线性规划的基本理论

合集下载

线性规划

线性规划

线性规划问题建模求解实例分析
产品甲 产品乙 产品丙 工时限制 单件铸造工时(小时) 单件机加工工时(小时) 单件装配工时(小时) 自产铸件成本(元/件) 外协铸件成本(元/件) 机加工成本(元/件) 装配成本(元/件) 产品售价(元/件) 5 6 3 3 5 2 3 23 10 4 2 5 6 1 2 18 7 8 2 4 3 2 16 8000 12000 10000
应用EXCEL工具求解线性规划问题
三、线性规划问题解的表现
EXCEL建模求解,其解的结果在“规划 求解结果”对话框中提示: 1、唯一最优解为“找到一个解”
2、无穷多最优解为“满足条件有多个解”
3、无解为“未找到可行解”
线性规划问题建模求解实例分析
(一)生产计划问题 例1:某工厂生产甲、乙、丙三种产品,都要经过铸造、 机加工(包括本场和外包的)和装配三个车间。甲、乙 两种产品的铸件可以外包协作,也可自行生产,但 产品丙必须在本厂铸造才能保证质量。数据见表。 问:公司为了获得最大利润,甲、乙、丙三种产品 应各生产多少件?甲、乙两种产品的铸件应由本公 司铸造和由外包协作各多少件?
方案。一般要求其非负。
约束条件:反映所给问题的客观限制及完成任务的
具体要求,一般表示为一组决策变量的线性等式或
不等式。
目标函数:问题所要达到的目标。一般表示为决策
变量的线性函数,取最大值或最小值。
线性规划问题基本理论及方法

建模步骤:
确定决策变量:根据决策问题,确定 找出约束条件:找出所有的限制条件,写出其
2
n
(, ) b2

a x a x ... a x (, )b x , x , x ,...,x 0

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

线性规划的对偶理论(第一部分

线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系

线性规划

线性规划

转化 建模
线性规划 问题
三 个 转 化
四个步骤
作 答
最优解
图解法
求解线性规划问题的基本方法
单纯形法(Simple Method)是求解线性规划求解的主要方法,该法
由丹塞(Dantzig)于1947年提出,后经多次改进而成,是求解线性规
划问题的实用算法。由前面的叙述可知,如果线性规划问题的最优
解存在,则必定可以在其可行解集合的顶点(极点)中找到。因此,
第二章
线性规划
(Linear Programming)

数学规划分类
线性规划基本理论
• 线性规划(Linear Programming) 研究的问题主要 有两个方面: ①确定一项任务,如何统筹安排,以尽量做到用最 少的资源来完成它; ②如何利用一定量的人力、物力和财力等资源来完 成最多的任务。 • 目前被广泛应用于军事、工农业生产、交通运输、 工程计算、环境保护、经济管理、教育、商业和 社会科学等许多方面,成为领导决策和提高工作效 果的一种重要手段。
寻求一个最优解就是在其可行解集合的诸极点中搜索最优点。
单纯形法实质上是一个迭代过程,该迭代即是从可行解集合的一
个极点移到另一个邻近的极点,直到判定某一极点为最优解为止。
单纯形法的基本思想是根据问题,从一个基本可行解出发,逐步 改进目标函数的取值,直到求得最优基本可行解。
求得一个基本可行解
查该基本可行解是否为最优解。
0
图解法
5x+4y=20
两个变量的线性规划有最优解,则必能在可行域凸多边形的顶点中找到

某工厂制造两种产品p1、p2。需要三种原料M1、M2、 M3,已知生产1kg产品p1需消耗原材料M1 9kg、M2 4kg、 M3 3kg;生产1kg产品p2需消耗原材料M1 4kg、M2 5kg、M3 10kg。产品p1每千克的利润是700元,产品p2 每千克的利润是1200元。但这个工厂每天能够使用的原 材料为M1 360kg、M2 200kg、M3 300kg。问每天制造 多少产品p1、p2,才能使工厂的利润最大?

