七年级下数学竞赛试题及答案

合集下载

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。

1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。

4、定义a*b=ab+a+b,若3*x=27,则x的值是________。

5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

问:F的对面是_______。

FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。

7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。

8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。

9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。

10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。

二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。

七年级数学竞赛试题(含答案)-

七年级数学竞赛试题(含答案)-

七年级数学竞赛试题一、选择题:1、已知152004+-=a ,则a 是( )A 、合数B 、质数C 、偶数D 、负数 2若7a+9|b|=0,则a b 2一定是( )A 、正数B 、负数C 、非负数D 、非正数3、a 与b 之和的倒数的2003次方等于1,a 的相反数与b 之和的2005次方也等于1,则a 2003+b 2004=( )A 、22005B 、2C 、1D 、04、如图1,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将三角形以每秒3厘米的速度沿高的方向向上移动2秒,这时,三角形扫过的面积是( )平方厘米。

A 、21B 、19C 、17D 、155、小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄、苹果)每公斤的价格分别是( )元。

A 、(2.5,0.7) B 、(2,1) C 、(2,1.3) D 、(2.5,1)6、当1-=x 时,代数式8322+-bx ax 的值为18,这时,代数式269+-a b =( ) A 、28 B 、—28 C 、32 D 、—327、The sum or n different postitive integers is less than 50.The greatest possible value of n is ( )A 、10B 、9C 、8D 、7 (英汉小词典positive integer :正整数) 8、已知∠A 与∠B 之和的补角等于∠A 与∠B 之差的余角,则∠B=( )A 、75°B 、60°C 、45°D 、30°9、如图2,一个正方体的六个面上分别标有数字1,2,3,4,5,6。

根据图中三种状态所显示的数字,“?”表示的数字是( ) A 、1 B 、2 C 、4 D 、6 二、填空题:10、若正整数x ,y 满足2004x=15y ,则x+y 的最小值是___________;11、数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2004个数中共有___________个偶数。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

2020-2021学年湖南省七年级下学期数学竞赛卷1(解析版)

2020-2021学年湖南省七年级下学期数学竞赛卷1(解析版)

