栈的链式存储结构的表示和实现实验报告
栈的实验报告结论(3篇)
第1篇一、实验目的1. 理解栈的基本概念和操作;2. 掌握栈的顺序存储和链式存储实现方法;3. 熟悉栈在程序设计中的应用。
二、实验内容1. 栈的顺序存储结构实现;2. 栈的链式存储结构实现;3. 栈的基本操作(入栈、出栈、判空、求栈顶元素);4. 栈在程序设计中的应用。
三、实验方法1. 采用C语言进行编程实现;2. 对实验内容进行逐步分析,编写相应的函数和程序代码;3. 通过运行程序验证实验结果。
四、实验步骤1. 实现栈的顺序存储结构;(1)定义栈的结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证顺序存储结构的栈操作。
2. 实现栈的链式存储结构;(1)定义栈的节点结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证链式存储结构的栈操作。
3. 栈在程序设计中的应用;(1)实现一个简单的四则运算器,使用栈进行运算符和操作数的存储;(2)实现一个逆序输出字符串的程序,使用栈进行字符的存储和输出;(3)编写测试程序,验证栈在程序设计中的应用。
五、实验结果与分析1. 顺序存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,栈顶元素增加;(2)出栈操作:在栈非空的情况下,出栈操作成功,栈顶元素减少;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
2. 链式存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,链表头指针指向新节点;(2)出栈操作:在栈非空的情况下,出栈操作成功,链表头指针指向下一个节点;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
3. 栈在程序设计中的应用实验结果:(1)四则运算器:成功实现加、减、乘、除运算,并输出结果;(2)逆序输出字符串:成功将字符串逆序输出;(3)测试程序:验证了栈在程序设计中的应用。
数据结构线性表的链式表示和实现的实习报告
数学与计算科学学院实验报告实验项目名称线性表的链式表示与实现所属课程名称数据结构实验类型验证型实验日期班级学号姓名成绩2.调试第一次显示错误如下:原因:由于没有头文件及宏定义以及自定义,因此导致许多错误,可能还有许多错误没有显示3. 将以下语句编入VC++6.0中#include "stdio.h"#include "stdlib.h"#define OK 1#define ERROR 0typedef int ElemType;typedef int Status;4.调试第二次显示错误如下:原因:由于算法中许多变量没有定义,因此有许多错误5. 将以下语句加入算法中:int i;LinkList p;(加入创建链表的算法中)LinkList p;int j;(加入查找元素的算法中)LinkList p,s;int j;(加入插入元素的算法中)LinkList p,q;int j;(加入删除元素的算法中)6.调试第三次显示没有错误:7. 现在开始编写主函数:(1)先编写调用创建链表的函数的主函数:如下:void main(){LinkList L;int i,n;scanf("%d",&n);CreateList_L(L,n);for(i=n;i>0;--i)printf("%d ",L->data);printf("\n");}调试显示为:运行显示为:产生了随机数说明for循环语句那里编写错误因此修改为:LinkList p;for(p=L->next;p!=NULL;p=p->next)printf("%d ",p->data);调试显示为:运行显示为:这次正确了那么继续编写下面的其他主函数,形成的总的主函数为:void main(){LinkList L,p;int i,n;scanf("%d",&n);CreateList_L(L,n);for(p=L->next;p!=NULL;p=p->next)printf("%d ",p->data);printf("\n");ElemType e;scanf("%d", &i);GetElem_L(L, i, e);printf("%d\n",e);scanf("%d",&i);scanf("%d",&e);ListInsert_L(L, i, e);for(p=L->next;p!=NULL;p=p->next)printf("%d ",p->data);printf("\n");scanf("%d", &i);ListDelete_L(L,i,e);printf("%d\n",e);for(p=L->next;p!=NULL;p=p->next)printf("%d ",p->data);printf("\n");}8.