第一章 线性规划

第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。

学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。

包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。

包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。

包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。

包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。

当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。

如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。

这些研究当时在英国称为Operational Research,直译为作战研究。

战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。

这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。

我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。

现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。

线性规划及其理论基础

线性规划及其理论基础

线性规划及其理论基础
线性规划是求解数量模型的一种方法,其基本理论是将实际问题表述为一个约束条件的线性规划模型,并利用线性规划的优化原理对模型进行求解,以获得最优解。

线性规划的基本理论包括:
1. 模型及线性表示:线性规划模型是通过将目标函数和约束条件用线性方程组表示的。

2. 目标函数和约束条件:线性规划模型中,目标函数和约束条件必须都是线性的。

3. 最优解:线性规划模型中的最优解是满足所有约束条件下目标函数值最大(或最小)的解。

4. 数学优化原理:线性规划模型的最优解可以通过数学优化原理进行求解,即利用图论、单纯形理论等数学优化方法。

第4章线性规划

第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量

线性规划的标准型和基本概念

线性规划的标准型和基本概念
(1)可行域可以是个凸多边形,可能无界,也可能为 空;
(2)若线性规划问题的最优解存在,它一定可以在 可行域的某一个顶点上得到;
(3)若在两个顶点上同时得到最优解,则该两点连 线上的所有点都是最优解,即LP有无穷多最优解;
(4)若可行域非空有界,则一定有最优解。
24
线性规划的标准形式
标准线性规划模型
minZ 3x1 2x2
st. -2x1 x 2 2
x1-3x2 3
x1 0,x2 0
x2 -2x1+x2=2
4
3 2
-▽Z=(3,2)
minZ 3x1 2x2
-2x1 x 2 2
x1-3x2 3
x1 0,x2 0
Z=
Z x1
,Z x 2
=(-3,-2)
x1-3x2=3
有限资源的合理配置有两类问题 如何合理的使用有限的资源,使生产经营的效益达到最大; 在生产或经营的任务确定的条件下,合理的组织生产,安排经 营活动,使所消耗的资源数最少。
例1,某制药厂生产甲、乙两种药品,生产这两种药品要消耗某种维生 素。生产每吨药品所需要的维生素量,所占用的设备时间,以及该厂每 周可提供的资源总量如下表所示:
j=1
j=1
其中 x为n+k非负剩余变量。
(3) 右端项为负
约束两端乘以(-1) (4) 非负变量与符号不受限制的变量
若 xi的符号不受限制,则可引进非负变量xi1,xi2,令 xi = xi1-xi2,这样就可以使线性规划里所有的变量都转化为有非负限 制的变量。
例7,将下述线性规划问题化为标准型
线性规划的一般数学模型
线性规划模型的特征: (1)用一组决策变量x1,x2,…xn表示某一方案,且在一般情况下,

线性规划(完整版本)

线性规划(完整版本)

2 线性规划基本概念
生产计划问题
➢如何合理使用有限的人力,物力 和资金,使得收到最好的经济效益。 ➢如何合理使用有限的人力,物力 和资金,以达到最经济的方式,完 成生产计划的要求。
例1 生产计划问题(资源利用问题) 某家具厂生产桌子和椅子两种家具。
桌子售价50元/个,椅子销售价格30元/
个,生产桌子和椅子要求需要木工和油 漆工两种工种。生产一个桌子需要木工4 小时,油漆工2小时。生产一个椅子需要 木工3小时,油漆工1小时。该厂每个月 可用木工工时为120小时,油漆工工时为 50小时。问该厂如何组织生产才能使每 月的销售收入最大?
决策变量、约束条件、目标函数
3 线性规划问题的数学模型
一、问题的提出
解:
例2 某厂生产两种产品,下表给 出了单位产品所需资源及单位产品 利润
产品 资源
I
设备
1
材料 A
4
材料 B
0
单位利润
(元)
2
可利用
II
资源
2
8
0
16
4
12
3
问:应如何安排生产计划,才能使 总利润最大?
1.决策变量:设产品I、II的产量分
别为 1、x2
2.目标函数:设总运费为z,则有: max z = 2 x1 + 3 x2
3.约束条件:
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1, x2≥0
例3 营养配餐问题 假定一个成年人每天需要从食物中
获得3000千卡的热量、55克蛋白质和 800毫克的钙。如果市场上只有四种食 品可供选择,它们每千克所含的热量 和营养成分和市场价格见下表。问如 何选择才能在满足营养的前提下使购 买食品的费用最小?