2020-2021学年湖南省七年级下学期数学竞赛卷1 一,单项选择题(本大题共8小题,每题5分,共40分)1.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为()A.25B.30C.35D.40【答案】C【分析】最大数出现的条件就是前面10个数的和尽可能小,而它们的和是110,中间的是9,则其它的越小,剩下的就越大,但是8的个数要多于其它的,可分8的个数分别是2,3,4,5时,讨论写出符合条件的数据即得答案.【详解】解:∵有11个正整数,平均数是10,∵这11个数的和为110,由于中位数是9,众数只有一个8,如有两个8,则其他数至多1个,符合条件的数据可以是:1,2,3,8,8,9,10,11,12,13,x;如有3个8,9是中位数,则其他数至多2个,符合条件的数据可以是:1,1,8,8,8,9,9,10,10,11,x;如有4个8,则其他数至多3个,符合条件的数据可以是:1,8,8,8,8,9,9,9,10,10,x;如有5个8,则其他数至多4个,符合条件的数据可以是:8,8,8,8,8,9,9,9,9,10,x;再根据其和为110,比较上面各组数据中哪个x更大即可,通过计算x分别为33,35,30,24,故最大的正整数为35.故选:C.本题主要考查了众数、平均数以及中位数的运用,解题时注意:一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,则处于中间位置的数(或中间位置的两个数的平均数)就是这组数据的中位数.2.定义新运算:对于任意实数a ,b 都有a※b =am -bn ,等式右边是通常的减法和乘法运算.规定,若3※2=5,1※(-2)=-1,则(-3)※1的值为( ) A .-2B .-4C .-7D .-11【答案】A【分析】按照定义新运算的法则,先求出m 和n 的值,再把算式转化为有理数运算即可.【详解】解:根据题意,3∵2=5,1∵(-2)=-1,得, 32521m n m n -=⎧⎨+=-⎩, 解得,11m n =⎧⎨=-⎩, 则(-3)∵1=(-3)×1-1×(-1)=-2,故选:A .【点睛】本题考查了定义新运算,二元一次方程组和有理数混合计算,解题关键是根据定义新运算法则把两个等式转化为二元一次方程组,求出m 、n 的值.3.已知x y 、、z 满足12x z -=,236xz y +=-,则2x y z ++的值为( ) A .4B .1C .0D .-8【答案】C根据题目条件可用x 来表示z ,并代入代数式中,运用公式法因式分解可得()226x y -=-,再根据平方数的非负性可分别求出x ,z 的值,最后运算即可.【详解】 解:12x z -=,∴12z x =-, 又236xz y +=-,∴()21236x x y -+=-,∴2212+36=-y x x -,()226x y -=-, ()22600x y -≥-≤,,600x y ∴-==,,606x y z ∴===-,,,代入2x y z ++得,2x y z ++=0.故选:C .【点睛】本题考查了运用公式法进行因式分解,平方数的非负性,熟练掌握运用公式法因式分解是解决本题的关键.4.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( )A .c a b <<B .c b a <<C .a b c <<D .a c b <<【答案】A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a=(35)11=24311,b=(44)11=25611,c=(53)11=12511,<<,又∵125243256<<.∵c a b故选:A.【点睛】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.5.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是()A.50°、130°B.都是10°C.50°、130°或10°、10°D.以上都不对【答案】C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∵这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∵这两个角的度数是10°和10°;若这两个角互补,则180﹣x =3x ﹣20,解得:x =50,∵这两个角的度数是50°和130°.∵这两个角的度数是50°、130°或10°、10°.故选:C .【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用. 6.如图,在锐角三角形ABC 中,4AB =,ABC 的面积为10,BD 平分ABC ∠,若M 、N 分别是BD 、BC 上的动点,则CM MN +的最小值为( )A .4B .5C .4.5D .6【答案】B【分析】 作N 关于BD 的对称点,根据轴对称性质、两点之间线段最短和垂线段最短的定理可以得到CM+MN 的最小值即为C 点到AB 的垂线段,因此根据面积公式可以得解.【详解】解:如图,作N 关于BD 的对称点N ',连结N N ',与BD 交于点O ,过C 作CE∵AB 于E ,则∵BD 平分 ∵ABC ,∵N '在AB 上,且MN=M N ',∵CM+MN=CM MN +',∵根据两点之间线段最短可得CM+MN 的最小值为CN ',即C 点到线段AB 某点的连线,∵根据垂线段最短,CM+MN 的最小值为C 点到AB 的垂线段CE 的长度,∵∵ABC 的面积为 10 , ∵14102CE ⨯⨯=, ∵CE=5,故选B .【点睛】本题考查轴反射的综合运用,熟练掌握轴反射的特征、两点之间线段最短及垂线段最短等性质是解题关键.7.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-2020【答案】C【分析】将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.