线性方程组习题解答

合集下载

线性方程组典型习题及解答

线性方程组典型习题及解答

线性方程组1. 用消元法解方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=--+-=-+-+=--+-525222202122325432153215432154321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 :⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------420200110100112430211321312630202530112430211321512522110112121111211321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→600000110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解.2. 讨论λ为何值时,方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。

解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。

()()()()BA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+------→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22222112101101111111111111111λλλλλλλλλλλλλλλλλλλλΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此时方程组有唯一解;2)1(,21,213321++-=+=++-=λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解;当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

3. 当b a ,取何值时线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231有解?并求其解。

线性方程组练习题及解析

线性方程组练习题及解析

线性方程组练习题及解析线性方程组是数学中的重要概念,在各个领域都有广泛的应用。

解线性方程组需要掌握一定的求解方法和技巧。

本文将提供一些线性方程组的练习题,并给出详细解析,帮助读者更好地理解和应用线性方程组的知识。

练习题一:解下列线性方程组:1) 2x + y = 83x - y = 42) -3x + 4y = 72x - y = -33) x + 2y = 53x - y = 10解析一:1) 首先,将方程组进行消元,将y消去。

将第一个方程乘以3,得到6x + 3y = 24。

与第二个方程相加,得到9x = 28。

解得x = 28/9。

将x的值代入第一个方程,解得y = 16/9。

因此,该方程组的解为x = 28/9,y = 16/9。

2) 将第一个方程乘以2,得到-6x + 8y = 14。

与第二个方程相加,得到7y = 11。

解得y = 11/7。

将y的值代入第一个方程,解得x = 1/7。

因此,该方程组的解为x = 1/7,y = 11/7。

3) 将第一个方程乘以3,得到3x + 6y = 15。

与第二个方程相加,得到6x + 5y = 25。

解得x = 25/6。

将x的值代入第一个方程,解得y =5/6。

因此,该方程组的解为x = 25/6,y = 5/6。

练习题二:解下列线性方程组:1) x + 2y - z = 52x - y + 3z = 23x + y - 2z = 12) 2x - y + z = 4x + 3y - z = -33x - y + 2z = 73) x - 2y + z = 12x - y + 3z = -33x + y + 2z = 2解析二:1) 首先,将方程组进行消元,将y和z消去。

将第一个方程乘以2,得到2x + 4y - 2z = 10。

与第三个方程相加,得到5x + 3y = 11。

将第一个方程乘以3,得到3x + 6y - 3z = 15。

与第二个方程相加,得到5x +3z = 17。

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

线性方程组题目及答案

线性方程组题目及答案

线性方程组题目及答案第一、填空题10章线性方程组1.线性方程组AX=b的增广矩阵A化成阶梯形矩阵后为−11d+1⎤⎦⎥则当d=2时,方程组AX=b有解,且有无穷多解。

2.当λ=1时,齐次方程组x1−x2=0x1+λx2=0有唯一解。

3.若线性方程组AX=b(b≠0)有唯一解,则AX=b的秩为n。

二、单项选择题1.线性方程组x1+x2=1x3+x4=0的解的情况是(B)只有解。

2.线性方程组AX=b只有解,则AX=b(b≠0)的解的情况是(B)可能无解。

3.当秩(A)=秩(AB)=n时,线性方程组AX=b(b≠0)有唯一解,其中n是未知量的个数。

答案为(C)秩(A)=秩(AB)=n。

三、解答题1.求解线性方程组x1−x2+3x3−x4=02x1−x2−x3+4x4=04x3+5x4=1解:因为系数矩阵A=[1 -1 3 -1.2 -1 -1 4.-4 0 5 0] 的秩为3,而增广矩阵1 -1 3 -1 0.2 -1 -1 4 0.-4 0 5 0 1] 化为阶梯形矩阵1 -1 3 -1 0.0 1 -7 6 0.0 0 1 -4 1] 所以,一般解为:x1=3x3-15x4-4x2x2=x4-3x3x3,x4是自由未知量)2.求解线性方程组x1+x2-2x3-x4=12x1+x2-2x3-3x4=2x1+3x2+ax3=b解:因为增广矩阵1 1 -2 -1 1.2 1 -2 -3 2.1 3 a b]化为阶梯形矩阵1 1 -2 -1 1.0 -1 2 -1 0.0 0 2a-3b 2b-a-3.0 0 0 0 0]当2a-3b≠0时,方程组无解。

当2a-3b=0时,方程组有解,且有无穷多解,此时一般解为:x1=1-3x3+x4x2=x3+x4x3自由,x4=(b-a)/6.3.就a,b的取值,讨论线性方程组x1+2x2+3x3=1x1+3x2+6x3=22x1+3x2+ax3=b解的情况。

解:因为系数矩阵A=[1 2 3.1 3 6.2 3 a]的秩为2,而增广矩阵1 2 3 1.1 3 6 2.2 3 a b]化为阶梯形矩阵1 2 3 1.0 1 3 1.0 0 a-6 b-4a]当a≠6时,方程组有唯一解。

线性方程组习题参考答案

线性方程组习题参考答案

第三章 线性方程组习题参考答案P154,1. 用消元法解下来线性方程组.(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++1234321223145354321542154321543214321x x x x x x x x x x x x x x x x x x x x x x x x .解:542143313241425152135401135401132211003212121113054312141113074512712111101431213540101431200321200161261200r r r r r r r r r r r r r r r r r r ↔---⎛⎫⎛⎫-⎪ ⎪↔---- ⎪⎪- ⎪⎪↔→-------⎪ ⎪------ ⎪ ⎪- ⎪ ⎪------⎝⎭⎝⎭----→----43435314101354015014312160012128000212241681600000r r r r r r r -⎛⎫⎛⎫-⎪⎪--- ⎪⎪- ⎪⎪→--+⎪⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭11000013500121354010143121014312010012001000001000001000100021200011120001100000020000000000⎛⎫ ⎪⎛⎫-⎛⎫ ⎪⎪-⎪⎪⎪---- ⎪ ⎪ ⎪ ⎪→→→ ⎪ ⎪⎪⎪ ⎪-- ⎪ ⎪ ⎪⎪- ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭方程组的解是 12345121120112x k x k x x k x k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=-=--==--=, k 为任意数.(2) ⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x解:422332322112032111313291131320334512323452701107839961622500332529711313211313201107830110783003325298003003325297r r r r r r r r r r ----⎛⎫⎛⎫-↔ ⎪⎪------ ⎪ ⎪-→- ⎪ ⎪----- ⎪ ⎪---⎝⎭⎝⎭------⎛⎫ ⎪----⎪→→ ⎪---- ⎪-⎝⎭325298000001⎛⎫ ⎪ ⎪ ⎪-- ⎪-⎝⎭最后一列为(0,0,0,0,0,-1),所以方程组无解.(3) ⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-3371334424324214324321x x x x x x x x x x x x x解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------+→-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------6210012020031110443215248400353503111044321731370110313111044321141232413r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→01060100300108000101000601003101082001 有唯一解: x 1= -8, x 2=3, x 3=6, x 4=0. (4) ⎪⎪⎩⎪⎪⎨⎧=++-=++=+-=+-+032701613-11402-332075434321432143214321x x x x x x x x x x x x x x x x解:−−−→−+-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−−−→−---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛14122321342292724120191702332987122312-71613-1142-33-275-43r r r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2019170201917020191709871⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→0000000010010000000010987117201719171317317201719 得解:⎪⎪⎩⎪⎪⎨⎧====--lx k x x x l k lk 4321172017191713173 (5) ⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+-+43212523223124321432143214321x x x x x x x x x x x x x x x x解:4324131211112111121111322323223232232511210224002240211340224300003r r r r r r r ⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪+------ ⎪ ⎪ ⎪--→ ⎪ ⎪ ⎪----→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭,最后一列为(0,0,0,0,3),所以方程组无解.(6) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-+-=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x解:52324431232212311123111010032111048220112023111015310065122221101120000003 (15520)20000000000r r r r r r r r rr r r r ⎛⎫⎛⎫⎛⎫-----↔ ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪-+ ⎪⎪ ⎪→---- ⎪ ⎪ ⎪-→--- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭511006671010665100166000000000⎛⎫-⎪ ⎪ ⎪ ⎪⎪→ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭. 一般解为 1234156617661566x k x k x kx k⎧+⎪⎪⎪-⎪⎨⎪+⎪⎪⎪⎩====, k 为任意数.2. 把向量β表成向量α1,α2,α3,α4的线性组合. (1) 解:设β=x 1α1+ x 2α2+ x 3α3+ x 4α4,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒=+--=-+-=--+=+++41414145112143214321432143214321x x x x x x x x x x x x x x x x x x x x .432141414145ααααβ--+=(2) 解:设β=x 1α1+ x 2α2+ x 3α3+ x 4α4,则⎪⎪⎩⎪⎪⎨⎧=-===⇒⎪⎪⎩⎪⎪⎨⎧=-+=-+=+++=++010110300024321421424321321x x x x x x x x x x x x x x x x , 即β=α1-α3. 3. 证明:如果向量组α1,α2,…, αr 线性无关, 而向量组α1,α2,…, αr ,β 线性相关,则β可由向量组α1,α2,…, αr 线性表出.证明:因为向量组α1,α2,…, αr ,β 线性相关,所以存在k 1, k 2, ,k r , l 不全为0,使11220r r k k k l αααβ+++=.若l =0, 则k 1,,k r 不全为0,于是存在不全为零的数k 1,,k r 使得011=+r r k k αα 与α1,α2,…, αr 线性无关矛盾. 所以l0,则r s lkl k l k αααβ)()()(2211-++-+-= . 即β可由向量组α1,α2,…, αr 线性表出.证法2. 由于向量组α1,α2,…, αr ,β 线性相关,所以存在k 1, k 2, ,k r , l 不全为0,使11220r r k k k l αααβ+++=. 若l =0, 则得11220r r k k k ααα++=. 因为向量组α1,α2,…, αr 线性无关,所以021====r k k k . 与k 1, k 2, ,k r , l 不全为0矛盾. 所以l0, 这样r s lkl k l k αααβ)()()(2211-++-+-= . 即β可由向量组α1,α2,…, αr 线性表出.4. 设αi =(a i1,a i2,…,a in ), i=1,2,…,n, 证明如果|a ij |0, 则α1,α2,…, αn 线性无关.证明:设x 1α1+x 2α2++x n αn =0,则11121211212222112200n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩因为系数行列式()0T ij ij a a =≠,由Cramer 法则, 上面的方程组有唯一解, 即只有零解,得n x x x === 21=0,于是α1,α2,αn 线性无关.5. 设t 1,t 2,…,t r 是互不相同的数(rn),证明αi =(1, t i , t i 2,…,t i n -1), i=1,2,…,r 线性无关.证法1:添加t r +1,,t n , 使t 1, t 2,,t r , t r +1,,t n 两两不同, 得向量组αi =(1, t t , t t 2,…,t t n -1) i =1,2,...,n .由于α1,α2,,αn 的分量作成一个Vandermonde 行列式且不等于0,由上一题,α1,α2,,αr ,,αn 线性无关,于是它的任一部分组线性无关.证法2:因为rn, 所以令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---1121121111n r n n r t t t t t t A ,则A 的前r 行作成一个r 阶范德蒙行列式B, 从而非零. 于是B 的列向量线性无关, 增加分量后为A 的列向量, 所以A 的列向量也线性无关. 证法3. 设x 1α1+x 2α2++x r αr =0, 则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121r n r n n rr r x t x t x t x t x t x t x x x (1) 考虑(1)的前r 个方程作成的齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121r r r r r rr r x t x t x t x t x t x t x x x (2) 因为t 1, t 2,,t r 两两不同, 所以(2)的系数行列式为r 阶Vandermonde 行列式0111||11211211≠=---r r r r rt t t t t t A. 于是线性方程组(2)有唯一的零解. 又由于(1)的解都是(2)的解, 而(2)只有零解,所以(1)只有零解. 即r x x x === 21=0,于是α1,α2,αr 线性无关.6. 假设α1, α2,α3线性无关,证明β1=α2+α3,β2=α3+α1,β3=α1+α2线性无关. 证法1:设x 1β1+x 2β2+x 3β3=0,则(x 2+x 3)α1+(x 3+x 1)α2+(x 1+x 2)α3=0由于α1, α2, α3线性无关得:23013012x x x x x x +=+=+=⎧⎪⎨⎪⎩,该齐次线性方程组只有零解. x 1= x 2=x 3=0,因而β1, β2, β3线性无关.证法2: 由于⎪⎪⎪⎭⎫⎝⎛=+++110011101),,(),,(321133221ααααααααα, 矩阵⎪⎪⎪⎭⎫⎝⎛=110011101A 可逆, 所以两个向量组等价. 又已知向量组α1, α2, α3的秩为3, 所以后一个向量组的秩也是3, 从而后一个向量组也线性无关.注:无论向量组α1,α2,α3,α4线性无关或相关,α1+α2, α2+α3, α3+α4, α4+α1线性相关. 7. 设向量组A: α1,α2,,α s 的秩为r, 证明向量组A 的任意r 个线性无关的向量组都构成它的一个极大线性无关组. 证明: 设向量组A: α1,α2,,α s 任一线性无关向量组B: αj1, αj2,, α jr , 任取A 中的一个向量β,由于R (A )=r , 所以A 中任意r +1个向量线性相关,有αj1,,αjr , β线性相关,由条件知向量组 B 线性无关,由临界定理,β可以由向量组B 线性表示,故向量组B 是极大无关组. 证法2. 设A:αj1, αj2,, α jr 是α1,α2,,α s 中的任一个线性无关的向量组, β是A中的一个向量, 由于R (A )=r , 所以A 中任意r +1个向量线性相关,有αj1,,αjr , β线性相关,满足极大无关组定义的条件, 所以αj1, αj2,, α jr 是向量组A 的极大无关组.8. 设向量组(I): α1,α2,,α s 的秩为r, αj1, αj2,, αjr 是(I)中的r 个向量,使得(I)中每个向量都可以被它们线性表出,证明αj1, αj2,, α jr 是(I)的极大无关组. 证明:设向量组(I)α1,α2,,αs ,R(A)=r; (II): αj1, αj2,, α jr 是已给向量组,取(I)的极大无关组(III) αk1,αk2,…,αkr , 由条件, (III)可由(II)线性表出, 于是r=R(III)R(II)r. 于是R(II)=r, 即αj1, αj2,, α jr 线性无关, 所以是(I)的极大无关组.9. 证明一个向量组的任何一个线性无关组都可以扩充成为一个极大无关组. 证明:设A 是一个n 维向量组,A 1是它的一个线性无关组, 1° 逐个检查A 中的向量i α2° a 、若i α可以由向量组A 1线性表示,则去掉i α,检查下一个αb 、若i α不可以由向量组A 1线性表示,则添加i α到A 1中将A 1扩充为A 2,回到检查第1个向量,重复1°、2°若干步后(∵有限步后,任意n+1个n 维向量也相关,必含停止),得到A 1,A 2 ,…A k , 而A k 不能再扩大,于是A k 是一个极大无关组,且A 1A k .10. 设α1=(1,-1,2,4), α2=(0,3,1,2), α3=(3,0,7,14), α4=(1,2,2,0), α5=(2,1,5,6). (1) 证明α1, α2线性无关.(2) 把α1, α2扩充成一个极大无关组.解(1):∵α1与α2的分量不成比例,故α1与α2线性无关 (2):解法1. 考虑α1, α2, α3, ∵3α1+α2 =α3 , 去掉α3.考虑α1, α2,α4,取它们的后三个分量124312280120-=≠,∴增加一个分量后仍然线性无关。