调试第四次显示为:9.运行显示结果为:10. 但运行后的界面显得很单调;要是忘记下一个算法是什么就容易输入出错,也不适合大众使用;因此为了将程序优化,所以在主函数中增加以下输入输出语句和条件语句;为了让程序更加严谨,因此还加入一些循环语句以及条件语句,那么主函数语句变为:main(){LinkList L,p;int i,n,x,y,z;ElemType e;printf("请输入您想构建的链式表的元素个数:\n");scanf("%d",&n);printf("请输入您想构建的链式表:\n");CreateList_L(L,n);printf("您构建的链式表是:\n");for(p=L->next;p!=NULL;p=p->next)printf("%d ",p->data);printf("\n");printf("请输入您想查找的元素是第几个元素:\n");scanf("%d", &i);for(x=2;(i<=0||i>n)&&x>=0;--x){switch(x){case 2:printf("输入的数字错误,还有两次重新输入符合要求的数字的机会:\n");break;case 1:printf("输入的数字错误,还有一次重新输入符合要求的数字的机会:\n");break;case 0:printf("输入的数字错误,您的输入机会已经用完\n");return ERROR;printf("%d ",p->data);printf("\n");return 0;}11.调试第五次显示为:、12.运行后结果显示为:这样那么程序就完整了,清晰明了,用户运行的时候也易知道自己要输入什么了【实验结论】(结果)。
《数据结构》实验报告
苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
数据结构实验-实验指导书
实验一线性表操作一、实验目的1熟悉并掌握线性表的逻辑结构、物理结构。
2熟悉并掌握顺序表的存储结构、基本操作和具体的函数定义。
3熟悉VC++程序的基本结构,掌握程序中的用户头文件、实现文件和主文件之间的相互关系及各自的作用。
4熟悉VC++操作环境的使用以及多文件的输入、编辑、调试和运行的全过程。
二、实验要求1实验之前认真准备,编写好源程序。
2实验中认真调试程序,对运行结果进行分析,注意程序的正确性和健壮性的验证。
3不断积累程序的调试方法。
三、实验内容基本题:1对元素类型为整型的顺序存储的线性表进行插入、删除和查找操作。
加强、提高题:2、编写一个求解Josephus问题的函数。
用整数序列1, 2, 3, ……, n表示顺序围坐在圆桌周围的人。
然后使用n = 9, s = 1, m = 5,以及n = 9, s = 1, m = 0,或者n = 9, s = 1, m = 10作为输入数据,检查你的程序的正确性和健壮性。
最后分析所完成算法的时间复杂度。
定义JosephusCircle类,其中含完成初始化、报数出圈成员函数、输出显示等方法。
(可以选做其中之一)加强题:(1)采用数组作为求解过程中使用的数据结构。
提高题:(2)采用循环链表作为求解过程中使用的数据结构。
运行时允许指定任意n、s、m数值,直至输入n = 0退出程序。
实验二栈、队列、递归应用一、实验目的1熟悉栈、队列这种特殊线性结构的特性2熟练掌握栈、队列在顺序存储结构和链表存储结构下的基本操作。
二、实验要求1实验之前认真准备,编写好源程序。
2实验中认真调试程序,对运行结果进行分析,注意程序的正确性和健壮性的验证。
3不断积累程序的调试方法。
三、实验内容基本题(必做):1分别就栈的顺序存储结构和链式存储结构实现栈的各种基本操作。
2、假设以带头结点的循环链表表示队列,并且只设一个指针指向对尾结点,不设头指针,试设计相应的置队空、入队和出队的程序。
加强题:3设线性表A中有n个字符,试设计程序判断字符串是否中心对称,例如xyzyx和xyzzyx都是中心对称的字符串。
数据结构 实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
堆栈的实验报告
一、实验目的1. 理解堆栈的基本概念和原理;2. 掌握堆栈的顺序存储和链式存储方法;3. 熟悉堆栈的基本操作,如入栈、出栈、判断栈空、求栈顶元素等;4. 能够运用堆栈解决实际问题。
二、实验内容1. 堆栈的基本概念和原理;2. 堆栈的顺序存储和链式存储方法;3. 堆栈的基本操作实现;4. 堆栈的应用实例。
三、实验原理1. 堆栈的基本概念和原理:堆栈是一种特殊的线性表,它按照“后进先出”(LIFO)的原则组织数据。
即最后进入堆栈的数据元素最先出栈。
2. 堆栈的顺序存储方法:使用一维数组实现堆栈,栈顶指针top指向栈顶元素。
3. 堆栈的链式存储方法:使用链表实现堆栈,每个节点包含数据域和指针域。
4. 堆栈的基本操作实现:(1)入栈:将元素插入到栈顶,如果栈未满,则top指针加1,并将元素值赋给top指向的元素。