【详解】解:∵220x x +-=,∵22x x =-+,22x x +=,∵3222016x x x +-+2222016x x x x =+-+()2222016x x x x =-++-+22016x x =++22016=+=2018.故选:C【点睛】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.8.如图,直线6y x =+与两坐标轴分别交于AB 、两点,13OC OB =,D 、E 分别是直线AB y 、轴上的动点,则CDE △周长的最小值是( ).A .B .C .D .【答案】A【分析】作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF 、EG ,根据轴对称的性质得到CDE △周长的最小值就是FG 的长,求出点F 和点G 坐标算出FG 的长.【详解】解:如图,作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF 、EG ,∵直线6y x =+与两坐标轴分别交于A 、B 两点,∵()0,6A ,()6,0B -, ∵13OC OB =, ∵()2,0C -,∵AO=BO ,∵45ABO ∠=︒,∵90FBC ,∵FBC 是等腰直角三角形,∵()6,4F -,∵C 、G 关于OA 对称,∵()2,0G ,由对称的性质,DF=DC ,EC=EG ,∵CDE C CD CE DE DF EG DE FG =++=++=,此时周长最小,在Rt BFG 中,FG ==,故选:A .【点睛】 本题考查轴对称最短路线问题,解题的关键是利用对称性找到CDE △周长最小时点D 和点E 的位置,再结合平面直角坐标系中点坐标对称的关系进行求解.二、填空题(本大题共6小题,每题5分,共30分)9.现有a 根长度相同的火柴棒,按如图1摆放时可摆成m 个正方形,按如图2摆放时可摆成2n 个正方形.(1)用含n 的代数式表示m =___________;(2)当这a 根火柴棒还能摆成如图3所示的形状时,a 的最小值为_______. 【答案】513n + 52 【分析】(1)根据图1和图2的火柴棒的总数相同,列出等式,从而得到关系式;(2)可设图3中有3p 个正方形,可得等式a =3m +1=5n +2=7p +3,求出最小正整数解,从而得到a 的最小值.【详解】解:(1)图1中火柴棒的总数是(3m +1)根,图2中火柴棒的总数是(5n +2)根, ∵图1和图2的火柴棒的总数相同,∵3m +1=5n +2,∵m =513n +; (2)设图3中有3p 个正方形,那么火柴棒的总数是(7p +3)根,由题意得 a =3m +1=5n +2=7p +3,∵p =325177m n --=, ∵m ,n ,p 均是正整数,∵m =17,n =10,p =7时a 的值最小,a =3×17+1=5×10+2=7×7+3=52.故答案为:(1)513n +;(2)52. 【点睛】本题考查了规律型:图形的变化,解题的关键是由火柴棒的总数相同列出等式,本题有一定的难度.10.2222111111......112319992000⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=_______. 【答案】20014000 【分析】先运用平方差公式对各括号内因式分解,然后寻找规律解答即可.【详解】 解:2222111111......112319992000⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=111111111111......111122331999199920002000⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =1341998200019992001 (223319991999200022000)⨯⨯⨯⨯⨯⨯⨯⨯=1200122000⨯ =20014000【点睛】本题考查了实数的运算以及运用平方差公式因式分解,因式分解后观察发现数字间的规律是解答本题的关键.11.若22(3)(3)x nx x x m ++-+的展开式中不含2x 和3x 项,则m n +=_____________.【答案】9.【分析】根据展开式中不含2x 和3x 项,即2x 和3x 项的系数为0即可求解.【详解】解:22(3)(3)x nx x x m ++-+,=43232233393x x mx nx nx mnx x x m -++-++-+,=432(3)(33)(9)3x n x m n x mn x m +-+-++-+,根据展开式中不含2x 和3x 项,列方程组得,30330n m n -=⎧⎨-+=⎩, 解得,36n m =⎧⎨=⎩, 9m n +=,故答案为:9.【点睛】本题考查整式乘法和二元一次方程组,解题关键是根据多项式中不含某一项时,这一项的系数为0列方程组.12.已知直线AB※CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为_____秒时,PB′※QC′.