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。

因此,方程组的解为 x = 3, y = -3, z = 4/7。

b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。

我们可以令 y = t,其中 t 为任意常数。

则得到 z = -6 + 5t。

将 z 的值代入第一行可以得到x = 4 - 3t。

因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。

2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。

解析:列空间由矩阵 A 的列向量张成。

我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。

因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。

线性方程组练习带答案

线性方程组练习带答案

1.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。

答案:a =0,b =2有解;其他无解。

(-2,3,0,0)’+k1(1,2,1,0)’+k2(1,1,0,1)’2.设A 是数域F 上的m ×n 矩阵,b 是F 上m 维非零列向量,η是线性方程组AX b =的一个解,12,,,s ξξξ是对应的齐次线性方程组0AX =的一个根底解系。

求证:12,,,,s ηηξηξηξ+++线性无关。

2‘.设*η是非齐次线性方程组AX b =的一个解,,,,12n r ξξξ-是对应的齐次线性方程组的一个根底解系,证明:〔1〕*η,,,,12n r ξξξ-线性无关,〔2〕*η,***,,12n r ξηξηξη+++-线性无关,〔3〕非齐次线性方程组AX b =的任一个解可表示为*1122x k k k k n r n r ηηηη=+++--〔其中1η=*1ξη+,,*n r n r ηξη=+--且112k k k n r ++=-〕。

3.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,那么对于任意常数k ,必有〔 〕A(A) 12312,,,k αααββ+线性无关; 〔B 〕12312,,,k αααββ+线性相关;( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关4.12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是0Ax =的根底解系,12,k k 为任意常数,那么方程组Ax b =的通解必是〔 B 〕〔A 〕1211212();2k k ββααα-+++ 〔B 〕1211212();2k k ββααα+++- (C)1211212();2k k ββαββ-+++ (D)1211212().2k k ββαββ+++- 5.设线性方程组(Ⅰ)的导出组(Ⅱ)必有下面 (A)(A) 当(Ⅰ)只有唯一解,那么(Ⅱ)只有零解(B) (Ⅰ)有解B 的充分必要是(Ⅱ)有解(C) (Ⅰ)有非零解,那么(Ⅱ)有无穷多解(D) (Ⅱ)有非零解,那么(Ⅰ)有无穷多解6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:1〕k 不为0且 不等于2时,有唯一解。

线性方程组练习题及答案

线性方程组练习题及答案

线性方程组 练习题一、选择题.1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A.1或2B. -1或-2C.1或-2D.-1或2.2. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ).A.A 的行向量组线性无关B.A 的列向量组线性无关C.A 的行向量组线性相关D.A 的列向量组线性相关3.设12m α,α,,α均为n 维向量,则下列结论中正确的是( ).AA.若对任一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++≠ααα,则12m α,α,,α线性无关 .B.若12m α,α,,α线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++=ααα . C.若11220m m k k k +++=ααα,则12m α,α,,α线性相关 .D.若向量组12m α,α,,α()3≥m 中任意两个向量都不成比例,则12m α,α,,α线性无关.4.向量[]11,1,1T α=-,[]22,,0T k α=,[]3,2,1Tk α=,k 为( )时,向量组1α,2α,3α线性相关.DA.3k ≠且2k ≠-B. 2k ≠-C.3k ≠D.3k =或2k =-5. 向量组s ααα 21,(2≥s )线性无关的充分必要条件是( ).(D ) A.s ααα 21,均不为零向量 B. s ααα 21,中任意两个不成比例 C.s ααα 21,中任意1-s 个向量线性无关D.s ααα 21,中任意一个向量均不能用其余1-s 个向量线性表示6.齐次线性方程组355⨯⨯1=A x 0解的情况是( ).A.无解B.仅有零解C.必有非零解D.可能有非零解,也可能没有非零解.7.设n 元齐次线性方程组的系数矩阵的秩()3R n =-A ,且123,,ξξξ为此方程组的三个线性无关的解,则此方程组的基础解系是( ). A. 12312,2,32+- -ξξξξξ B. 122331,,+-+ ξξξξξξ C.122132-2,-2,32+-+ ξξξξξξ D. 12231324,2+,++ - ξξξξξξ8.要使T 1(1,0,2)=ξ,T 2(0,1,1)=-ξ都是线性方程组=Ax 0的解,只要A 为( ).A. (211)-;B. 201011⎛⎫ ⎪⎝⎭;C. 102011-⎛⎫ ⎪-⎝⎭;D. 011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭. 9.已知12,ββ是=Ax b 的两个不同的解,12,αα是相应的齐次方程组=Ax 0的基础解系,12,k k 为任意常数,则=Ax b 的通解是( ). A. 12()k k 12112-+++2ββααα B. 12()k k 12112++-+2ββαααC.12()k k 12112-+-+2ββαββD. 12()k k 12112++-+2ββαββ10.设n 阶矩阵A 的伴随矩阵*≠A 0 若1234,,,ξξξξ是非齐次线性方程组Ax =b 的互不相等的解,则对应的齐次线性方程组Ax =0的基础解系是( ). A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量; D.含有三个线性无关的解向量11.设有齐次线性方程组Ax =0和Bx =0,其中A ,B 均为m n ⨯矩阵,现有4个命题:① 若Ax =0的解均是Bx =0的解,则()()R R ≥A B ② 若()()R R ≥A B ,则Ax =0的解均是Bx =0的解 ③ 若Ax =0与Bx =0同解,则()()R R =A B ④ 若()()R R =A B ,则Ax =0与Bx =0同解 以上命题正确的是( ).A. ①,②B. ①,③C.②,④D.③,④12.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()=AB x 0( ). A.当n m >时仅有零解 B. 当n m >时必有非零解 C.当m n >时仅有零解 D.当m n >时必有非零解13.设A 是n 阶矩阵,α是n 维列向量. 若秩T0⎛⎫= ⎪⎝⎭αAα秩()A ,则线性方程组( ).A.=αAx 必有无穷多解B.=αAx 必有惟一解C.T0y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭αAαx 0仅有零解 D.T0y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭αAαx0必有非零解14.已知34⨯矩阵A 的列向量组线性无关,则=)(T A r ( ). A.1 B.2 C.3 D.415.设321,,ααα为齐次线性方程组0=Ax 的一个基础解系,则下列可作为该方程组基础解系的是( ).A.2121,,αααα+B. 133221,,αααααα+++C.2121,,αααα-D. 133221,,αααααα---16.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ). A. 1 B. 2 C. 3 D. 417.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( ). A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs+βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =018..设矩阵A 的秩为r ,则A 中( ). A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为019.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ).A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解20.设n 阶方阵A 不可逆,则必有( ).A.秩(A)<nB.秩(A)=n -1C.A=0D.方程组Ax=0只有零解21.设n 维向量12,αα线性相关,则必定( ).A. 12,αα中有一零向量B. 矩阵12=(,)A αα的秩r A =1C. 12,αα的对应元素成比例D.1α不可由2α线性表示22.设A 为m n ⨯阶矩阵,非齐次线性方程组AX=b 对应的导出组AX=0,如果m n <,则( ).A.AX=b 必有无穷解B.AX=b 必有惟一解C.AX=0必有非零解D.AX=0必有惟一解23.n 元线性方程组AX=0有非零解的充要条件为( ).A.()R A n =B. 0A ≠C.0A =D.以上都不对24.线性方程组AX B =有解的充要条件是( ).A.()r A >0B. ()()r A r A =C. ()()r A r AB ≠D.()r A n =25.n 元线性方程组AX=b 有解的充要条件为( ). A.()(,)R A R A b = B. ()(,)R A R A b n == C.()(,)R A R A b n =< D.()(,)R A R A b n =≤26.向量组T T )0,1,0(,)0,0,1(21==αα,下列向量中可以由21,αα线性表出的是( ).A .T )3,2,1(B .T )3,2,0(C .T )3,0,1(D .T )0,2,1(27.设向量组A 能由向量组B 线性表示,则( ).A .)()(A RB R ≤ B .)()(A R B R <C .)()(A R B R =D .)()(A R B R ≥28.设A 为n m ⨯矩阵,则有( ). A .若n m <,则b Ax =有无穷多解B .若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量C .若A 有n 阶子式不为零,则b Ax =有唯一解D .若A 有n 阶子式不为零,则0=Ax 仅有零解29.设1α、2α是对应非齐次方程组Ax =b 的解,β是对应齐次方程组的解,则b Ax =一定有一个解是( ).A.1α+2αB.1α-2αC.β+1α+2αD.121233+-ααβ30.21γγ,是n 元非齐次方程组b Ax =的两个不同的解,且1)(-=n A r ,则 0=Ax 的通解为( ).A. )(1R k k ∈γB. )(2R k k ∈γC. )()(21R k k ∈+γγD. )()(21R k k ∈-γγ二、填空题.1. 设向量α=(1, 2, 0, 4)T , β=(3,1,-1,7)T ,向量γ满足2α-γ=β, 则γ=____________.2.已知向量α=(1, 2, 4, 0)T , β=(-3,2,6,2)T ,向量γ满足3α+2γ=β, 则γ= .3.向量组α=(1, -2, 3)T , β=(2,-4,a)T 线性相关,则=a .4.向量组()12341,0,1,(2,1,0),(0,1,1),(1,1,1)TT T T αααα====则向量线性 .5.当______=t 时,向量组)2,1,3(),3,2,1(),,3,2(-t 线性相关.6.设向量组T T T a )1,1,2(,),2,1(,)3,1,1(321-==-=ααα线性相关,则=a .7.设向量组T )0,0,1(1=α,T )0,1,0(2=α,则向量组21,αα的秩是 .8.矩阵⎪⎪⎭⎫⎝⎛-----100110111的秩等于__________.9.若R )(1234,,,4αααα=,则向量组123,,ααα是线性________.10.已知矩阵⎪⎪⎪⎭⎫⎝⎛--=a A 00011002011的秩)(A r =2,则=a ______.11.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=a a A 10012002011的秩)(A r =2,则=a ______.12.若齐次线性方程组1212 3 060x x x x λ-=⎧⎨-+=⎩有非零解,则λ= .13.当_________时候,n 元线性方程组0=Ax 有非零解,这里A 是n 阶方阵.14.设21ξξ,是非齐次线性方程组b Ax =的解向量,则21ξξ-是方程组______的解向量.15.方程组⎩⎨⎧=-=-003221x x x x 的基础解系是 .16.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a .17.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .18.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .19. 设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .20.设齐次线性方程组01443=⨯⨯X A ,其系数矩阵的秩)(A r =2,则方程组的基础解系包含______个线性无关的解向量.21.有三维列向两组1α=()100T,()2110αT=,()3111αT=,()123βT=,且有112233βχαχαχα++=,123χχχ=_____ ,=_____,=_____22.若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵.23.若向量组)()()()(12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______.24.已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____.25.当方程的个数等于未知数的个数时,=Ax b 有惟一解的充分必要条件是 .26.线性方程组121232343414,,,x x a x x a x x a x x a +=⎧⎪+=⎪⎨+=⎪⎪+=⎩有解的充分必要条件是 .27.设n 阶方阵A 的各行元素之和均为零,且()1R n =-A ,则线性方程组=Ax 0的通解为 .28.设A 为n 阶方阵,||0=A ,且kj a 的代数余子式0kj A ≠(其中,1k n ≤≤;1,2,,j n =),则=Ax 0的通解 .29.设11222221231111211111,,11n nn n n n n x a a a x a a a x a a a x ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A x b ,其中,(;,1,2,,)i j a a i j i j n ≠≠=,则非齐次线性方程组T =A x b 的解是=x .30.设方程123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .三、判断题.1.零向量一定可以表示成任意一组向量的线性组合. ( )2. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关.( ) 3.若=0时,,则向量组线性无关.( )4.若向量组与均线性无关,则,线性无关.( )5.方程个数小于未知量个数的线性方程组必有无穷解.( )6.同秩的两个向量组未必等价. ( )7.向量组中某向量能被其余向量表示,则去掉它不影响它的秩. ( )8.向量组中某向量不能被其余向量表示,则去掉它后向量组的秩必改变. ( )9.3个未知量,5个方程组成的方程组中,必有一个方程能被其余的方程线性表示. ( )10.不同秩的两个向量组必不等价. ( ) 11.向量组的向量各加一个分量,其秩不变. ( ) 12.方程组中自由未知量是唯一确定的.( ) 13.向量组12121,,,,,,s s a a a a a a -与等价,则向量组12,,,s a a a 线性相关.( ) 14.设12,ηη是齐次线性方程组AX=0的基础解系,则1212,3ηηηη--+也是AX=0的基础解.( )15.用列初等变换可以求解线性方程组,也可以用行初等变换求解线性方程组.( ).16.若A 为6阶方阵,齐次线性方程组AX =0的基础解系中解向量的个数为2,则R(A)=2.( )17.若n 维向量12,αα线性相关,则必定12,αα的对应元素成比例.( ) 18.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m A =.( ) 19.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m <A .( ) 20.设21,αα是齐次线性方程组0=AX 的解,那么12αα+也是该方程组0=AX 的解.( )21.设21,αα是非齐次线性方程组=AX b 的解,那么12αα+也是该方程组=AX b 的解.( )22.对于任意的矩阵A ,一定有T r r =()()A A .( )23.向量组123,,ααα中,任意两个向量均线性无关,则123,,ααα线性无关.( )24.设A 是m n ⨯矩阵,如果A 的n 个列向量线性无关,则()r A n =.( ) 25,设12,αα是n 维向量,且112212312,2,35βααβααβαα=-=+=+,则123,,βββ 必线性相关.( )26.设0Ax =是Ax b =的导出组,其中A 是m n ⨯矩阵,若()r A m =, 则Ax b =有解.( )请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.3.利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x ,当λ取何值时有解?并求出它的解.9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .13.求一个齐次线性方程组,使它的基础解系为:T T )0,1,2,3(,)3,2,1,0(11==ξξ.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.4. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .试证明s s k k k x ηηη+++= 2211也是它的解.5.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题24知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n k k ).第三章 线性方程组一、选择题.1.C2.D3.A4.D5.D6.C7.A8.A9.B 10.B 11.B 12.D 13.D 14.C 15.B. 16.C 17.D 18.C 19.A 20.A 21.C 22.C 23.B 24.B 25.A 26.D 27.D 28.D 29.D 30.D二、填空题.1. (-1,3,1,1)T2.(-3,-2,-3,1)T3. 64.相关5. 56.-47.28.39.无关 10.0 11.212.2 13. 0A = 14.0=Ax 15.⎪⎪⎪⎭⎫ ⎝⎛111 16.1 17.-1018.η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 19.n-r 20. 2 21.-1,-1,3 22.可逆 23.1,233;,ααα 24.3 25.||0≠A 26.43210a a a a -+-=.27.T 11(1,1,,1)1k k ⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.T (1,0,0,,0)=x . 30.-2部分题详解:25.解 因为()()R R n ==A A b 是=Ax b 有惟一解的充要条件.故由()R n =A 可得||0≠A .26.解 对方程组的增广矩阵施行初等行变换()12341100011000111001a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭B A b 12341231100011000110000a a a a a a a ⎛⎫⎪ ⎪→ ⎪ ⎪⎪-+-⎝⎭. 所以方程组有解的充要条件是()()R R =A B ,即43210a a a a -+-=.27.解 令111⎛⎫⎪⎪= ⎪ ⎪⎝⎭x ,显然x 满足方程组,又因为()1R n =-A ,所以()1n R -=A ,即方程组的基础解系中有一个向量,通解为T 11(1,1,,1)1k k ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.解 因为0=A ,又0kj A ≠,所以()1R n =-A ,并且有11220, ;||0, i k i k in kn i k a A a A a A i k ≠⎧+++=⎨==⎩.A所以()T12,,,k k kn A A A 是方程组的解,又因为()1R n =-A ,可知方程组的通解为()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.解 T (1,0,0,,0)=x . 30. -2三、判断题.1.√2. √3. √ 4.× 5.×6. ×7.×8. √9.√ 10.× 11.×12.√ 13.√ 14.√ 15.× 16.×17.√ 18.√ 19.× 20.√ 21.×22.√ 23.× 24.√ 25.√26.√请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立. 解 (1) 设)0,,0,0,1(11==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111其中m e e ,,1 为单位向量,则上式成立,而 m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的. (4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r . 二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解: (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫ ⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202013. 利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫ ⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~秩为2,最大线性无关组为T Ta a 21,.5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x 故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1)对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2)对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解. 当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解. 当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解. 此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.解⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛----=---120010501121~225010501121~122313112123131223b a b a b a A r r r r r r(1)当2,02-≠≠+a a 即时,3)()(==A r A r ,方程组解唯一; (2)当12,01,02=-==-=+b a b a ,即时,32)()(<==A r A r ,方程组解有无穷多解; (3)当12,01,02≠-=≠-=+b a b a ,即时,3)(2)(=<=A r A r ,方程组无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--=-21100010001),,,(121n n n ξξξ12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .解:由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=00001001825931224321x x x xAB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛592280200802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2125212114321x x x x ,故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2125212111001B .13.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解:显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.解:由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得:齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解:(1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明:设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解,则4321,,,b b b b 线性相关. 综合得证. 2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明: 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解,则021====r k k k 所以r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.证明: (1)反证法,假设r n -*ξξη,,,1 线性相关,则存在着不全为0的数r n C C C -,,,10 使得下式成立:0110=+++--*r n r n C C C ξξη (1)其中,00≠C 否则,r n -ξξ,,1 线性相关,而与基础解系不是线性相关的产生矛盾。

