人教版八年级上册数学 轴对称解答题单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学 轴对称解答题单元测试卷附答案

一、八年级数学 轴对称解答题压轴题(难)

1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).

(1)∠A=______度;

(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;

(3)当△APQ 为等边三角形时,直接写出t 的值.

【答案】(1)60;(2)

103或203;(3)5或20 【解析】

【分析】

(1)根据等边三角形的性质即可解答;

(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;

(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.

【详解】

解:(1)60°.

(2)∵∠A=60°,

当∠APQ=90°时,∠AQP=90°-60°=30°.

∴QA=2PA .

即2022 2.t t -=⨯

解得 10.3

t = 当∠AQP=90°时,∠APQ=90°-60°=30°.

∴PA=2QA .

即2(202)2.t t -=

解得 20.3

t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为

102033或. (3)①由题意得:AP=2t ,AQ=20-2t

∵∠A=60°

∴当AQ=AP时,△APQ为等边三角形

∴2t=20-2t,解得t=5

②当P于B重合,Q与C重合,则所用时间为:4÷2=20

综上,当△APQ为等边三角形时,t=5或20.

【点睛】

本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.

2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.

定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.

定理应用:

(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.

(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.

【答案】(1)见解析;(2)5

【解析】

【分析】

定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;

(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;

(2)连接BD,BE,证明△BDE是等边三角形即可解答.

【详解】

解:定理证明:

∵MN⊥AB,

∴∠PCA=∠PCB=90°.

又∵AC=BC,PC=PC,

∴△PAC≌△PBC(SAS),

∴PA=PB.

定理应用:(1)如图2,连结OA、OB、OC.

∵直线m是边BC的垂直平分线,

∴OB=OC,

∵直线n是边AC的垂直平分线,

∴OA=OC,

∴OA=OB

∵OH⊥AB,

∴AH=BH;

(2)如图③中,连接BD,BE.

∵BA=BC,∠ABC=120°,

∴∠A=∠C=30°,

∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,

∴DA=DB,EB=EC,

∴∠A=∠DBA=30°,∠C=∠EBC=30°,

∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,

∴△BDE是等边三角形,

∴AD=BD=DE=BE=EC,

∵AC=15=AD+DE+EC=3DE,

∴DE=5,

故答案为:5.

【点睛】

本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性

质等知识,掌握并灵活运用数学基本知识是解答本题的关键.

3.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .

(1)如图 1,求BFC ∠的度数;

(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:

2EAC EDF ∠=∠;

(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.

【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.

【解析】

【分析】

(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以

90BFC BAC ∠=∠=︒.

(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,

GB GK DG ==,所以

DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以

2CAE EDF ∠=∠.

(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,

所以ADN DHN S S ∆∆-= 1122

DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.

【详解】

(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.

相关文档
最新文档