【答案】PB′∵QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∵BPB′和∵CQC′的度数,过E作EF∵AB,根据平行线的性质求得∵PEF和∵QEF的度数,进而得结论;(2)分三种情况:∵当0s<t≤45时,∵当45s<t≤67.5s时,∵当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∵BPB′=4°×30=120°,∵CQC′=30°,过E作EF∵AB,则EF∵CD,∵∵PEF=180°﹣∵BPB′=60°,∵QEF=∵CQC′=30°,∵∵PEQ=90°,∵PB′∵QC′,故答案为:PB′∵QC′;(2)∵当0s<t≤45时,如图2,则∵BPB′=4t°,∵CQC′=45°+t°,∵AB∵CD,PB′∵QC′,∵∵BPB′=∵PEC=∵CQC′,即4t=45+t,解得,t=15(s);∵当45s<t≤67.5s时,如图3,则∵APB′=4t﹣180°,∵CQC'=t+45°,∵AB∵CD,PB′∵QC′,∵∵APB′=∵PED=180°﹣∵CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);∵当67.5s<t<135s时,如图4,则∵BPB′=4t﹣360°,∵CQC′=t+45°,∵AB∵CD,PB′∵QC′,∵∵BPB′=∵PEC=∵CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∵QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.13.如果812222n++为完全平方数,则正整数n为______.【答案】2或14或11【分析】分情况讨论,分别设2n为首项的平方,末项的平方,中间项,则可得出n的值即可.【详解】设2n为首项的平方,则末项为62,中间项为乘积两倍为82=2×72,∵首项为2,首项平方为2n,∵n=2;设2n为末项的平方,则首项为42,乘积两倍为122=2×42×72,∵末项为72,末项平方为142,∵n=14;设2n 为中间项,则2n =2×42×62=112,∵n=11,综上所述,正整数n 的值为2或14或11,故答案为:2或14或11.【点睛】本题考查了完全平方式的形式,掌握完全平方式的形式是解题的关键.14.图1是一张足够长的纸条,其中//PN QM ,点A 、B 分别在PN ,QM 上,记()090ABM αα∠=︒<≤︒.如图2,将纸条折叠,使BM 与BA 重合,得折痕1BR ;如图3,将纸条展开后再折叠,使BM 与1BR 重合,得折痕2BR :将纸条展开后继续折叠,使BM 与2BR 重合,得折痕3BR ;...依此类推,第n 次折叠后,n AR N ∠= _______(用含α和n 的代数式表示).【答案】180°-112n α-. 【分析】设纸条QM 所在直线为QC ,第一次将纸条折叠,使BM 与BA 重合,得折痕1BR ,由PR 1∵QB ,可得∵MAR 1=∵ABM =α.∵AR 1B =∵R 1BC =12α,由AM ∵R 1N ,∵MAR 1+∵AR 1N =180°,可求∵AR 1N =180°-α;第二次将纸条折叠,使BM 与1BR 重合,得折痕2BR ;求出∵MR 1R 2=∵R 1BC =12α.∵R 1R 2B =∵R 2BC =14α,可得∵AR 2N =180°-∵MR 1R 2 =180°-12α;第三次将纸条折叠,使BM 与2BR 重合,得折痕3BR ;可求∵MR 2R 3=∵R 2BC =14α.∵R 2R 3B =∵R 3BC =18α,可得∵AR 3N =180°-∵MR 2R 3 =180°-14α;……第n 次将纸条折叠,使BM 与1n BR -重合,得折痕n BR ;∵MR n -1R n =∵R n -1BC =112n α-.∵R n -1R n B =∵R n BC =12n α,∵AR n N =180°-∵MR n -1R n =180°-112n α-即可. 【详解】解:设纸条QM 所在直线为QC ,第一次将纸条折叠,使BM 与BA 重合,得折痕1BR ;∵PR 1∵QB ,∵∵MAR 1=∵ABM =α.∵AR 1B =∵R 1BC =12α,∵AM ∵R 1N ,∵∵MAR 1+∵AR 1N =180°,∵∵AR 1N =180°-∵MAR 1=180°-α;第二次将纸条折叠,使BM 与1BR 重合,得折痕2BR ;∵PR 2∵QB ,∵∵MR 1R 2=∵R 1BC =12α.∵R 1R 2B =∵R 2BC =14α, ∵R 1M ∵R 2N ,∵∵MR 1R 2+∵AR 2N =180°,∵∵AR 2N =180°-∵MR 1R 2 =180°-12α; 第三次将纸条折叠,使BM 与2BR 重合,得折痕3BR ;∵PR 3∵QB ,∵∵MR 2R 3=∵R 2BC =14α.∵R 2R 3B =∵R 3BC =18α, ∵R 2M ∵R 3N , ∵∵MR 2R 3+∵AR 3N =180°,∵∵AR 3N =180°-∵MR 2R 3 =180°-14α; ……第n 次将纸条折叠,使BM 与1n BR -重合,得折痕n BR ;∵PR n ∵QB , ∵∵MR n -1R n =∵R n -1BC =112n α-.∵R n -1R n B =∵R n BC =12n α, ∵R n -1M ∵R n N ,∵∵MR n -1R n +∵AR n N =180°,∵∵AR n N =180°-∵MR n -1R n =180°-112n α-. 故答案为:180°-112n α-.【点睛】本题考查轴对称性质,与角平分线有关计算,平行线性质,掌握轴对称性质,与角平分线有关计算,平行线性质,仔细观察图形,找出∵MR n -1R n =112n α-是解题关键. 三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是( )A .B .C .D . 2.若定义“⊙”:a ⊙b=b a ,如3⊙2=23=8,则3⊙等于( )A .B .8C .D .3.已知x+y=7,xy=10,则3x 2+3y 2=( )A .207B .147C .117D .874.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失( )A .179元B .97C .100元D .118元5.如图,直线a ∥b ,那么∠x 的度数是( )A .72°B .78°C .108°D .90°二、填空题(本大题共8小题,每小题4分,共32分) 6.若()()1532-+=++mx x n x x ,则m 的值为___________。