第二章 线性方程组习题答案与解答

第二章 线性方程组习题答案与解答

第二章 线性方程组习题答案与解答习题二对于数字计算题,仅给出Maple 程序与答案.证明题答案仅供参考。

1.用消元法解下列方程组(1)1221231231321,22,353,22x x x x x x x x x x x -+=⎧⎪--=⎪⎨-+=⎪⎪-++=-⎩ > A:=[[1,-1,2],[1,-2,-1],[3,-1,5],[-1,0,2]]: b:=[1,2,3,-2]:linsolve(A,b);⎡⎣⎢⎢⎤⎦⎥⎥,,107-17-271234512245123452322,(2)3536,2228.x x x x x x x x x x x x x x x -+-+=⎧⎪-+-+=⎨⎪++--=⎩> A:=[[1,-2,3,-1,2],[3,-1,5,-3,1],[2,1,2,-2,-1]]: b:=[2,6,8]: linsolve(A,b);(3) >A:=[[1,2,3],[3,5,7],[2,3,4]]:b:=[4,9,5]:linsolve(A,b,'r',c);[],,- + 2c 1 - 32c 1c 1(4)> A:=[[2,-2,1,-1,1],[1,-4,2,-2,3],[3,-6,1,-3,4],[1,2,-1,1,-2]]:b:=[2,3,5,-1]: linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,, + 1313c 1c 20- - + 432c 253c 1c 1 (5) > A:=[[1,1,2,3],[2,3,5,2],[3,-1,-1,-2],[3,5,2,-2]]:b:=[1,-3,-4,-10]: linsolve(A,b,'r',c);[],,,-1-101(6)> A:=[[2,-4,5,3],[3,-6,4,2],[4,-8,17,11]]: b:=[0,0,0]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2c 125c 2c 1c 2-75c 2(7)> A:=[[1,3,-2,-1],[2,6,-3,0],[3,9,-9,-5]]: b:=[3,13,8]:linsolve(A,b,'r',c);[],,, - 23c 1c 1-35(8)> A:=[[1,-1,2,-3,1],[2,-2,7,-10,5],[3,-3,3,-5,0]]: b:=[2,5,5]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,, + - + 53c 2c 353c 1c 2c 3c 1- + + c 343c 1132.当k 取何值时,下面的齐次线性方程组有非零解,并求出此非零解.> A:=matrix([[2,-1,3],[3,-4,7],[-1,2,k]]); E:=matrix([[1,0,0],[0,1,0],[0,0,1]]); k1:=solve(det(A)=0,k);A:=matrix([[2,-1,3],[3,-4,7],[-1,2,-3]]); b:=[0,0,0]:linsolve(A,b,'r',c);:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥2-133-47-12k := E ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥100010001 := k1-3 := A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥2-133-47-12-3 [],,-c 1c 1c 13. 当k 取何值时,下面的线性方程组无解?有解?,在方程组有解时,求出它的解..4.当a 取何值时,线性方程组1231231231,233,32x x x x x ax x ax x +-=⎧⎪++=⎨⎪++=⎩ 无解?有唯一解?有无穷多解?在方程组有解时,求出它的解. 111111112330121.1320141a a a a --⎛⎫⎛⎫ ⎪ ⎪→+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1.1⎫⎪⎭123210,1,111111110131013100410011/41105/410010101/40101/4.0011/40011/41,1/4,1/4.10,1,111111110121012101410062a a x x x a a a a a a a a -==--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭===-≠≠--⎛⎫⎛ ⎪ +→+ ⎪ ⎪---+-⎝⎭⎝11110121.00(2)(3)2(2)(3)0,23,111111110121012100(2)(3)2003111111104/(3)01210101/(3)0011/(3)0011/(3)a a a a a a a a a a a a a a a a a a a ⎫⎪⎪⎪⎭-⎛⎫ ⎪=+ ⎪ ⎪-+-⎝⎭-+≠≠≠---⎛⎫⎛⎫⎪ ⎪+→+ ⎪⎪ ⎪ ⎪-+-+⎝⎭⎝⎭-+⎛⎫⎛ ⎪ →+→+ ⎪ ⎪ ++⎝⎭⎝即且时1231003/(3)0101/(3),0011/(3)3/(3),1/(3),1/(3).a a a x a x a x a ⎫⎪⎪⎪⎭+⎛⎫ ⎪→+ ⎪ ⎪+⎝⎭=+=+=+唯一解2a =时,312111111110121014100(2)(3)200001111105001410141.00000000,5,14.a a a a x c x c x c --⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪-+-⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭===-3,111111110121011100(2)(3)20005a a a a a =---⎛⎫⎛⎫ ⎪ ⎪+=⎪ ⎪ ⎪ ⎪-+--⎝⎭⎝⎭时 方程组无解.5.已知向量(2,1,0,1),(1,4,2,3),αβ=-=-计算 (1)2αβ-;(2)1(3)2αβ+.> alpha:=[2,-1,0,1];beta:=[-1,4,2,3];2*alpha-beta;(1/2)*(alpha+3*beta);:= α[],,,2-101 := β[],,,-1423[],,,5-6-2-1 ⎡⎣⎢⎢⎤⎦⎥⎥,,,-12112356.设2(2,1,2,3),2(1,4,2,2),αβαβ+=+=--求,.αβ 求向量,.αβ解2(2,1,2,3),(1)2(1,4,2,2)(2).(1)224(4,2,4,6)(3),αβαβαβ+=⎧⎨+=--⎩⨯+= (3)(2)3(3,6,6,4),(1,2,2,4/3),(2,1,2,3)2(1,2,2,4/3)(0,3,2,1/3).(0,3,2,1/3),(1,2,2,4/3).ββααβ-===-⨯=--=--=7.已知向量123(3,2,0,1),(0,4,3,3),(1,6,5,8)ααα=-==-,而向量β满足1232()3(),βαβααβ-++=-求向量β. 解> alpha1:=[3,2,0,-1]; alpha2:=[0,4,3,3]; alpha3:=[-1,6,5,8];beta:=(1/6)*(2*alpha1-3*alpha2+alpha3);:= α1[],,,320-1 := α2[],,,0433:= α3[],,,-1658 := β⎡⎣⎢⎢⎤⎦⎥⎥,,,56-13-23-128.把向量β表示为其余向量的线性组合.(1) > beta:=[4,5,6];alpha1:=[3,-3,2]; alpha2:=[-2,1,2]; alpha3:=[1,2,-1];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a);:= β[],,456 := α1[],,3-32 := α2[],,-212:= α3[],,12-1:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥3-21-31222-1 [],,234123234.βααα=++(2)> beta:=[-1,1,3,1]; alpha1:=[1,2,1,1]; alpha2:=[1,1,1,2]; alpha3:=[-3,-2,1,-3];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a);:= β[],,,-1131:= α1[],,,1211 := α2[],,,1112 := α3[],,,-3-21-3:= A ⎡⎣⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥11-321-211112-3 无法表示.(3)> beta:=[1,0,-1/2]; alpha1:=[1,1,1]; alpha2:=[1,-1,-2]; alpha3:=[-1,1,2];A:=transpose(matrix([alpha1,alpha2,alpha3]));linsolve(A,bet a,'r',c);:= β⎡⎣⎢⎢⎤⎦⎥⎥,,10-12 := α1[],,111:= α2[],,1-1-2 := α3[],,-112:= A ⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥11-11-111-22 ⎡⎣⎢⎢⎤⎦⎥⎥,,12 + 12c 1c 1取10c =得特解123121111,,0..2222x x x βαα====+9.向量β可由向量12,,,m ααα线性表示,但不能由向量组(I):121,,,m ααα-线性表示.记向量组121(II),,,,.m αααβ-试证m α不能由(I)线性表示,但可由(II)线性表示.证 如果m α可由(I)线性表示,那么12,,,m ααα就可以用(I)线性表示,又β可由向量12,,,m ααα线性表示,则β可由(I)线性表示,此与假设矛盾.故m α不能由(I)线性表示.由于β可由向量12,,,m ααα线性表示,故存在数1,,,m k k 使得1122.m m k k k βααα=+++(*)其中的0.m k ≠否则, 0,m k =将有112211.m m k k k βααα--=+++于是β可由121,,,m ααα-线性表示,与假设矛盾.故必有0.m k ≠由上面的(*),得1121211,m m m m mmk k k k k k k αβααα-=---- 即m α可由(II)线性表示.10.判定下列向量是线性相关,还是线性无关? (1)12(3,2,0),(1,2,1).αα==-123123(2)(1,1,1,1),(1,1,2,1),(3,1,0,1).(3)(2,1,3),(3,1,1),(1,1,2).αααααα=-=--===-=-解 (1)线性无关.因为两个向量线性相关,必对应分量成比例. (2) 用123,,ααα做行向量组成矩阵,把矩阵用初等行变换化成阶梯形,非零行的行数如果小于向量数,则线性相关,等于行数,则线性无关.111111111121023231010232--⎛⎫⎛⎫ ⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 11110232,()2 3.0000r A -⎛⎫⎪→--=< ⎪⎪⎝⎭线性相关.(3)213112112311213017112311045112017,() 3.0023r A --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭-⎛⎫⎪→-= ⎪⎪⎝⎭线性无关.11.已知向量组123(,2,1),(2,,0),(1,1,1).a a ααα===-试求a 为何值时,向量组123,,ααα线性相关?线性无关?解 向量个数等于向量维数时,如果有字母出现,可考虑用相应行列式是否等于零,判断线性相关和线性无关.1221111111202002211121021111022003(2)(3)0.2, 3.a a a a a a a a aa a a a --=-=-+--+--=-+--=+-==-=2a =-或3时线性相关,否则线性无关.12.证明定理2.4:n 个n 维向量11112122122212(,,,),(,,,),,(,,,),n n n n n nn a a a a a a a a a ααα===线性相关的充分必要条件是行列式111212122120.n n n n nna a a a a a a a a =证 方程1122n n x x x o ααα+++=相当于齐次线性方程组1112121121222211220,0,0.n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(注意j x 的系数是第j 个向量的分量,而第i 个方程的系数是各个向量的第i 个分量)而此方程组有非零解的充分必要条件是行列式1121111121122222122212120.n n n n nnnnn n nna a a a a a a a a a a a a a a a a a ==13.证明定理2.5: 定理 n +1个n 维向量线性相关. 证明 n +1个n 维向量都有线性表示121122(,,,),1,, 1.i i i in i i in n a a a a a a i n αεεε==+++=+1n +个向量用n 个向量线性表示,根据定理“若s 个向量用t个向量线性表示,s t >,则前面s 个向量向量必定线性相关”,(11)i i n α≤≤+线性相关. 14.如果向量组1,,s αα线性无关,试证向量组12sααα+++线性无关.证法一 第一个向量组记作I,第二个向量组记作II.II 显然可用I 线性表示,又111()()i i i ααααα-=++-++,I 可用II 线性表示,I~II,(II)(I).r r s ==II 的秩等于其向量个数,故II 线性无关. 证法二. 用PPT 文件中的下例中的方法.15.已知向量组123,,ααα线性无关,设1123(1)3,m βααα=-++21233123(1),(1)(1).m m m βαααβααα=+++=--++-试问当m 为何值时,向量组123,,βββ线性无关,?线性相关?解 由13题证法二得一般结论:当s 个向量的向量组I 可用s 个线性无关向量的向量组II 表示时,向量组I 线性相关的充分必要条件是表示对应的矩阵的行列式等于零.于是考察m 满足的方程 1311110.111m m m m -+=---- 13100111m m m m ----- 2123(4)(2)(2)0.0,2, 2.m m m m m m m m =--+=-+====-当0m =或2m =或2m =-时,123,,βββ线性相关,当0m =且2m =且2m =-时, 123,,βββ线性无关.16.已知向量123,,βββ可由向量组123,,ααα: (1)试把向量组123,,ααα由向量组123,,βββ线性表示. (2)这两个向量组是否等价. 解112321233123112112223223313313112223313,(1),(2).(3)11(1)(2),2,,2211(2)(3),2,,2211(1)(3),2,.2211,2211,2211.22βαααβαααβααααββαββαββαββαββαββαββαββαββ=-+⎧⎪=+-⎨⎪=-++⎩+=+=++=+=++=+=+⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩17.设n 维向量组11(1,0,0,,0),(1,1,0,,0),,(1,1,1,,1)n ααα===.试证:向量组12,,,n ααα与n 维单位向量组12,,,n εεε等价.证 已经知道12,,,n εεε线性无关,根据14题, 12,,,n ααα线性无关,1n +个n 维向量12,,,,n i αααε线性相关, 12,,,n ααα线性无关,故i ε可用12,,,n ααα线性表示, 已知12,,,n ααα可用线性表示,故两个向量组等价.18.证明:如果n 维基本单位向量组12,,,n εεε可以用n 维向量组12,,,n ααα线性表示,则向量组12,,,n ααα线性无关.证 向量组12,,,n εεε可以用n 维向量组12,,,n ααα线性表示,12,,,n ααα也可以用12,,,n εεε线性表示,二者等价,它们的秩相同, 12,,,n εεε线性无关,其秩为n ,故12,,,n ααα的秩为n ,从而12,,,n ααα线性无关.19.设向量组12,,,s ααα的秩为r ,证明: 12,,,s ααα中任意r 个线性无关的向量都是它的一个极大线性无关组. 证 不妨设12,,,r ααα是12,,,s ααα的一个线性无关向量组.任取i α,向量组12,,,,r i αααα线性相关,因否则, 12(,,,)s r ααα1,r ≥+与假设矛盾. 12,,,,r i αααα线性相关,而12,,,r ααα线性无关,故i α用12,,,r ααα线性表示.故12,,,r ααα是12,,,s ααα的一个极大线性无关组.20.已知向量组123(I):,,;ααα1234(II):,,,αααα和1235(III):,,,.αααα如果各向量组的秩分别为(I)(II)3,(III) 4.r r r ===证明向量组12354,,,ααααα-的秩为4.证 (I)的秩是3,等于向量个数,表明(I)线性无关,(II)的秩是3,其部分组线性无关,说明4α是(I)的线性组合.(III)的秩是4,表明(III)线性无关,从而5α不是(I)的线性组合,结合4α是(I)的线性组合,得54αα-不是(I)的线性组合,否则5544()αααα=-+将是(I)的线性组合,矛盾.由于(I)线性无关, 54αα-又不是(I)的线性组合,故12354,,,ααααα-线性无关,从而其秩为4.21.如果向量组12,,,s ααα可以由向量组12,,,t βββ线性表示.证明1212(,,,)(,,,).s t r r αααβββ≤证 设12(,,,),t r l βββ=并且12,,,l βββ是其极大线性无关组.设12(,,,),s r m ααα=并且12,,,m ααα是其极大线性无关组.12,,,m ααα可以由向量组12,,,l βββ线性表示, 12,,,mααα线性无关,故,.m l ≤因为如果m l >,根据有关定理将有线性相关. 22.证明121212121212(1)(,,,)(,,,,,,,);(2)(,,,)(,,,,,,,).s s t t s t r r r r ααααααββββββαααβββ≤≤证 (1) 12,,,s ααα可用1212,,,,,,,)s t αααβββ线性表示,由上题得(1).(2)的证明雷同.23.判断下述命题是否正确.如果命题成立,请简述理由,否则请举出反例.(1)若存在全为零的数120,s k k k ====使得11220,s s k k k ααα+++=则向量12,,,s ααα线性无关.错误.对于全为零的数120,s k k k ====总有11220,s s k k k ααα+++=岂不任何向量组都线性无关.正确说法是若11220,s s k k k ααα+++=必有120.s k k k ====(2)如果向量组12,,,s ααα线性相关,则其任一部分组也线性相关.错误 如(1,1),(2,2)线性相关,但(1,1)线性无关.