线性规划的数学模型和基本性质

线性规划的数学模型和基本性质

1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?

第01次课--第一章 线性规划

第01次课--第一章 线性规划
(1-2) am1 x1 am 2 x2 amn xn (, )bm
(如果取≥0)
x1 , x2 , , xn (, )0
约束条件 (1-3)
决策变量
30
非负约束条件
国防科技大学
第一节 线性规划的问题及其数学模型
标准形式
max Z c1 x1 c2 x2
cn xn
顶点同时得到最优解,则它们连线上的任意一点都是最
优解,即有无穷最优解。
28
国防科技大学
第一节 线性规划的问题及其数学模型
图解法的优缺点分析
• 直观、简便 • 变量数多于三个以上时,无能为力
通用普遍的 求解方法 (代数方法)

单纯形法
模型的标准形式

29
国防科技大学
第一节 线性规划的问题及其数学模型 线性规划的数学模型的一般形式:
2
国防科技大学
第一章 线性规划与单纯形法
在军事活动,以及生产、管理、经营等社 会活动中经常提出一类问题,即如何合理地利用 有限的人力、物力、财力等资源,以得到最好的 效果。
3
国防科技大学
第一节 线性规划的问题及其数学模型
例 兵力运送问题 设有A、B两种型号的直升机,每次A能运 载35人,需驾驶员2人,B能运载20人,需驾
目标函数取 最大值
j 1 a11 x1 a12 x2 a1n xn b1 n a21 x1 a22 x2 a2 n xn b2 简记做 aij x j bi (i 1, 2, , m) j 1 x 0 ( j 1, 2, , m) a x a x a x b j mn n m m1 1 m 2 2 约束条件为等式, x , x , , x 0 且右端项为非负 1 2 n 值

第一章:线性规划基础

第一章:线性规划基础

表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。

k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n

2.3 线性规划的图解法

2.3 线性规划的图解法

1984年印度的Karmarkar提出“投影梯度法”
线性规划是研究线性不等式组的理论,或者 说是研究(高维空间中)凸多面体的理论,是线 性代数的应用和发展。
线性规划问题的一般形式: Max(Min)S=c1x1+c2x2+…..+cnxn s.t. a11x1+a12x2+….+a1nxn (=, )b1
20
10
10
20
Q1(25,0) 30 40
x1
解的讨论:
无界解:
例:max S=x1+x2 s.t. -2x1+x2 40 x1-x2 20 x1,x2 0
x2 50
40 30
该可行域无界,目标函 数值可增加到无穷大, 称这种情况为无界解或 无最优解。
20
10
10
20
30
40
x1
例2.1的数学模型 max S=50x1+30x2 s.t. 4x1+3x2 120 2x1+x2 50 x1,x2 0
x2 50 由 4x1+3x2 120 x1 0 40 30 x2 0 围成的区域
20
10
4x1+3x2 120
10
20
30
40
x1
x2 50
40 30
x2 50
40 30
20 可行域 10
目标函数是同约束 条件:4x1+3x2 120 平行的直线 x2 = S/30-(4/3)x1
10
20
30
40
x1
x2 50
40 30
当S的值增加时,目 标函数同约束条件: 4x1+3x2 120