7.已知4433553,5,2===c b a ,则a ,b ,c 的大小关系(从小到大排列,用“<”连接)__________________。

8.如果代数式535-++cx bx ax ,当x=﹣2时该式的值是7,那么当x=2时该式的值是__________。

9.若()0862=+++-y y x ,则xy=__________。

10. 如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于__________。

11. 已知多项式162++px x 是完全平方式,则p 的值为___________。

12.己如,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB=BD ,BC=CE ,CA=AF ,连DE 、EF 、FD ,则△DEF 的面积为___________。

2024年江苏省江阴市第九届优利信杯七年级下学期3月竞赛数学试题

2024年江苏省江阴市第九届优利信杯七年级下学期3月竞赛数学试题

第九届初中数学学科“优利信杯”俱乐部竞赛七年级试卷(本试卷满分150分,考试时间为150分钟) (2024.3.25)一、选择题(本大题共8小题,每小题4分,共32分.以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的括号内)1.下面的说法:①过一点有且只有一条直线与这条直线平行;②两条相交直线组成的四个角中,若有一个直角,则四角都相等;③方程ax =a 的解是x =1;④垂直于同一条直线的两条直线互相平行.其中正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个 2.a ,b ,c ,d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a ,b ,c ,d 中,最大的一个是 ( ) A .aB .bC .cD .d3.在100到200的自然数中不是5的倍数也不是6的倍数的个数有 ( ) A .64B .65C .66D .674.下面四种正多边形平面镶嵌,每个顶点处正多边形不完全相同的是 ( )A .B .C .D .5.现有长为60cm 的铁丝,要截成n (n >2)小段,每小段的长为不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,当n 取最大值时,有 种方法将该铁丝截成满足条件的n 段. ( ) A .3B .4C .5D .66.如图,直线AB ∥CD ,点E 在直线AB 上,点F 在直线CD 上,N 为AB 、CD 之间一点,连接NE 并延长交∠DFN 的角平分线于点G ,且EG 平分∠MEB ,当2∠M +∠N =105°时,则∠AEN 的度数为 ( ) A .15° B .21°C .24°D .25°7.已知关于x 的方程5ax +3bx −9x −3a +4b +17=0有无穷多解,则a +b 的值为 ( )A .−1B .0C .1D .5 8.如图,将正奇数按上表排成5列,根据上面规律,2019应在( )A .第126行,第3列B .第126行,第2列C .第253行,第2列D .第253行,第3列(第6题图)(第8题图)二、填空题(本大题共8小题,每小题5分,共40分)9.已知32n -9n -1=72,则n = .10.如图,平行直线AB ,CD 与相交直线EF ,GH 相交,图中的同旁内角共有 对. 11.(x +1)5=ax 5+bx 4+cx 3+dx 2+f ,则b +d 的值为 .12.如图,长方形ABCD 中,若图中阴影部分的面积分别为S 1=6,S 2=3,S 4=2,则S 3= . 13.在我国传统文化中,“喜寿”、“米寿”、“白寿”分别是77岁、88岁、99岁的雅称,小花在年龄是她妈妈年龄的13时曾为奶奶贺喜寿,在年龄是她妈妈年龄的12时又为奶奶贺米寿,则小花岁时将为奶奶贺白寿.14.如图,AB ∥CD ,则∠1、∠2、∠3、∠4、∠5满足的数量关系是 .15.小澄下午6点多外出时,看手表上两指针的夹角为110︒,下午7点前回家时发现两指针的夹角仍为110︒,那么小澄外出的时间总计有 分钟.16.设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现有A 、C 、E 、G 四盏灯开着,其余三盏灯是关的,小明从灯A 开始,顺次拉动开关,即从A 到G ,再从A 开始顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关,最后记号为 的灯是开的. (请将开着的灯的记号全部填写在横线上)三、解答题(本大题共有8小题,共78分.解答时应写出文字说明,推理过程或演算步骤)17.(本题满分10分)解方程:(1)x -82023+x -92024+x -102025+x -112026+4=0;(2)|5-3x |=x -3.18.(本题满分9分)已知数轴上3的对应点是A ,一个动点从原点出发在数轴上移动,每秒移动一个单位.如果第t (0<t <7)秒末正好位于点A ,那么 (1)t 可取的值是 ;(2)满足上述结果的不同运动路线共有几种?请用你喜欢的方式表示出来.(第10题图)(第12题图)(第14题图)19.(本题满分12分)(1)平面上有3条直线,画出它们可能的位置关系,并在旁边写上交点的个数;(2)平面上有4条直线,它们的交点个数可能为;(3)平面上有6条直线,共有12个不同的交点,画出它们所有可能的位置关系.20.(本题满分8分)一艘船在河中逆流而上,路过桥A时船上的救生圈被水冲走,继续向前行驶了20min 发现救生圈遗失,立即返回,在距桥2km的地方追到了救生圈.求水流速度.21.(本题满分8分)【阅读】1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4);将这三个等式的两边相加,则得到1×2+2×3+3×4=13×3×4×5=20.【归纳】(1)根据上述规律,猜想下列等式的结果:1×2+2×3+…+n(n+1)=;【应用】(2)利用(1)中得到的结论计算:2×4+4×6+…+100×102;【迁移】(3)请你类比材料中的方法计算:1×2×3+2×3×4+…+n(n+1)(n+2).22.(本题满分11分)如图,将一副三角板按如图①所示放置在直线MN上,∠ABC=∠ECD=90°,∠A=60°,∠E=45°,若三角板ABC固定不动,三角板DCE绕点C以每秒3°顺时针旋转一周,旋转时间为t秒.(1)当△ACE面积最大时,求此时t的值;(2)如图②,AF是△ABC的角平分线,当t=时,DE∥AF;(3)若在三角板DCE旋转的同时三角板ABC也绕点C以每秒1°顺时针旋转(0≤t≤60),CP平分∠BCD,CQ平分∠ACE,在旋转的过程中,∠PCQ的度数是否为定值,若是,求出这个值;若不是,说明理由.23.(本题满分10分)设四位数abcd满足a3+b3+c3+d3+1=10c+d,求出满足条件的所有的四位数.24.(本题满分10分)小江编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘以2或乘以3.例如,10可以这样得到:1+3=4,4×2=8,8+2=10.(1)写出最终结果为136的过程;(2)证明可以得到2100+297−2.。