正确说法是如果向量组12,,,s ααα线性无关,则其任一部分组也线性无关.(3) 如果向量组12,,,s ααα线性相关,则其任一向量都可以由其余向量线性表示.错误 例如(0,0),(1,1)线性相关,(11)不能用(0,0)线性表示.正确说法是:如果向量组12,,,s ααα线性相关,则其中某一向量可以由其余向量线性表示. (4) 向量组12,,,s ααα线性无关的成分必要条件是其中任一向量都不能由其余1s -个向量线性表示. 正确. 证明如下. 如果12,,,s ααα线性无关,而某一向量,不妨设可以由其余s α可以由其余1s -个向量线性表示,即存在数121,,,,s k k k -使得112211,s s s k k k αααα--=+++,于是112211(1)0,s s s k k k αααα---++++=10,-≠12,,,s ααα线性相关,矛盾.如果12,,,s ααα中任一向量都不能由其余1s -个向量线性表示,则12,,,s ααα线性无关,否则如果12,,,s ααα线性相关,则存在不全为零的数12,,,,s k k k 不妨设0s k ≠,使得1122110,s s s s k k k k αααα--++++=于是112211(/)(/)(/)0.s s s s s s k k k k k k αααα--=-+-++-=(5)如果两个向量组等价,则它们含有的向量数相同.错误.例如(1,1)和(2,2),(3,3)等价,但含有的向量数分别为1和2. (6)如果12(,,,)s r r ααα=,则12,,,s ααα中任意r 个向量都线性无关.错误.例如向量组(1,1),(0,0)的秩为1,但(0,0)作为一个线性组,线性相关.正确说法是: 如果12(,,,)s r r ααα=,则12,,,s ααα中存在r 个向量线性无关,并且其余向量都可以由它们线性表示. (7) 如果12(,,,)s r r ααα=,则12,,,s ααα中任意1r +个向量都线性相关.正确. 因为如果12,,,s ααα中存在1r +个向量线性无关,12,,,s ααα的秩将大于或等于1r +.(8) 如果12(,,,)s r s ααα=,则向量组12,,,s ααα中任意部分都线性无关. 正确. 因为12(,,,)s r s ααα=表明12,,,s ααα线性无关,如果一个部分组线性相关,整个组将线性相关,矛盾. 24.把下列矩阵化为等价标准形,并且求矩阵的秩.21211211(1).42000000() 1.123123123(2)3120570152310150571231231200150150100018001001100010001r A ⎛⎫⎛⎫⎛⎫⎛⎫→→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→ ⎝⎭.() 3.23111111(3)11230501121201001001.() 2.0011111111112032102501(4)1361202501426430220111111025010r A r A =⎪⎪---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪----⎪ ⎪→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭---→111110250100000010000700000001111111011015/201/20100200100001000000000000⎛⎫⎛⎫ ⎪ ⎪---⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪→→⎪ ⎪⎪⎪⎝⎭⎝⎭10013100000100201000.() 3.00100001000000000000r A ⎛⎫⎛⎫⎪⎪- ⎪ ⎪→→= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭25.已知矩阵33021430.1562A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭(1)计算A 的所有三阶子式; (2)利用(1)的结果求矩阵A 的秩.解 > D1:=det([[3,3,0],[-1,-4,3],[1,-5,6]]);D2:=det([[3,3,2],[-1,-4,0],[1,-5,-2]]);D3:=det([[3,0,2],[-1,3,0],[1,6,-2]]); D4:=det([[3,0,2],[-4,3,0],[-5,6,-2]]);:= D10:= D236 := D3-36 := D4-36(2)根据(1),() 3.r A =26.把下列矩阵化成阶梯形矩阵,求矩阵的秩.1121011210(1)206010222115252044421121002221.() 2.00000r A --⎛⎫⎛⎫ ⎪ ⎪→- ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭-⎛⎫⎪→-= ⎪ ⎪⎝⎭2121111102111221211(2)2542925429331183311811102111020341303413066380021200212002121110203413.()00212000r A --⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→ ⎪ ⎪----⎪⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪---⎪⎪--⎝⎭⎝⎭-⎛⎫⎪-- ⎪→= ⎪-⎪⎝⎭3.27.求下面向量组的一个极大无关组,并且把其余向量用此极大无关组线性表示.123(1)(1,2,5),(3,2,1),(3,10,17).ααα=-=-=-解 用向量123,,ααα为行向量组成矩阵,旁边标上向量记号,对矩阵做出等行变换,把它化成阶梯形,并且注意用旁边的向量记号表示对应的初等行变换.最后的零行给出相应的线性表示,再结合秩确定一个极大无关组.12311221332121123(1)(1,2,5),(3,2,1),(3,10,17).1251253210816331017081612508163() 2.00032r A ααααααααααααααααα=-=-=---⎛⎫⎛⎫ ⎪ ⎪-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭-⎛⎫⎪→--= ⎪ ⎪-+⎝⎭12331232,32.o αααααα-+==-+12,αα线性无关,并且31232ααα=-+.1234(2)(1,1,0,4),(2,1,5,6),(1,1,2,0),(3,0,7,14).αααα=-==--=解 以所给向量作为列向量组成矩阵,对于矩阵进行初等行变换,这样做不改变列向量的线性关系,即如果原来有关系112233440,k k k k αααα+++=则初等行行变换后所得列向量123,,,s αααα''''仍保持关系 112233440.k k k k αααα''''+++= 反之亦然.注意前后两个等式的系数是同样的.121312131213111003301010527052705274601402420121121312131001010101010101.00220011001100220000000⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪--- ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭于是()3,r A =,并且123,,ααα线性无关, 4123.αααα=+-28.求下列齐次线性方程组的一个基础解系,并且用此基础解系表示方程组的一般解.123412341240,(1)20,30.x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪++=⎩> A:=[[1,1,-1,1],[1,-1,2,-1],[3,1,0,1]]: b:=[0,0,0]:linsolve(A,b,'r',c);[],,,c 1- - 3c 1c 2-2c 1c 2基础解系12(1,3,2,0),(0,1,0,1).ηη=--=-一般解1122.c c ηηη=+12341234123420,(2)24530,4817110.x x x x x x x x x x x x ---=⎧⎪-++=⎨⎪-++=⎩ > A:=[[1,-2,-1,-1],[2,-4,5,3],[4,-8,17,11]]:b:=[0,0,0]: linsolve(A,b);⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2_t 125_t 2_t 1_t 2-75_t 2基础解系:12[2,1,0,0],[2,0,5,7].ηη==--一般解1122,c c ηηη=+12,c c 为任意常数.⎡⎣⎢⎢⎤⎦⎥⎥,,, - 2_t 125_t 2_t 1_t 2-75_t 21234512345123451234520,20,(3)333340,455570.x x x x x x x x x x x x x x x x x x x x +--+=⎧⎪-++-=⎪⎨+--+=⎪⎪+--+=⎩> > A:=[[2,1,-1,-1,1],[1,-1,1,1,-2],[3,3,-3,-3,4],[4,5,-5,-5,7]]:b:=[0,0,0,0]:linsolve(A,b,'r',c);⎡⎣⎢⎢⎤⎦⎥⎥,,,,13c 3 + - c 1c 253c 3c 1c 2c 3基础解系123(0,1,1,0,0),(0,1,0,1,0),(1,5,0,0,3),ηηη===-一般解112233c c c ηηηη=++29.判断下列线性方程组是否有解.若方程组有解,试求其解[在有无穷多解时,用基础解系表示其一般解].123124234124244,24,(1)321,33 3.x x x x x x x x x x x x --=⎧⎪---=⎪⎨++=⎪⎪++=-⎩A:=[[2,-4,-1,0],[-1,-2,0,-1],[0,3,1,2],[3,1,0,3]]: b:=[4,4,1,-3]: rankxsh:=rank(A);rankzg:=rank([op(A),b]); linsolve(A,b);:= rankxsh 3 := rankzg 4方程无解.12341341231342434,3,(2)31,773 3.x x x x x x x x x x x x x -+-=-⎧⎪+-=⎪⎨++=⎪⎪+-=⎩Maple 解> A:=[[2,-1,4,-3],[1,0,1,-1],[3,1,1,0],[7,0,7,-3]]: b:=[-4,-3,1,3]:linsolve(A,b,'r',c);[],,, - 3c 1- + 82c 1c 16特解:0η=[3, −8,0,6],导出组基本解系:η=(−1,2,1,0) . 一般解0.c ηηη=+12345123452345123451,3235,(3)2262,54337.x x x x x x x x x x x x x x x x x x x ++++=-⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=-⎩Maple 解> A:=[[1,1,1,1,1],[3,2,1,1,-3],[0,1,2,2,6],[5,4,3,3,-1]]:b:=[-1,-5,2,-7]:linsolve(A,b,'r',c);[],,,,- + + + 3c 1c 25c 3 - - - 22c 12c 26c 3c 1c 2c 3特殊解0η=[−3,2,0,0,0],导出组:1η=[1, −2,1,0,0],2η=[1, −2,0,1,0],3η=[5, −6,0,0,1].1234123412341342352,22,(4)5,323 4.x x x x x x x x x x x x x x x x +--=-⎧⎪+-+=-⎪⎨+++=⎪⎪+++=⎩ Maple 解> A:=[[2,3,-1,-5],[1,2,-1,1],[1,1,1,1],[3,1,2,3]]:b:=[-2,-2,5,4]:linsolve(A,b,'r',c);[],,,-335030.已知线性方程组123412341213412342231,3613,3151,51012.x x x x x x x x x x k x x x x x x k +++=⎧⎪+++=⎪⎨--+=⎪⎪--+=⎩ 当12,k k 取何值时,方程组无解?有唯一解?有无穷多解?在方程有无穷多解的情况下,试求其一般解.Maple 解1111112311231123136102*********1504660466151012061292431123012166(2)0, 2.00220001kk k k k k --==---------------=-=-==-+-12k ≠时方程有唯一解. 12k =时,2222112311123113613024223121530486015101206129111231112310121101211024300001206129100001k k k k ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪→ ⎪ ⎪---- ⎪ ⎪-----⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭21k ≠时无解. 21k =时,12341123111205012110120300012000120000000000100088,01203.32,00012 2.000x x x x -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭-⎛⎫=-⎧ ⎪⎪⎪→=-⎨ ⎪⎪= ⎪⎩⎝⎭特解0γ=(-8,3,0,2),导出组基础解系η=(0,-2,1,0),一般解0.c γγη=+c 为任意常数.31.设有三维向量2123(1,1,1),(1,1,1),(1,1,1),(0,,).T T T T αλαλαλβλλ=+=+=+=问λ为何值时(1)β可由123,,ααα线性表示,且表达式是唯一的. (2) (1)β可由123,,ααα线性表示,但表达式不是唯一的. (3) (β不能由123,,ααα线性表示. 解 对应线性方程组的系数行列式212111111111(3)111111111111(3)00(3)0,0, 3.00λλλλλλλλλλλλλ++=++++=+=+===-0λ≠且3λ≠-时(1)成立.0λ=时对应线性方程组的增广矩阵1110111011100000.11100000⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭此时出现情形(2).3λ=-时对应线性方程组的增广矩阵2110211012131213.11290009--⎛⎫⎛⎫ ⎪ ⎪--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭此时(3)成立. 32.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪⎪-=⎩ 有解的充分必要条件是510.i i a ==∑证设方程有解,各个方程相加得510.i i a ==∑设条件510.i i a ==∑满足.对于增广矩阵进行行初等变换令112233445123423434411000110000110001100001100011000011000111000100000010001010010010100011000000a a a a a a a a a a a a a a a a a a a --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-→-⎪⎪-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭-+++⎛⎫⎪-++ ⎪⎪→-+⎪- ⎪ ⎪⎝⎭令5x c =得112342234334445,,,,.x a a a a c x a a a c x a a c x a c x c =++++=+++=++=+=前四个方程显然满足,而第五个方程51123412345()().x x c a a a a c a a a a a -=-++++=-+++=33.证明:如果线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵()ij n n A a ⨯=与矩阵1221121222212120n n n n nn n na a ab a a a b C a a a b bb b ⎛⎫⎪ ⎪⎪=⎪ ⎪ ⎪⎝⎭的秩相等,则此线性方程组有解.证 设系数矩阵A 的秩为r ,前不妨设r 个列向量线性无关,C 的前r 列也线性无关,C 的秩为r ,故C 的最后一列的列下列可以用前r个列向量线性表示,于是向量12(,,,)T n b b b 可以用A 的前r 个向量线性表示,从而可以用C 的列向量线性表示,即方程组有解. 34.设齐次方程组111122121122221122000n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵()ij n n A a ⨯=的秩为1n -.试证此方程的一般解为12,()i i in A Ac c A η⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭为任意常数其中(1)ij A j n ≤≤是ij a 的代数余子式,且至少有一个0.ij A ≠ 证 由于系数矩阵的秩为1,r -故系数行列式为0.由于系数矩阵的秩为1r -,必存在一个1n -阶代数余子式不等于0.由于至少有一个0,ij A ≠112(,,,).T i i in A A A o η=≠再证1η是齐次方程组的一个解.把1η代入第k 个方程得10,nkj ij ki j a A D δ===∑D 为系数行列式,其值为0. 35.设线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)证明:若1234,,,a a a a 两两不等,则此线性方程组无解.(2)设1324,(0),a a k a a k k ====-≠且已知12,ββ是该方程的两个解,其中12(1,1,1),(1,1,1)T T ββ=-=-.求此方程组的全部解.(1)增广矩阵为范德蒙行列式,当1234,,,a a a a 两两不等时其值非0,故增广矩阵的秩等于4,但系数矩阵的秩最大为3,故方程组无解. (2)当1324,(0)a a k a a k k ====-≠时,方程组的增广矩阵为232323232323233111110000100010********0000,()() 2.kk k k k k k k k kk k k k kkk k k k k k k k r A r A ⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭≠==12(1,1,1),(1,1,1)T T ββ=-=-是解,表明方程有一个特解01(1,1,1),ηβ==-基础解系含有321n r -=-=个解向量21(1,1,1)(1,1,1)(2,0,2)2(1,0,1),T T ηββ'=-=---=-=-取基础解系(1,0,1).η=-一般解0.c γηη=+。