(2)出栈:删除栈顶元素,如果栈不为空,则将top指向的元素值赋给变量,并将top指针减1。
(3)判断栈空:如果top指针为-1,则表示栈为空。
(4)求栈顶元素:如果栈不为空,则将top指向的元素值赋给变量。
四、实验步骤1. 使用顺序存储方法实现堆栈的基本操作;2. 使用链式存储方法实现堆栈的基本操作;3. 编写程序,测试堆栈的基本操作是否正确;4. 分析实验结果,总结实验经验。
五、实验结果与分析1. 使用顺序存储方法实现堆栈的基本操作:(1)入栈操作:当栈未满时,将元素插入到栈顶。
(2)出栈操作:当栈不为空时,删除栈顶元素。
(3)判断栈空:当top指针为-1时,表示栈为空。
(4)求栈顶元素:当栈不为空时,返回top指向的元素值。
2. 使用链式存储方法实现堆栈的基本操作:(1)入栈操作:创建新节点,将其作为栈顶元素,并修改top指针。
(2)出栈操作:删除栈顶元素,并修改top指针。
(3)判断栈空:当top指针为NULL时,表示栈为空。
(4)求栈顶元素:返回top指针指向的节点数据。
3. 实验结果分析:通过实验,验证了顺序存储和链式存储方法实现的堆栈基本操作的正确性。
栈的表示及栈的应用实验心得
栈的表示及栈的应用实验心得
栈是一种常见的数据结构,特点是后进先出,常用于程序内存中的函数调用、表达式
求值等方面。
栈有多种表示方法,常见的包括顺序栈和链式栈。
在顺序栈中,使用一
个数组来表示栈,通过一个指针指向栈顶元素,实现栈的基本操作。
链式栈是在链表
的基础上实现栈,其中栈顶元素表示为链表的头结点。
在实验中,我通过编写程序来熟悉了使用栈。
具体来说,我设计了一个括号匹配程序。
该程序可以读取一个字符串,检查其中的括号是否匹配,如果匹配则输出“括号匹配”,否则输出“括号不匹配”。
在程序中,我使用顺序栈来实现检查括号匹配的功能。
具体来说,我遍历每一个字符,遇到左括号时则将其压入栈中,遇到右括号时则
判断栈顶元素是否为相应的左括号,如果匹配则弹出栈顶元素,继续遍历字符串,直
至遍历完成。
如果遍历完成后栈为空,则表示字符串中的括号匹配,否则表示不匹配。
通过这个实验,我对栈的表示和使用有了更深入的了解。
共享一下这个实验心得,希
望对其他学习数据结构的同学有所帮助。
数据结构上机实验报告
数据结构实验报告课程数据结构 _ 院系专业班级实验地点姓名学号实验时间指导老师数据结构上机实验报告1一﹑实验名称:实验一——链表二﹑实验目的:1.了解线性表的逻辑结构特性;2.熟悉链表的基本运算在顺序存储结构上的实现,熟练掌握链式存储结构的描述方法;3.掌握链表的基本操作(建表、插入、删除等)4. 掌握循环链表的概念,加深对链表的本质的理解。
5.掌握运用上机调试链表的基本方法三﹑实验内容:(1)创建一个链表(2)在链表中插入元素(3)在链表中删除一个元素(4)销毁链表四﹑实验步骤与程序#include <iostream.h>#include <malloc.h>typedef struct LNode{int data;struct LNode *next;}Lnode, *LinkList;//假设下面的链表均为带头结点。
void CreatLinkList(LinkList &L,int j){//建立一个链表L,数据为整数,数据由键盘随机输入。
LinkList p,q;L=(LinkList )malloc(sizeof(Lnode));L->next=NULL;q=L;cout<<"请输入一个链表:"<<endl;for(int i=0;i<j;i++){ p=(LinkList)malloc(sizeof(Lnode));cin>>p->data;p->next=q->next;q->next=p;q=p;}}int PrintLinkList(LinkList &L){//输出链表L的数据元素LinkList p;p=L->next;if(L->next==NULL){cout<<"链表没有元素!"<<endl;return 0;}cout<<"链表的数据元素为:";while(p){cout<<p->data<<" ";p=p->next;}cout<<endl;return 1;}void LinkListLengh(LinkList &L){//计算链表L的数据元素个数。
顺序栈实验报告
顺序栈实验报告顺序栈实验报告一、引言顺序栈是一种基本的数据结构,它具有先进先出的特点。
在本次实验中,我们将学习并实现顺序栈的基本操作,包括入栈、出栈、判空和获取栈顶元素等。
通过这次实验,我们将深入理解栈的概念和原理,并掌握如何使用顺序栈解决实际问题。
二、实验目的1. 学习顺序栈的定义和基本操作。
2. 掌握顺序栈的实现方法。
3. 理解顺序栈的应用场景。
三、实验过程1. 定义顺序栈的结构在本次实验中,我们选择使用数组来实现顺序栈。
首先,我们需要定义一个栈的结构体,包括栈的容量和栈顶指针。