七年级第二学期数学竞赛试题及参考答案

七年级第二学期数学竞赛试题及参考答案

七年级数学竞赛试题时间120分钟 总分150分1、平面直角坐标系内,点A (n ,n -1)一定不在 象限。

2、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小....的顺序排列为 。

3、.线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为 。

4.、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于1 0,则a 的值是 。

5、正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_____ 。

6、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。

7、如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________。

8、如图,小亮从A 点出发,沿直线前进10米后向左转30︒,再沿直线前进10米,又向左转30︒,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米。

0 2 8 4 2 4 6 2 4 6 8 44 A30︒30︒30︒第8题第2题FEDCBA 第7题ABCDEFG9、方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解是________________ 。

10、如上图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = _____________度。

二、选择题((共8小题,每小题5分,共40分):11、若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限 12、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数13、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、1714、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<615、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%16、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题17、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则第17题S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3118、方程198919901989...433221=⨯++⨯+⨯+⨯x x x x 的解是( )A 、1989B 、1990C 、1991D 、1992三、解答题:(共5小题,共60分):19、(10分)已知方程组⎩⎨⎧=+=+4232y ax y x 的解,x 与y 之和为1,求a 的值20、(15分)如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 求21∠∠与的度数21、(15分)如图所示,在△ABC 中,∠B=∠C ,∠A DE =∠AED ,︒=∠60BAD ,第23题F求∠EDC的度数;22.(20分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格为每顶160元,可供10人居住的大帐篷,价格为每顶400元,学校共花去捐款96000元,正好可供2300人临时居住。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。