线性方程组习题解答

线性方程组习题解答

习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)T ξ=-和2(2,4,0,1)Tξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α,,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当 12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证(1) 反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.证(2) 反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r n r n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。

第四章 线性方程组习题及答案

第四章  线性方程组习题及答案

第四章 线性方程组1.设齐次方程组1231231230030x ax x ax x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 有非零解,求a 及其通解.解:因为此方程组有非零解,故系数矩阵的行列式为零.2211||1131********a aa a a a ==-+--+=-=-A所以,21a =,即1a =±(1)当1a =时,对此方程组的系数矩阵进行行变换111111120111000011113022000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A原方程组等价于1223200x x x x +=⎧⎨-=⎩, 即 12322x x x x =-⎧⎨=⎩. 取21x =,得1211-⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ为方程组的基础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξTR .(2)当1a =-时,111111110111001001113000000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭A原方程组等价于1230x x x -=⎧⎨=⎩取21x =,得()T21,1,0=ξ为方程组的基础解系.故通解为2(1,1,0),TR k k k ==∈X ξ.2.解齐次方程组(1)12341234123420222020x x x x x x x x x x x x ++-=⎧⎪+++=⎨⎪++-=⎩ (2)12341234123412342350327043602470x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩(3)12341234123420510503630x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+--=⎩ (4)12341234123412343457041113160723023320x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++=⎪⎪-+-=⎩(1)解:对此线性方程组的系数矩阵进行初等行变换211111211010221201310103112100340034---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭A原方程组等价于 132434030340x x x x x x -=⎧⎪+=⎨⎪-=⎩即 1323439434x x x x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩取34x =,得()T4,9,4,3=-ξ为原方程组的基础解系. 故通解为 ,R k k =∈X ξ.(2)解:对线性方程组的系数矩阵进行初等行变换2315231531271231241361051312471247--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭A 123121231207729011746028250015015000327----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭故 ||0≠A ,所以此方程组只有零解,即 T(0,0,0,0)=X .(3)解:对线性方程组的系数矩阵进行初等行变换1211120151015001036130000--⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A原方程组等价于142320x x x x =-⎧⎨=⎩ 取 2410,.01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT122,1,0,0,1,0,0,1=-=ξξ为方程组的基础解系.所以,原方程组的通解为 112212(,)R k k k k =+∈X ξξ.(4)解:对方程组的系数矩阵进行初等行变换,34571789411131617897213017192023322332--⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭A 1789017192000000000-⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭原方程组等价于123423478901719200x x x x x x x +-+=⎧⎨-+-=⎩ 即 134234313171719201717x x x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩取 34170,017x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT123,19,17,0,13,20,0,17==--ξξ为方程组的基础解系.故通解为 112212,,k k k k =+∈X ξξR .3.解非齐次方程组(1)1231231232104221138x x x x x x x x -+=⎧⎪+-=⎨⎪+=⎩ (2)12312312312323438213496245x x x x x x x x x x x x ++=⎧⎪+-=⎪⎨-+=-⎪⎪-+=-⎩ (3)1234123412342133344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩(1)解:对此方程组的增广矩阵进行初等行变换3121031210()42121338113081332--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A b 133801011340006--⎛⎫⎪→- ⎪ ⎪-⎝⎭因为 ()23()r r =≠=A A b所以,此方程组无解.(2)解:对此方程组的增广矩阵进行初等行变换231412453821307714()41960141428124507714--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--- ⎪ ⎪---⎝⎭⎝⎭A b 12451021011201120000000000000000---⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭原方程组等价于 1323212x x x x +=-⎧⎨-=⎩此方程组对应的导出组的基础解系为()T2,1,1=-ξ此方程组的特解为 ()T01,2,0=-η 故方程组的通解为 0k k =+∈X ξηR .(3)解:对此方程组的增广矩阵进行初等行变换2111114352()331340759514352015101810---⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭A b 143520759501000--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭103520100000595--⎛⎫ ⎪→ ⎪ ⎪-⎝⎭原方程组等价于 1342343520595x x x x x x -+=-⎧⎪=⎨⎪-=⎩即 142342150915x x x x x ⎧=+⎪⎪=⎨⎪⎪=+⎩此方程组对应导出组的基础解系为 ()T2,0,9,5=ξ特解为 ()T01,0,1,0=η 故通解为 0k k =+∈X ξηR .4.求解非齐次方程组(1)1234523451234512345226323054332x x x x x a x x x x b x x x x x x x x x x ++++=⎧⎪+++=⎪⎨+++-=⎪⎪+++-=⎩ (2)1234123412341234230264132716x x x x x x x x x x px x x x x x t+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩(1)解:对此非齐次线性方程组的增广矩阵进行初等行变换111111111101226012263211300122635433120122625a ab b a a ⎛⎫⎛⎫⎪⎪⎪ ⎪→ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 111111111101226012260000030000030000025000001a a b b b a b b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪+--⎝⎭⎝⎭①当1a ≠,或3b ≠时,方程组无解; ②当1a =且3b =,方程组有无穷多解; 此时方程组等价于 12345234512263x x x x x x x x x ++++=⎧⎨+++=⎩即 13452345522263x x x x x x x x =++-⎧⎨=---+⎩取 3451000,1,0001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得对应的导出组的基础解系()T 11,2,1,0,0=-ξ,()T 21,2,0,1,0=-ξ,()T35,6,0,0,1=-ξ,()T02,3,0,0,0=-η为特解.故通解为1122330k k k =+++X ξξξη, 123,,k k k ∈R . (2)解:对方程组的增广矩阵进行初等行变换1123011230216410122132710162111610244P P t t --⎛⎫⎛⎫ ⎪ ⎪------⎪ ⎪→ ⎪ ⎪--+-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭11230012210080000002P t -⎛⎫⎪ ⎪→ ⎪+ ⎪ ⎪+⎝⎭①当2t ≠-时,方程组无解.②当2t =-,8P =-时,方程组有无穷多解.此时,原方程组等价于1234234230221x x x x x x x +-+=⎧⎨++=⎩即 13423441221x x x x x x =--⎧⎨=--+⎩则 ()T14,2,1,0=-ξ,()T21,2,0,1=--ξ为导出组的基础解系()T01,1,0,0=-η为方程组的一个特解,故通解为1122012,,k k k k =++∈X ξξηR .③ 2t =-,8P ≠-时,方程组有无穷多解 此时,原方程组等价于12342343230220(8)0x x x x x x x P x +-+=⎧⎪++=⎨⎪+=⎩即 142431210x x x x x =--⎧⎪=-+⎨⎪=⎩则 ()T1,2,0,1=--ξ为导出组的基础解系, ()T01,1,0,0=-η为方程组的一个特解. 故方程组的通解为0k k =+∈X ξηR .5.讨论方程组的解,并求解123123123(3)2(1)23(1)(3)3a x x x a ax a x x aa x ax a x +++=-⎧⎪+-+=⎨⎪++++=⎩解:线性方程组的系数矩阵的行列式为312132132||111112323(1)3333333a a a a a a aa a a aa aa a a a a +++=-=-=-----++++++A21320033a aa a a +=----+221120(1)03a a a a a a a +=-=---+令||0=A ,则0a =或1a =(1)0a =时. 线性方程组的增广矩阵为31203120()0110011030330113⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A b 312001100003⎛⎫⎪→- ⎪ ⎪⎝⎭因为()23()r r =≠=A Ab所以,此时方程组无解;(2)当1a =时, 41211012()1012012961430000-⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b方程组等价于1323229x x x x =-+⎧⎨=-⎩,()T1,2,1=-ξ为导出组的基础解系,()T02,9,0=-η为方程组的一个特解. 故通解为0k k =+∈X ξηR .(3)当0a ≠且1a ≠时,方程组有唯一解.2129a x a +=-,222339a a x a ++=,3239a x a +=. 6.设T T11012,,0,,2180⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭αβγA αβB βα,其中T β是β的转置,求解方程22442=++B A x A x B x γ. 解:将TT T ,,2===A αβB βαβα代入下式得22T TTT4T222=⋅B A x βαβααβαβx αβx = 4TTTT3T2=⋅⋅⋅=A x αβαβαβαβx αβx 442=B x x 由 22442=++B A x A x B x γ 得4T 3T 4222=++x x x γαβαβ3T T32(22)--=αβαβE x γ 3T32(2)-=αβE x γ又 T1101212(10)210211102⎛⎫ ⎪⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭αβ所以 3110222101122⎛⎫- ⎪ ⎪-= ⎪ ⎪- ⎪⎝⎭x γ即 12384001680084168-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭x x x对线性方程组的增广矩阵进行初等行变换84002100202216800012201228416800000000----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组等价于 1323122+=-⎧⎨-=⎩x x x x ,即1323122x x x x =--⎧⎨=+⎩,121-⎛⎫⎪= ⎪ ⎪⎝⎭ξ为导出组的基础解系.0120-⎛⎫ ⎪= ⎪ ⎪⎝⎭η为方程组的一个特解. 故通解为 0R k k =+∈X ξη. 7.已知向量组12301,2,1110a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭βββ与向量组1231392,0,6317⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ααα具有相同的秩,且3β可由123,,ααα线性表示,求,a b 的值. 解:因为3β可以由123,,ααα线性表示 所以,1233(,,)=X αααβ有解.即 1231233(,,)(,,)r r =ααααααβ1233(,,)αααβ13913920610612123170010203b b b b ⎛⎫⎛⎫ ⎪ ⎪=→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭139210126500030b b b ⎛⎫ ⎪ ⎪- ⎪→ ⎪ ⎪- ⎪ ⎪⎝⎭ 因为 1231233(,,)(,,)r r =ααααααβ所以 1231233(,,)(,,)2r r ==ααααααβ 故50,530bb -==又 123(,,)βββ01101101210310311100003a b a b a b ⎛⎫⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭- ⎪⎝⎭ 因为 123123(,,)(,,)r r =αααβββ所以 03ab -= 315a b ==.8.设向量组12311111,1,1,11111λλλ+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ讨论λ取可值时,β不能由123,,ααα线性表示. λ取何值时,β可由123,,ααα唯一线性表示. λ取何值时,β可由123,,ααα线性表示,且有无穷多种表示形式.解:β是否能由123,,ααα线性表示,也即是 非齐次线性方程组123(,,)=αααX β是否有解.321(,,)αααβ211111111111100111101(1)λλλλλλλλλ++⎛⎫⎛⎫ ⎪ ⎪=+−−→- ⎪ ⎪ ⎪ ⎪+--+-⎝⎭⎝⎭行2111100003λλλλλλ+⎛⎫ ⎪−−→- ⎪ ⎪---⎝⎭行(1)当0λ=时,123123(,,)(,,)2r r ==ααααααβ,则123(,,)=αααX β有无穷多解. 也即β可由123,,ααα线性表示,并且有无穷多表示方法. 121122312(1),k k k k k k =--++∈βαααR ;(2)3λ=-时,123123(,,)23(,,)r r =≠=ααααααβ,故方程组123(,,)=αααX β无解,也即β不能由123,,ααα线性表示;(3)0,3λλ≠≠-时,123123(,,)(,,)r r =ααααααβ,则方程组123(,,)=αααX β有唯一解. 即β可由123,,ααα唯一线性表示.13λ=+β123(,,)ααα. 9.设四阶方阵A 的秩为2,且(1,2,3,4)i i ==A ηb ,其中122334112112,,012002⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ηηηηηη 求非齐次方程组=AX b 的通解.解:因为()2r =A ,故非齐次线性方程组=AX b 的导出组的基础解系含有2个向量又 1231202()()10⎛⎫ ⎪- ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη,2342313()()12⎛⎫ ⎪ ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη为=AX b 对应导出组的2个线性无关的解向量,即12,ξξ是=AX b 导出组的基础解系0121()2=+ηηη是=AX b 的一个解.故=AX b 的通解为1122012,k k k k =++∈X ξξηR . 10.已知方程组(I )的通解为1212(0,1,1,0)(1,2,2,1),k k k k =+-∈X T TR设方程组(II )为 122400x x x x +=⎧⎨-=⎩问方程组(I )、(II )是否有非零公共解,若有,求其所有公共解. 解:由题意,(I )的通解为212121212201212,21201R k k k k k k k k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪=+=∈ ⎪⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X将X 的表达式代入方程组(II )得2121222020k k k k k k -++=⎧⎨+-=⎩ 即 12k k =-所以(I )和(II )有公共解,并且公共解为()()11,,,1,1,1,1k k k k k k =---=---∈X T TR .11.设四元齐次方程组(I )为123123423020x x x x x x x +-=⎧⎨++-=⎩ 且已知另一四元齐次方程组(II )的一个基础解系为T1(2,1,2,1)a =-+α,T 2(1,2,4,8)a =-+α,(1)求方程组(I )的一个基础解系(2)当a 为何值时,方程组(I )与(II )有非零公共解?在有非零公共解时,求出全部非零公共解.解:(1)方程组(I )123123423020x x x x x x x +-=⎧⎨++-=⎩显然,系数矩阵的秩为2. 对(I )的系数阵进行初等行变换2310231012113501--⎛⎫⎛⎫→ ⎪ ⎪--⎝⎭⎝⎭故方程组(I )与1231242335x x x x x x +=⎧⎨+=⎩等价取 1210,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT121,0,2,3,0,1,3,5==ββ为(I )的一个基础解系.(2)若(I )、(II )有非零公共解,即存在不全为0的数1234,,,x x x x ,使11223142x x x x +=+ββαα (*)即 12121234(,,,)0x x x x ⎛⎫⎪ ⎪--= ⎪ ⎪⎝⎭ββαα有非零解 故 1212(,,,)4r --<ββαα. 1212(,,,)ββαα10211021112011223240326351805511a a a a --⎛⎫⎛⎫ ⎪⎪--⎪ ⎪=−−→⎪ ⎪----+- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭行1021011200100001a a -⎛⎫⎪- ⎪−−→⎪+ ⎪⎪+⎝⎭行所以 1a =-时,方程组有非零解此时 1342342020x x x x x x -+=⎧⎨+-=⎩即 13423422x x x x x x =-⎧⎨=-+⎩所以 ()()T T122,1,1,0,1,2,0,1=-=-ξξ为(*)的基础解系.将12,ξξ表示式代入(*)得(I )、(II )的全部解为()()TT122,1,1,11,2,4,7k k =-+-X (12,k k 为不同时为0的常数).12.