工师傅把4m长的梯子AC靠在墙 上,使梯脚C离墙角B的距离为1.5m,准 备在墙上安装电灯.当他爬上梯子后发现 高度不够,于是将梯脚往墙角移近0.5m, 即移动到C'处.那么,梯子顶端是否往上移 动0.5m呢?
12
如图,是由实物图抽象出来的示意图.在Rt△ABC中,计 算出AB;在Rt△A'BC'中,计算出A'B,则可得出梯子往 上移动的距离为(A'B-AB)m. 在Rt△ABC中,AC=4m,BC=1.5m, 由勾股定理得, AB 42 1.52
北师大版数学八年级下册第1课时直角三角形的性质与判定课件(共21张)
1 直角三角形的性质与判定
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结归纳
有两个角互余的三角形是直角三角形. 应用格式: 在△ABC 中, ∵ ∴ ∠A +∠B =90°,
B △ABC 是直角三角形.
A
C
典例精析
例3 如图,∠C=90 °, ∠1= ∠2,△ADE是直角 三 角形吗?为什么? 解:在Rt△ABC中, ∠2+ ∠A=90 °. ∵ ∠1= ∠2, ∴∠1 + ∠A=90 °. 即△ADE是直角三角形.
A 1 E C 2 B D
例4 如图,CE⊥AD,垂足为E,∠A=∠C,△ABD是 直角三角形吗?为什么? 解:△ABD是直角三角形.理由如下:
∵CE⊥AD,
∴∠CED=90°, ∴∠C+∠D=90°, ∵∠A=∠C, ∴∠A+∠D=90°,
∴△ABD是直角三角形.
当堂练习
1.如图,一张长方形纸片,剪去一部分后得到 一个三角形,则图中 90∠ °1+∠2的度数是________.
在一个直角三角形里住着三个内角,平时,它们三兄弟 非常团结.可是有一天,老二突然不高兴,发起脾气来,它 指着老大说:“你凭什么度数最大,我也要和你一样 大!”“不行啊!”老大说:“这是不可能的,否则,我们 这个家就再也围不起来了……”“为什么?” 老二很纳闷. 你知道其中的道理吗?
老大的度数为90°,老二若是比老大的
B
A
C
直角三角形的表示:直角三角形可以用符号“Rt△” 表示,直角三角形ABC 可以写成Rt△ABC .
典例精析
例1(1)如图,∠B=∠C=90°,AD交BC于点O,∠A 与∠D有什么关系? 方法一(利用平行的判定和性质): A ∵∠B=∠C=90°, ∴AB∥CD, ∴∠A=∠D. 方法二(利用直角三角形的性质): ∵∠B=∠C=90°, ∴∠A+∠AOB=90°,∠D+∠COD=90°. ∵∠AOB=∠COD, ∴∠A=∠D.
5.具备下列条件的△ABC中,不是直角三角形的是 D ( ) A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C
6.如图所示,△ABC为直角三角形,∠ACB=90°,
CD⊥AB,与∠ C1互余的角有(
A.∠B C.∠BCD和∠A B.∠A
)
D.∠BCD
B o D
图
C
(2)如图,∠B=∠D=90°,AD交BC于点O,∠A与
∠C有什么关系?请说明理由. 解:∠A=∠C.理由如下:
A o C
与图有哪 些共同点与 不同点?
B D
∵∠B=∠D=90°,
∴∠A+∠AOB=90°,∠C+∠COD=90°. ∵∠AOB=∠COD, ∴∠A=∠C.
图
例2 如图, ∠C=∠D=90 °,AD、BC相交于点E.
∠BFC又有什么关系?为什么? 解:∵CD⊥AB于点D, BE⊥AC于点E ∴∠BEA=∠BDF=90° , ∴∠ABE+∠A=90°, ∠ABE+∠DFB=90°.
∴∠A=∠DFB.
∵∠DFB+∠BFC=180°
总结归纳
思考:通过前面的例题,你能画出这些题型的基本
图形吗?
基本图形
A B o D
A o C
有两个角互余的三角 形是直角三角形
第十一章 三角形 11.2 与三角形有关的角 11.2.1 三角形的内角 第2课时 直角三角形的性质和判定
人教版·八年 级上册
学习目标
1.了解直角三角形两个锐角的关系.(重点)
2.掌握直角三角形的判定.(难点) 3.会运用直角三角形的性质和判定进行相关计算.
(难点)
导入新课
情境引入
内角三兄弟之争
∠CAE与∠DBE有什么关系?为什么? 解:在Rt△ACE中,
∠CAE=90 °- ∠AEC.
在Rt△BDE中, ∠DBE=90 °- ∠BED. ∵ ∠AEC= ∠BED, ∴ ∠CAE= ∠DBE. A
C
E
D
B
【变式题】如图,△ABC中,CD⊥AB于D,
BE⊥AC于E,CD,BE相交于点F,∠A与
度数大,那么老二的度数要大于90°,而
三角形的内角和为180°,相互矛盾,因
而是不可能的.
在这个家里,我 是永远的老大.
讲授新课
一 直角三角形的两个锐角互余
问题引导
问题1:如下图所示是我们常用的三角板,两锐角的度 数之和为多少度?
30°+60°=90°
45°+45°=90°
问题2:如图,在Rt△ABC中, ∠C=90°,两
第1题图
第2题图
2.如图,AB、CD相交于点O,AC⊥CD于点C, 52 ° 若∠BOD=38°,则 ∠ A=________.
直角三角形 ____ 3.在△ABC中,若∠A=43°,∠B=47°,则这个三角形是
4.在一个直角三角形中,有一个锐角等于40°, 则另一个锐角的度数是( B A.40° B.50° ) C.60° D.70°
7.如图,在直角三角形ABC中,∠ACB=90°,
D是AB上一点,且∠ACD=∠B.
求证:△ACD是直角三角形. 证明:∵∠ACB=90°, ∴∠A+∠B=90°, ∵直角三角形.
课堂小结
性 质 直角三角 形的性质 与 判 定 判 定
直角三角形的两个锐角互余
锐角的和等于多少呢?
在Rt△ABC中,因为 ∠C=90°,由三角形内角和定 理,得∠A +∠B+∠C=90°,即 ∠A +∠B=90°.
思考:由此,你可以得到直角三角形有什么性质呢?
总结归纳
直角三角形的两个锐角互余.
应用格式: 在Rt△ABC 中, ∵ ∴ ∠C =90°, ∠A +∠B =90°.
B D
C
∠A=∠D
∠A=∠C
二 有两个角互余的三角形是直角三角形
问题:有两个角互余的三角形是直角三角形吗? 如图,在△ABC中, ∠A +∠B=90° , 那么△ABC
是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是 △ABC是直角三角形.