七年级数学竞赛测试卷(含答案)

七年级数学竞赛测试卷(含答案)

七年数学竞赛测试卷一、填空题:1、若实数a 、b 、c 满足abc= -2,a+b+c >0,则a 、b 、c 中有_______个负数.2、设a △b=a 2-2b ,则(-2)△(3△4)的值为_______________.3、若关于x 的方程x-2(x- a 3 )=43 x 与3x+a 12 -1-5x8 = 1的解相同,则x=_______.4、已知x 、y 是实数,且满足⎩⎨⎧=+=+21192291183352y x y x ,则x +y =__________.5、已知13x x-=,那么多项式3275x x x --+的值是 ; 6、在一次打靶射击中,某个运动员打出的环数只有8、9、10三种。

在作了多于11次的射击后,所得总环数为100。

则该运动员射击的次数为 ,环数为8、9、10的次数分别为 .7、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于 ; 8、已知1111110 0 ()()()a b c a b c a b c b c c a a b⨯⨯≠++=+++++,并且,则的值为 ;9、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则10、若-2a m-1b m+ n 与5.6a n – 2m b 3m+ n – 4是同类项,则方程组⎩⎨⎧2mx+ny=460mx+(n-2)y=240的解为 .11、十个人围成一圈,每个人心里都想好一个数,并把自己想的数如实告诉他两旁的人,每个人都将他两旁的人告诉他的数的平均数报出来,报出的数分别为1,2,3,4,5,6,7,8,9,10.问报3的人心里想的数是 ; 12、若关于x 、y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组111222534534a x b y c a x b y c +=⎧⎨+=⎩的解为____________.13、若10=++y x x ,12=-+y y x ,则y x +的值是 。

2024年七年级数学竞赛试卷

2024年七年级数学竞赛试卷

2024年七年级科学素养与数理能力测评(数学部分)(时间:90分钟满分:100分)一、选择题(本大题共6小题,每小题5分,共30分.)1.王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是(▲)A .35>B .b a <C .b a =D .ba >2.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等.则原来甲筐苹果质量与乙筐苹果质量的比值为(▲)A .B .C .D .3.如图,AD 与BE 是△ABC 的角平分线,D ,E 分别在BC ,AC 上,若AD =AB ,BE =BC ,则∠C =(▲)A .︒)(13900B .︒)(9623C .69°D .不能确定4.已知a 、b 、c 分别是ABC 的三边,则()2222224a b c a b +--为(▲)A.正数 B.负数 C.零 D.无法确定5.已知a 与b 互为相反数,且,那么的值为(▲)A.199- B.199 C.9 D.9-6.灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的2倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是(▲)A.80米/分B.110米/分C.96米/分D.120米/分二、填空题(本大题共4小题,每小题5分,共20分.)7.计算:+++++++++432113211211…1003211+++++ =▲.2b a +3575535712+++-ab a b ab a 6||=-b a8.把一个环形绳套对折n 次,然后从中间剪一刀,绳套变成▲段.9.已知()2f x x =,例如()()22224,339f f ====.规定:()()()1f x f x f x ∆=+-,则()f a b ∆+=▲.10.如图,一个棱长为5厘米的正方体,它是由125个棱长为1厘米的小正方体组成的,P 为上底面ABCD 的中心,如果挖去的阴影部分为四棱锥,剩下的部分还包括▲个完整的棱长是1厘米的小正方体.(第10题)三、解答题(本大题共5小题,共50分.解答时应写出必要的过程)11.(本题8分)已知正整数a 、b 满足ab+a+b=64,求ab 的值.12.(本题8分)已知:a 为有理数,.求23420121...a a a a a ++++++的值.3210a a a +++=13.(本题8分)已知:4a b -是11的倍数,其中a ,b 是整数,求证:224023a ab b +-能被121整除.14.(本题12分)若x 为整数,且式子|429||319|79x x x ---+-的值恒为一个常数,求x 的值.15.(本题14分)如图,将三角板ABC与三角板ADE摆放在一起,已知∠BAC=∠D=90°,∠ACB=30°,∠DAE=45°,固定三角板ABC,将三角板ADE绕点A顺时针旋转,记旋转角为ɑ(0°<ɑ<180°).(1)在旋转过程中,∠CAD与∠BAE有怎样的数量关系?请说理;(2)若△ADE的旋转速度为3°/s,当△ADE的一边与△ABC的某一边平行(不共线)时,求t的值.。