设112224336⎛⎫⎪= ⎪ ⎪⎝⎭A ,求一秩为2的矩阵B ,使.=AB 0解:先求=AX 0的基础解系112112224000336000⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A故齐次线性方程组=AX 0等价于12320x x x ++= 1232x x x =--得 ()()TT121,1,0,2,0,1=-=-ξξ为=AX 0的一个基础解系令 121001--⎛⎫⎪= ⎪ ⎪⎝⎭B ,()2r =B 并且 =AB 0.13.设T 2122(),(,,,)ij n n n a x x x ⨯==A X ,方程组=AX 0的一个基础解系为T 12,2(,,,),1,2,,i i i n b b b i n =,求方程组 1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的通解.解:将题中所求通解的线性方程组记为=BY 0由题意 1112121121121222212222122122220n n n n n n n n n n n n a a a b b b a a a b b b a a a b b b ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭ 两边取转置1112121121121222212222122122220n n n n n n n n nnn n b b b a a a b b b a a a b b b a a a ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭故T A 的每一列为=BY 0的解向量.又 =AX 0的基础解系含有n 个向量,所以,()2r n n n =-=A ,则A 的行向量组线性无关. 又 ()r n =B ,所以,A 的行向量组为=BY 0的基础解系.14.已知4阶方阵1234(,,,)=A αααα,其中234,,ααα线性无关,1232=-ααα,如果1234=+++βαααα,求线性方程组=AB β的通解.解:因为234,,ααα线性无关,又123420=-+⋅αααα, 则 ()3r =A . 所以,=AX 0的基础解系只含有1个向量.又 1234200+-+⋅=αααα所以 123412(,,,)100⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭αααα 故 ()T1,2,1,0=-ξ为=AX 0的一个基础解系. 又 1234+++=ααααβ则 123411(,,,)11⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααααβ 所以 ()T01,1,1,1=η为=AB β的一个特解 故 =AB β的通解为0R k k =+∈X ξη.15.设()ij m n a ⨯=A 的行向量组是某个齐次线性方程组的基础解系. 证明()ij m n b ⨯=B 的行向量组也是该方程组的基础解系⇔存在可逆阵()ij m m p ⨯=P ,使1,1,2,,,1,2,,mij ik kj k b p a i m j n ====∑.解:设m n ⨯A 的行向量组是=CX 0的基础解系,若m n ⨯B 的行向量组也是=CX 0的基础解系, 则A 的行向量组与B 的行向量组等价 故存在可逆阵P ,使得 =B PA , 所以 1mij ik kjk b P a==∑ 1,2,,i m =,1,2,,j n =.反之,若存在可逆阵,()ij m m P ⨯=P P ,使得1,1,2,,;1,2,,mij ik kj k b P a i m j n ====∑则=B PA ,故A 的行向量组与B 的行向量组等价.又 因为A 的行向量组是=CX 0的基础解系. 所以,B 的行向量组也是=CX 0的基础解系.16.设=AX 0的解都是=BX 0的解,则=AX 0与=BX 0同解()()r r ⇔=A B . 证:必要性.若=AX 0与=BX 0同解,则=AX 0与=BX 0具有相同的解空间, 即()()=N A N B 故 ()()n r n r -=-A B , 所以()()r r =A B .充分性.设1,,n r -ξξ是=AX 0的基础解系,()r r =A ,因为=AX 0的解都是=BX 0的解. 所以,1,,n r -ξξ是=BX 0的n r -个线性无关的解向量.又()()r r =A B ,所以,=BX 0的基础解系所含向量的个数为 ()()n r n r n r -=-=-B A因此,1,,n r -ξξ为=BX 0的一个基础解系. 故=AX 0与=BX 0同解.17.设A 为m p ⨯阵,B 为p n ⨯阵,证明=ABX 0与=BX 0同解()()r r ⇔=AB B证:必要性.因为=ABX 0与=BX 0同解,所以,=ABX 0与=BX 0有相同的解空间, 即()()=N AB N B 因此()()n r n r -=-AB B , 故()()r r =AB B . 充分性.设1X 是=BX 0的解,1=BX 0. 则1==ABX A 00. 所以,=BX 0的解都是=ABX 0的解.设1,,n r -ξξ是=BX 0的基础解系,()r r =B ,则1,,n r -ξξ也是=ABX 0的线性无关解向量. 并且,=ABX 0的基础解系所含向量的个数为()()n r n r n r -=-=-AB B所以 1,,n r -ξξ为=ABX 0的基础解系,故=ABX 0与=BX 0同解.18.设A 为m n ⨯阵,B 为m p ⨯阵,证明=AX B 有解()()r r ⇔=A B A证:必要性.A 为m n ⨯阵,B 为m p ⨯阵,=AX B ,则X 为n p ⨯阵 令 1(,,)p =X X X ,1(,,)p =B b b因为 =AX B 所以 1122,,,p p ===AX b AX b AX b 故 12()()()()p r r r r ===A b A b A b A即矩阵B 的列向量组可以由A 的列向量组线性表示 所以 ()()r r =A B A 充分性.若 ()()r r =A B A ,又由1(,,)p =B b b有 ()()()()1,,i r r r r i p ≤≤==A A b A B A所以 ()()1,,i r r i p ==A b A故 12,,,p ===AX b AX b AX b 有解. 设解分别为12,,,p X X X 1212(,,,)(,,,)p p =A X X X b b b即 =AX B 有解.19.设A 为m n ⨯阵,B 为l n ⨯阵,则=AX 0与=BX 0同解⇔()()r r r ⎛⎫== ⎪⎝⎭A AB B证:若=AX 0与=BX 0同解,则⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解.又 ⎛⎫= ⎪⎝⎭A XB 0的解一定是=AX 0的解.由题16, ()r r ⎛⎫= ⎪⎝⎭A A B同理, ()r r ⎛⎫= ⎪⎝⎭A B B故 ()()r r r ⎛⎫== ⎪⎝⎭A A B B .反之,若 ()()r r r ⎛⎫== ⎪⎝⎭A AB B .因为,⎛⎫=⎪⎝⎭A X B 0的解都是=AX 0的解. 所以,由题16,⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解. 又因为⎛⎫= ⎪⎝⎭A X B 0的解都是=BX 0的解,所以 ⎛⎫= ⎪⎝⎭A XB 0与=BX 0同解,故,=AX 0与=BX 0同解.20.设T (),0ij n n a ⨯⎛⎫==⎪⎝⎭Ab A B b ,其中T 12(,,,)n =b b b b ,若()()r r =A B ,则=AX b 有解.证:因为 ()()()()r r r r ≤≤=A A b B A 所以, ()()r r =A b A故 =AX b 有解.21.设A 为(1)n n ⨯-阵,,()n∈=b R B A b ,若b =AX 有解,则||=B 0. 又当()1r n =-A 时,b =AX 有解||⇔=B 0.证:(1)因为A 为(1)n n ⨯-阵,所以()1n ≤-R A .故()()1r r n n =≤-<A b A又 ()=B A b 为n n ⨯阵,故 ||=B 0.(2)若()1r n =-A ,=AX b 有解,则()()1r r n ==-A b A所以||0=B .反之,若||,()1r n ==-B A 0. 故 ()1r n =-B即 ()()()1r r r n ===-A A b B 所以=AX b 有解.22.若方阵A 的行列式为0,则A 的伴随阵*A 各行成比例. 证:因为||0=A ,所以()1r n ≤-A . (1)若()1r n =-A ,则*()1r =A .故*A 的行向量组的秩为1,不妨设第一行1α为行向量的极大无关组,则剩余行向量均可以由1α线性表示,故各行成比例.(2)若()1r n <-A ,则*()0r =A ,即*=A 0,显然各行成比例.23.设(1)(),()ij n n a r n ⨯+==A A ,则方程组0=AX 的任意两解成比例. 证:因为A 为(1)n n ⨯+阵,()r n =A所以,=AX 0的基础解系所含向量个数为(1)1n n +-=. 设ξ为=AX 0的一个基础解系. 则任意解,R k k =∈X ξ. 所以,任意两解成比例.24.设()ij n n a ⨯=A ,且10,1,2,,nijj ai n ===∑,则A 不可逆.证:由于10nijj a==∑故 111⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A 0. 所以,()T1,1,,1=X 是=AX 0的解.即 齐次线性方程组=AX 0有非零解,故||0=A .25.设A 为n n ⨯实矩阵,若对任意n 维非零列向量X ,均有T0>X AX ,则||0.≠A 证:反证,若||0=A则 =AX 0有非零解设1X 是=AX 0的一个非零解,则1=AX 0T T 11100=⋅=X AX X此与对任意 ≠X 0,T0>X AX 矛盾.26.设A 为(实)反对称阵,D 为对角元全大于0的对角阵,则||0+≠A D ,且还有||0.+>A D证:(1)反证,若||0.+=A D 则 ()+=A D X 0有非零解,设为1X1()+=A D X 0进而 T11()0+=X A D XT T 11110+=X AX X DX因为A 为反对称阵,所以 T110=X AX 故 T110=X DX但 1diag(,,),0n i a a a =>D所T110>X DX ,此为矛盾所以, ||0+≠A D . (2)令()||[0,1]f x x x =+∈A D假设 ||0+<A D .因为 (0)||0f =>D ,(1)||0f =+<A D . 由介值定理 存在0(0,1)x ∈使得00()||0f x x =+=A D0001||||0x x x +=+=D A D A 0x D 为对角元全大于0的对角阵. 但由第(1)步 0||0x +≠DA 矛盾. 故||0+>A D . 27.求出平面上n 点(,)(1,2,,(3))i i x y i n n =≥位于一条直线上的充要条件.证:设n 点所共直线为y kx b =+,则关于,k b 的方程组i i y kx b =+ (1,,)i n =有解,从而矩阵12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与1122111n n x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等,故11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ ,反之,若 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ (1)若12n x x x ==,则此n 点共线.(2)否则,121121n x x r x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,但11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 故 11221121nn x y x y r x y ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 从而 12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 1122111nn x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 方程组(未知量为,k b )1122n nkx b y kx b y kx b y +=⎧⎪+=⎪⎨⎪⎪+=⎩ 有解,于是n 点共线,故平面上n 点(,)1,,;1,,i i x y i n y n ==共线的充要条件是 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 即 11221131n n x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭. 28.求出平面内n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充分必要条件. 证:若平面内n 条直线0i i i a x b y c ++=(1,2,,)i n =共点,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,故矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 反之,若矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭秩相等,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,即n 条直线共点.故n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充要条件是 矩阵1122nn a b a b a b ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭的秩相等. 29.设T12(,,,)(1,2,,;)i i i in a a a i r r n ==<α是n 维实向量,且12,,,r ααα线性无关,已知T 12(,,,)n b b b ==β是线性方程组11112212122221122000n n n nr r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的非零解向量,试判断向量组12,,,r ααα,β的线性相关性. 解:设有一组数12,,,,r k k k k 使得11220r r k k k k ++++=αααβ成立,因为T 12(,,,)n b b b ==β是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解,且0≠β,故有T(1,2,,)i i r ==αβ即 T(1,2,,)i i r ==βα于是,由1122T T T T 0r r k k k k ++++=βαβαβαββ得 T0k =ββ,但T0≠ββ,故0k =.从而 11220r r k k k +++=ααα由于向量组12,,,r ααα线性无关,所以有120r k k k ====因此,向量组12,,,,r αααβ线性无关.30.已知向量()()()TTT1231,1,0,2,2,1,1,4,4,5,3,11=-=-=-ηηη,是方程组112334411223442122344324335a x x a x a x d x b x x b x d x c x x c x d ⎧+++=⎪+++=⎨⎪+++=⎩ 的三个解. 求该方程组的通解.解:由已知有()()TT21311,2,1,2,3,6,3,9-=--=-ηηηη是相应的齐次方程组的两个线性无关解.所以,系数矩阵的秩2≤,(因为4()2r -≥A ).又 系数矩阵134242424335a a ab b cc ⎛⎫⎪⎪ ⎪⎝⎭有二阶子式43035≠所以,系数矩阵的秩2≥. 于是,系数矩阵的秩为2.故齐次方程组的基础解系包含2个向量,即2131,--ηηηη是齐次方程组的基础解系. 因此,该方程组的通解为121231112()()(,)R k k k k -+-+∈ηηηηη.31.设12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关.证:设有一组01,,,t k k k 得01112()()()0t t k k k k +++++++=ββαβαβα得 0121122()0t t t k k k k k k k ++++++++=βααα (1)由于12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,所以β不能表为1,,t αα的线性组合,所以010t k k k +++=因此(1)式变为 11220t t k k k +++=ααα由于1,,t αα线性无关,所以 120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.32.已知齐次方程组(I )124213224000x x x ax a x ax a x ++=⎧⎪+=⎨⎪+=⎩的解都满足方程1230x x x ++=,求a 和方程组(I )的通解.解:(I )的解都满足1230x x x ++=的充要条件是(I )与方程组1242132241230000x x x ax a x ax a x x xx ++=⎧⎪+=⎪⎨+=⎪⎪++=⎩同解,于是该方程组系数矩阵的秩等于方程组(I )的秩,即22110100001110a a a a ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭B 与 2211010000a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭A的秩相等,对,A B 都施以行变换得222110100aa a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 2211010000110002a a a a ⎛⎫⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 因此,当0a =时,秩()1=≠A 秩()2=B 不满足题意当0a ≠时 1101010001a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 1101010001100021a a ⎛⎫ ⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 使秩()=A 秩()3=B 的充要条件是12a =,此即12a =为题意所求.把12a =代入方程组(I )得系数矩阵110011012111000102421100110024⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪=→ ⎪⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭A 所以 14243411,,22x x x x x x =-=-=方程组(I )的基础解系为 T11(,,1,1)22=--α通解 为()R k k =∈X α. 33.设121201101t t t ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,且方程组0=AX 的基础解系中含有两个解向量,求0=AX 的通解.解:因为4,()2n n r =-=A ,所以()2r =A 对A 施行初等行变换得1112121201011010211t t t t t t ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A 2212120100(1)(1)t t t t ⎛⎫⎪→ ⎪ ⎪----⎝⎭221012220100(1)(1)tt t t t t --⎛⎫ ⎪→ ⎪ ⎪----⎝⎭要使()2r =A ,则必有1t =,此时与0=AX 同解的方程组为13234x x x x x =⎧⎨=--⎩ 得基础解系 ()()TT121,1,1,0,0,1,0,1=-=-ξξ方程组的通解为 112212(,)R k k k k =+∈X ξξ.34.讨论三个平面11111:a x b y c z d π++=,22222:a x b y c z d π++=,33333:a x b y c z d π++=的位置关系解:设111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,111122223333a b c d a b c d a b c d ⎛⎫ ⎪= ⎪ ⎪⎝⎭A(1)若()()3r r ==A A ,则三平面交于一点,因为三平面的联立方程组仅有唯一解.(2)若()3,()2r r ==A A ,则三平面不相交,因为此时三平面的联立方程组无解. 由()2r =A ,知A 的3个行向量123,,ααα线性相关,故存在3个不全为零的数,123,,k k k 使得1122330k k k ++=ααα,当123,,k k k 都不为零时,三平面中任意两平面的交线与另一平面平行;当123,,k k k 中有一个为零时,三平面中有两平面平行,另一平面与这两平面相交.(3)若()()2r r ==A A ,则三平面相交于一直线,因为此时三平面联立方程组有无穷多解.由于()2r =A ,则A 的3个行向量123,,βββ线性相关. 故存在3个不全为零的数123,,k k k ,使得1122330k k k ++=βββ,当123,,k k k 均不为零时,三平面互异;当123,,k k k 中有一个为零时,三平面中有两平面相重合.(4)若()2r =A ,()1r =A ,则三平面不交,因为此时三平面的联立方程组无解. 由()1r =A ,故三平面平行,又因为()2r =A ,所以三平面中至少有两个互异. (5)若()()1r r ==A A ,则三平面重合,因为此时三平面的方程实际上是一样的.。