实用运筹学习题选详解

实用运筹学习题选详解

运筹学判断题一、第1章 线性规划的基本理论及其应用 1、线性规划问题的可行解集不一定是凸集。

(×) 2、若线性规划无最优解则其可行域无界。

(×)3、线性规划具有惟一的最优解是指最优表中非基变量检验数全部非零。

(√)4、线性规划问题的每一个基本可行解对应可行域的一个顶点。

(√)5、若线性规划模型的可行域非空有界,则其顶点中必存在最优解。

(√)6、线性规划问题的大M 法中,M 是负无穷大。

(×)7、单纯形法计算中,若不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量为负。

(√)8、对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。

(√)。

9、一旦一个人工变量在迭代过程中变为非基变量后,则该变量及相应列的数字可以从单纯性表中删除,且这样做不影响计算结果。

(√)10、线性规划的目标函数中系数最大的变量在最优解中总是取正值。

(×)11、对一个有n 个变量,m 个约束的标准型的线性规划问题,其可行域的顶点恰好为个m n C 。

(×)12、线性规划解的退化问题就是表明有多个最优解。

(×)13、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

(√) 14、单纯型法解线性规划问题时值为0的变量未必是非基变量。

(√) 15、任何线性规划问题度存在并具有唯一的对偶问题。

(√) 16、对偶问题的对偶问题一定是原问题。

(√)17、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

(×)18、若原问题有可行解,则其对偶问题也一定有可行解。

(×) 19、若原问题无可行解,其对偶问题也一定无可行解。

(×) 20、若原问题有最优解,其对偶问题也一定有最优解。

(√) 21、已知*i y 为线性规划的对偶问题的最优解,若*0i y >,说明在最优生产计划中,第i 种资源一定有剩余。

4线性规划的基本理论

4线性规划的基本理论

第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。

教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§4.1 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p =,记12(,,,)m T B j j j x x x x =,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -=,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p =就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++,使121(,,,,,,)r r m B p p p p p +=成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点. 证明 由定理4.1.1和定理2.2.2知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T Tx x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理4.1.2知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑.设s x 是使(LP )中目标函数值达到最小的基本可行解,即 1min T T s i i kc x c x ≤≤=,则11,kkTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,l d d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑.于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥=和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT T i i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀=,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立. 定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp q si i j p p s q t λλμ=≥==≥=∑使11p p q q sti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论4.1.6及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理2.2.10知,x 为(LP )的可行解,从而由(*)式知,111p p q q stTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理2.2.10知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑,使 11kli i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥=, 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥=.从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。

第3章 线性规划的单纯形法《管理运筹学》PPT课件

第3章 线性规划的单纯形法《管理运筹学》PPT课件
当第一阶段求解结果表明问题有可行解时,第二阶段 是在原问题中去除人工变量,并从此可行解(第一阶段的 最优解)出发,继续寻找问题的最优解。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。

最优化理论和方法-第二章 线性规划基本理论和算法

最优化理论和方法-第二章 线性规划基本理论和算法

其中 向量表示:
给定,变量是
定义标准形 有必要吗?
其中
给定,变量是
标准形的特征:极小化、等式约束、变量非负
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
例4. 化成标准形
等 价 于
最优化问题的等价表述指 两个问题的最优值相等、差一个常数、或者互为相反数, 由其中一个问题的最优解可以得到另一个的最优解。
cT
( x* )T
( 1, 1)
( 0, 0)
( 0, 1) (x1, 0), x1 ≥ 0 ( 1, 0) (0, x2), x2∈[0,1] (-1, -1) 没有 有限 解
解的几何特征
惟一的顶点 一条边 一条边 无(下)界
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
只要有 m 个单位列 e1 , e2 , … , em 即可,次序可以打乱!
◎ 规范形的系数的一种解释
yj B1aj aj y1ja1 y2 ja2 ymjam
规范形第 j 列的系数是用当前基表示 aj 时的系数!
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
线性规划问题解的几种情况
提示: 学习单纯形法之前,请务必学习并理解书上 p.19, 例2.2.1.
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
2.2 单纯形法
• 适用形式:标准形(基本可行解等价于极点) • 理论基础:线性规划的基本定理! • 基本思想:从约束集的某个极点/BFS开始,依次
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划的基本理论 The Standardization Office was revised on the afternoon of December 13, 2020第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。

教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§ 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p =,记12(,,,)m T B j j j x x x x =,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -=,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p =就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++,使121(,,,,,,)r r m B p p p p p +=成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点.证明 由定理4.1.1和定理知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T Tx x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即 1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑.设s x 是使(LP )中目标函数值达到最小的基本可行解,即1min T T s i i kc x c x ≤≤=,则11,k kTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,ld d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑.于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥=和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT T i i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀=,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立. 定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp q si i j p p s q t λλμ=≥==≥=∑使 11p p q q s ti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理知,x 为(LP )的可行解,从而由(*)式知,111p p q q stTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑,使 11kli i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥=, 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥=.从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。

相关文档
最新文档