人教版七年级下册数学竞赛试题(附答案)

人教版七年级下册数学竞赛试题(附答案)

⼈教版七年级下册数学竞赛试题(附答案)第 1 页共 1 页⼈教版七年级下册数学竞赛试题(附答案)⼀、选择题(每⼩题4分,共40分)1、如果m 是⼤于1的偶数,那么m ⼀定⼩于它的……………………()A 、相反数B 、倒数C 、绝对值D 、平⽅2、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是()A 、-23B 、-17C 、23D 、173、255,344,533,622这四个数中最⼩的数是………………………()A. 255B. 344C. 533D. 6224、把14个棱长为1的正⽅体,在地⾯上堆叠成如图1所⽰的⽴体,然后将露出的表⾯部分染成红⾊.那么红⾊部分的⾯积为…………………………….. ().A 、21B 、24C 、33D 、375、有理数的⼤⼩关系如图2所⽰,则下列式⼦中⼀定成⽴的是…… ()A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举⾏优惠销售活动,采取“满⼀百元送⼆⼗元,并且连环赠送”的酬宾⽅式,即顾客每消费满100元(100元可以是现⾦,也可以是购物券,或⼆者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有⼀位顾客第⼀次就⽤了16000元购物,并⽤所得购物券继续购物,那么他购回的商品⼤约相当于打()A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学⽣排成⼀列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学⽣所报的数是……………………………………………………………… ()图1 图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学竞赛试题
及答案
LEKIBM standardization office【IBM5AB- LEKIBMK08-
饶平四中七年级数学竞赛试题 (满分100分)
时间:50分钟 班级:_________姓名:___________评分:_________ 一、选择题:(每小题5分,共40分)
1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:
A 、14辆
B 、12辆
C 、16辆
D 、10辆 2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:
A 、赚了5元
B 、亏了25元
C 、赚了25元
D 、亏了5元 3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:
A 、a>0
B 、a<0?
C 、a>-1
D 、a<-1
4已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是: A 、负数 B 、正数 C 、非负数 D 、非正数
5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =
2Mcm ,则S 阴影的值为:
A 、2Mcm 61
B 、2Mcm 5
1
C 、2Mcm 41
D 、2Mcm 3
1
6、x 是任意有理数,则2|x |+x 的值:
A 、大于零
B 、不大于零
C 、小于零
D 、不小于零
7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“”处应放“■” 的个数为:
A 、5
B 、4
C 、3
D 、2 8、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是: A 、70≤x ≤
B 、x ≤70或x ≥
C 、x ≤70
D 、x ≥
二、填空题(每小题6分,共60分)
9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。

10、已知2,322-=+=+y xy xy x ,则=--2232y xy x _____________ 。

11、在平面直角坐标系中,点
A (x -,1y -)在第四象限,那么点B
(1y -,x )在第_____________ 象限。

●●
▲■
●■

●▲
(1)
(2)
(3)
第(13)题
12如图AB∥CD,
则∠1+∠2+∠3+……+∠2n=_________度
13、方程组⎩⎨⎧=+=+032,12y x y ax 的解是⎩⎨⎧==,,
3b y x 则不等式02<+a bx 的解集是
________。

14、若边数均为偶数的两个正多边形的内角和为18000,则这两个正多边形的边数分别为 。

15、一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有____________吨。

16、某城市自来水收费实行阶梯水价,收费标准如下表所示:
某户5月份交水费45元,则该用户5月份的用水量是______________ 吨。

17、关于x 的不等式(2)2a b x a b ->-的解是
5
2
x <
,则关于x 的不等式0ax b +<的解为 。

A
B
C
D
E
F
G
18、如下图所示∠A+∠B+∠C+∠D+∠E+∠F+∠G = _____________度。

答题卡:
9 、
10、
12、
14、
15、
16、
17、
18、。

相关文档
最新文档