方程组课后练习及答案

方程组课后练习及答案

x3 x2 x1 bi x3 x2
x1
bi x3 x2
x1
bi
解: 1 2 a
1
1
2
a
1
1
2
a
1
1 1 2 b 0 1 a 2 b 1 0 1 (a 2) (b 1)
4 5 10 c 0 3 4a 10 c 4 0 0 a 4 c 3b 1
(1)
3.设 2x1 x2 x3 2x4 0,
已知 1,1,1,1T 是方程组的一个解,则
3x1 (2 )x2 (4 )x3 4x4 1,
= k ; k (k为任意常数).
(5)方程组习题课课后练习 1. 设1, 2 , 3 是四元非齐次线性方程组 AX=B 的三个解向量,
rA 3,1 1,2,3,4T , 2 3 0,1,2,3T , 则 AX=B 的通解为 (C) ,C 为任意
1
4
8
7
0
1
3
3
0
1
3
3
0
1
3
3
3 7 9 6 0 2 6 6 0 0 0 0 0 0 0 0
-4
-5
同解方程组
x1 x2
4x3 5,解得基础解系: = 3x3 3
3 1
,非齐次特解
3 0

-4 -5
故通解为:k
3
3
,k为任意常数..
1 0
常数。
2
1 1
(A)
2 3 4
C 111;
1 0
(B)
2 34
C
1 2 3
;
1 2
(C)
2 34
C
3 4 5

《线性方程组》单元测试题(含答案)

《线性方程组》单元测试题(含答案)

《线性方程组》单元测试题(含答案)线性方程组单元测试题(含答案)题目一给定以下线性方程组:- $2x + 3y = 7$- $4x - 2y = 1$求解该方程组。

答案一为了求解该线性方程组,我们可以使用消元法。

在第一个方程中,让我们需要消去x的系数,因此让我们将第一个方程乘以2得到$4x + 6y = 14$。

然后,我们可以将第二个方程减去得到:$(4x + 6y) - (4x - 2y) = 14 - 1$。

简化后得到:$8y = 13$。

解方程$8y = 13$,我们得到$y = \frac{13}{8}$。

将其代入第一个方程中,我们可以解出x:$2x + 3(\frac{13}{8}) = 7$。

简化后得到:$2x + \frac{39}{8} = 7$。

进一步简化,我们得到$2x =\frac{7}{8}$,解得$x = \frac{7}{16}$。

因此,该线性方程组的解为:$x = \frac{7}{16}$,$y =\frac{13}{8}$。

题目二给定以下线性方程组:- $3x - 2y = 5$- $5x + 4y = 7$求解该方程组。

答案二同样使用消元法来求解该线性方程组。

首先,我们可以通过乘以3和乘以5来消除x的系数。

将第一个方程乘以3得到$9x - 6y = 15$,将第二个方程乘以5得到$25x + 20y = 35$。

然后,我们将第一个方程乘以5和第二个方程乘以3相减,得到的方程组为:$(45x + 15y) - (25x + 20y) = 105 - 75$。

简化后得到$20x - 5y = 30$。

解方程$20x - 5y = 30$,我们可以得到$y = 4 - 4x$。

将其代入第一个方程中,我们可以解出x:$3x - 2(4 - 4x) = 5$。

简化后得到$3x - 8 + 8x = 5$,进一步简化得到$11x - 8 = 5$。

解得$x =\frac{13}{11}$。

数学课程线性方程组练习题及答案

数学课程线性方程组练习题及答案

数学课程线性方程组练习题及答案1. 练习题1.1 求解下列线性方程组:(1)3x + 2y = 72x - y = 4(2)2x + y - z = 6x - 3y + 2z = 43x - 2y - z = 1(3)x - 2y + z = 32x + y - 2z = -53x - y + 3z = 72. 答案(1)解:首先,我们可以通过消元法来求解该线性方程组。

将第二个方程的两边乘以2,得到2(2x - y) = 2(4),化简得4x - 2y = 8。

将这个结果与第一个方程相加,得到(3x + 2y) + (4x - 2y) = 7 + 8,化简得7x = 15,所以 x = 15/7。

接下来,将求得的 x 值代入任意一个方程(如第一个方程)中,可以得到:3(15/7) + 2y = 7,化简得2y = 7 - 45/7,化简得2y = -14/7,所以 y = -7/7。

因此,该线性方程组的解为 x = 15/7,y = -1。

(2)解:同样使用消元法求解该线性方程组。

将第二个方程的两边乘以2,得到2(x - 3y + 2z) = 2(4),化简得2x - 6y + 4z = 8。

将第三个方程的两边乘以3,得到3(3x - 2y - z) = 3(1),化简得9x - 6y - 3z = 3。

现在我们有以下三个方程:2x + y - z = 62x - 6y + 4z = 89x - 6y - 3z = 3将第一个方程中的 z 用第二个方程中的 z 的代数式表示,得到 z = 2x + y - 6。

将这个结果代入第三个方程中,可以得到:9x - 6y - 3(2x + y - 6) = 3,化简得3x - 3y = 15,所以 x - y = 5。

我们可以再次将 x - y = 5 代入第一个方程,得到:2x + y - (2x + 5) = 6,化简得 y = 11。

将求得的 y 值代入 x - y = 5,可以解得 x = 16。

线性方程组练习题解析

线性方程组练习题解析

线性方程组练习题解析线性方程组是代数学中的基本概念,其中包含多个线性方程,每个方程包括若干个未知数。

解线性方程组就是要求找到满足所有方程条件的未知数的值。

在代数学和应用数学中,线性方程组是非常重要的一个概念,它在各个领域中都有广泛的应用。

本篇文章将通过解析线性方程组的练习题,帮助读者更好地理解和掌握线性方程组的求解方法。

练习题一:解方程组:2x + 3y = 84x - y = 9解析:我们可以通过消元法来解这个方程组。

首先我们将第二个方程中的y系数变为与第一个方程相等的2倍,然后将两个方程相加,消去y变量:2x + 3y = 88x - 2y = 18得到:10x = 26解方程得到:将x的值带入第一个方程,求出y的值:2(13/5) + 3y = 826/5 + 3y = 83y = 8 - 26/53y = 40/5 - 26/53y = 14/5y = 14/15综上所述,方程组的解为:x = 13/5,y = 14/15练习题二:解方程组:3x - 2y = 7x + 4y = 5解析:我们同样可以使用消元法来解这个方程组。

首先我们将第一个方程中的x系数变为与第二个方程相等的3倍,然后两个方程相减,消去x 变量:3x - 2y = 7得到:-14y = -8解方程得到:y = -8 / -14 = 4 / 7将y的值带入第一个方程,求出x的值:3x - 2(4/7) = 73x - 8/7 = 721x - 8 = 4921x = 57x = 57 / 21 = 19 / 7综上所述,方程组的解为:x = 19/7,y = 4/7练习题三:解方程组:2x + 3y - 4z = 1x + 2y + z = 5x - y - z = 0解析:这个方程组包含三个方程和三个未知数。

我们可以使用消元法来解决这个方程组。

首先我们将第三个方程中的x系数变为与第一个方程相等的2倍,然后两个方程相减,消去x变量:2x + 3y - 4z = 12x - 2y - 2z = 0得到:5y - 2z = 1接下来,我们将第三个方程中的x系数变为与第二个方程相等的1倍,然后两个方程相减,消去x变量:x + 2y + z = 5x - y - z = 0得到:3y + 2z = 5此时,我们已经可以得到两个含有两个未知数的方程:5y - 2z = 13y + 2z = 5我们可以通过消元法或代入法求出y和z的值,然后将其代入原方程组中求解x。

(完整版)线性代数第四章线性方程组试题及答案.doc

(完整版)线性代数第四章线性方程组试题及答案.doc

充 1:当 A 列 秩 ( 或 A 可逆 ,A 在矩 乘法中有左消去律AB=0 B=0;AB=AC B=C.明B =(1,, ⋯,t ), AB = Ai =0,i=1,2, ⋯,s., , ⋯ , t 都是 AX =0212的解 . 而 A 列 秩 , AX =0 只有零解 ,i=0,i=1,2,⋯ ,s, 即 B =0.同理当 B 行 秩(或 B 可逆 ),AB 0 B T A T0 A T0A 0AB CB A C充 2如果 A 列 秩(或 A 可逆) , r( AB )=r( B ).分析 : 只用 明 次方程ABX =0 和 BX =0 同解 .( 此 矩 AB 和 B 的列向量 有相同的 性关系, 从而秩相等 .)明:是 ABX = 的解 AB = B =0( 用推 ) 是 BX = 的解 .于是 ABX =0 和 BX =0 确 同解 .同理当 B 行 秩(或B 可逆) , r( AB )=r( A ).例题一 . 填空1.A m 方 , 存在非零的 m × n 矩 B, 使 AB = 0 的充要条件是 ______.解: Ax 0 有非零解, r Am2.A n 矩 , 存在两个不相等的n 矩 B, C, 使 AB = AC 的充要条件是解: A B C 0 , B, C 不相等, Ax0 有非零解, r An3.若 n 元 性方程 有解, 且其系数矩 的秩r, 当 ______, 方程 有唯一解;当 ______ , 方程 有无 多解 .解:假 方程A m × n x = b, 矩 的秩 r ( A) r .当 r n , 方程 有惟一解 ; 当 r n , 方程 有无 多解 .4. 在 次 性方程 A m ×n x = 0 中 , 若秩 (A) = k 且 1, , ⋯ , r 是它的一个基 解2系 ,r = _____; 当 k = ______ , 此方程 只有零解。

191-习题作业-线性方程组迭代解法 典型习题解答

191-习题作业-线性方程组迭代解法 典型习题解答

� 0 0.5 0 �
BG
� �
0
0.5
0.3333��, r(BG ) 0.6667, Gauss-Seidel 迭代收敛。
�� 0 0.25 0.1667��
20.
设方程组
39x1x1104xx22
7 5
1 若用 Jacobi 迭代法和 Gauss Seidel 迭代法求解方程组是否收敛? 2 若将方程组交换方程次序如何? 解:
l(l 2a2)
l1 0, l2 2a2 r (BG ) lmax 2a2 1
时方程组收敛,条件是: 2 / 2 a 2 / 2
25

已 知A,,用���13迭22代���公b式
�3 � ��1��
x(k1) x(k ) a ( Ax(k) b), (k 0,1, ...)
� �
-1 2 ����x3 �� ��0.5��
(1)写出用 SOR 方法求解的分量计算式;
( 2 ) 求 出 最 佳 松 弛 因 子 wopt 2 /(1 1 r 2 (BJ )) ; 并 用 wopt 计 算 两 步 , 取
x(0) (0, 0, 0)T 。
↓￯x1( k 1) ￯
x(k) 1
� �-0.1333 0.2 0 ��
ln(e
1 B x(1) x(0)
)
kᄈ
ln B
11.3865
Jacobi 迭代至少需要迭代 12 次。
� 0 -0.1000 -0.1500�
BG
� �
0
0.0125 -0.1063 ��,
�� 0 0.0158 -0.0013 ��
ln(e
1 B x(1) x(0)

高教线性代数第三章 线性方程组课后习题答案

高教线性代数第三章  线性方程组课后习题答案

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-+=-⎪⎪-+--=⎨⎪-++-=⎪⎪++-+=-⎩124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 1234234124234234433)31733x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+++=⎪⎪-++=-⎩123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=⎪⎪-++=-⎩123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=-⎪⎪-+-=⎩12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩ 解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥→------⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦102101100101003212000212002000002000000000000000011100010100--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()()45rank A rank B ==<,所以方程组有无穷多解,其同解方程组为1445324122200x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪-+=⎩,解得123451022x k x k x x k x k=+⎧⎪=⎪⎪=⎨⎪=⎪⎪=--⎩ 其中k 为任意常数。

工程数学第3章 线性方程组 习题答案

工程数学第3章 线性方程组 习题答案

'1 , '2 , , 'n 线性无关时, 1 , 2 , , n 也线性无关。
证明:当 1 , 2 , , n 线性相关时,存在不全为0的一组常数
1 , 2 , , n 使得 11 22 nn 0
11 21 m1 12 22 m2 m 0 即 1 2 1n 2n mn
k11 k2 2 km m 0
k1 1 1 k2 2 2 km m m 0 因此,
所以 1 1 , 2 2 ,, m m 这种证法是否正确? 也线性相关。
k11 k2 2 km m 0
i (1, ti , ti2 ,, tin1 ) (i 1,2,, r, r n) 线性无关。
证明:将该向量组的向量当成行向量,写成 r n 矩阵形式:
1 1 A 1 1 1 A 1
t12 t1n1 2 n 1 t2 t2 t2 2 n 1 tr tr tr t1
解:如果两组向量所对应的系数 k1 , k2 , , km 一致,
则该证法正确,否则不一定。
5. 举出一个线性相关的例子,使其中存在非0向量不能用其余向 量线性表出。 解:任意一组线性无关的向量外加一个0向量即可。
6. 设向量 能用向量组 1 , 2 ,, m 线性表出,且表示方式 是唯一的,试用反证法证明 1 , 2 ,, m 必线性无关。 证明:假设 1 , 2 ,, m 线性相关,则至少存在一个 i 可 以被其余向量线性表出,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题3
3-1.求下列齐次线性方程组的通解:
(1)0
87305302z
y x
z
y
x
z y x
.解
对系数矩阵施行行初等变换,得
14
4
7202118
7
3
153211A
)
(000720211阶梯形矩阵B 0
2720211)(0
27
102
1101行最简形矩阵C ,
与原方程组同解的齐次线性方程组为
2
70
211z
y
z x ,

z
y
z
x 2
7211(其中z 是自由未知量),

1z ,得到方程组的一个基础解系
T )1,2
7,211(,
所以,方程组的通解为
,)1,2
7,211(T k k
k 为任意常数.
(2)
8653054320
7224
3
2
1
43215
4
3
21
x x x x x x x x x x x x x .
解对系数矩阵施行行初等变换,得
21
2
2
141010722110
8
653
0543272211A
)
(700001410107
2211阶梯形矩阵B 70000141010211201)(1
010*******行最简形矩阵C ,
与原方程组同解的齐次线性方程组为
25
42431x x x x x x ,

25
424
31x x x x x x (其中43,x x 是自由未知量),
令34(,)
T
x x (1,0)T ,(0,1)T
,得到方程组的一个基础解系
T
)
0,0,1,0,2(1

T
)0,1,0,1,1(2

所以,方程组的通解为
2
2
1
1
k k T
T
k k )0,1,0,1,1()
0,0,1,0,2(21,21,k k 为任意常数.
(3)
7424204362402035
4
3
2
1
543214
3
215421
x x x x x x x x x x x x x x x x x x .
解对系数矩阵施行行初等变换,得
11
03111210426342
4
24
7
A
1103102221000310
)
(阶梯形矩阵B )(0
03110006
5
0110670
101行最简形矩阵C ,
与原方程组同解的齐次线性方程组为
31065067
5
4
532531x x x x x x x x ,
即。

相关文档
最新文档