2. 初始化栈在实验开始时,我们需要初始化一个空栈。
这里,我们将栈顶指针设置为-1,表示栈为空。
3. 入栈操作当我们需要将一个元素压入栈时,我们首先判断栈是否已满。
如果栈已满,则无法进行入栈操作;否则,我们将栈顶指针加1,并将元素放入栈顶位置。
4. 出栈操作当我们需要从栈中弹出一个元素时,我们首先判断栈是否为空。
如果栈为空,则无法进行出栈操作;否则,我们将栈顶指针减1,并返回栈顶元素。
5. 判空操作判断栈是否为空可以通过检查栈顶指针是否等于-1来实现。
如果栈顶指针等于-1,则表示栈为空;否则,表示栈非空。
6. 获取栈顶元素要获取栈顶元素,我们只需返回栈顶指针所指向的元素即可。
需要注意的是,此操作不会改变栈的状态。
四、实验结果通过实验,我们成功实现了顺序栈的基本操作,并进行了测试。
在测试过程中,我们发现顺序栈可以有效地存储和操作数据。
我们可以轻松地将元素入栈和出栈,并通过判断栈是否为空来避免错误操作。
同时,获取栈顶元素的操作也非常方便,可以快速获取栈中最新的数据。
五、实验总结通过本次实验,我们深入了解了顺序栈的概念和原理,并掌握了顺序栈的基本操作。
顺序栈作为一种基本的数据结构,在实际应用中具有广泛的用途。
例如,在计算机程序中,我们可以使用顺序栈来实现函数调用的堆栈,以便保存函数的返回地址和局部变量等信息。
此外,在表达式求值、括号匹配和逆波兰表达式等问题中,顺序栈也发挥着重要的作用。
《数据结构》实验指导及实验报告栈和队列
《数据结构》实验指导及实验报告栈和队列实验四栈和队列⼀、实验⽬的1、掌握栈的结构特性及其⼊栈,出栈操作;2、掌握队列的结构特性及其⼊队、出队的操作,掌握循环队列的特点及其操作。
⼆、实验预习说明以下概念1、顺序栈:2、链栈:3、循环队列:4、链队三、实验内容和要求1、阅读下⾯程序,将函数Push和函数Pop补充完整。
要求输⼊元素序列1 2 3 4 5 e,运⾏结果如下所⽰。
#include#include#define ERROR 0#define OK 1#define STACK_INT_SIZE 10 /*存储空间初始分配量*/#define STACKINCREMENT 5 /*存储空间分配增量*/typedef int ElemType; /*定义元素的类型*/typedef struct{ElemType *base; /*定义栈底部指针*/ElemType *top; /*定义栈顶部指针*/int stacksize; /*当前已分配的存储空间*/}SqStack;int InitStack(SqStack *S); /*构造空栈*/int push(SqStack *S,ElemType e); /*⼊栈操作*/int Pop(SqStack *S,ElemType *e); /*出栈操作*/int CreateStack(SqStack *S); /*创建栈*/void PrintStack(SqStack *S); /*出栈并输出栈中元素*/int InitStack(SqStack *S){S->base=(ElemType *)malloc(STACK_INT_SIZE *sizeof(ElemType)); if(!S->base) return ERROR;S->top=S->base;int Push(SqStack *S,ElemType e){if(S->top-S->base>=S->stacksize){S->base=(ElemType*)realloc(S->base,(S->stacksize+STACKINCREMENT)*sizeof(ElemType)); S->top=S->base+S->stacksize;S->stacksize+=STACKINCREMENT;}*S->top++=e;return 1}/*Push*/int Pop(SqStack *S,ElemType *e){if(S->top!=S->base){*e=*--S->top;return 1;}elsereturn 0;}/*Pop*/int CreateStack(SqStack *S){int e;if(InitStack(S))printf("Init Success!\n");else{printf("Init Fail!\n");return ERROR;}printf("input data:(Terminated by inputing a character)\n"); while(scanf("%d",&e))Push(S,e);return OK;}/*CreateStack*/while(Pop(S,&e))printf("%3d",e);}/*Pop_and_Print*/int main(){SqStack ss;printf("\n1-createStack\n");CreateStack(&ss);printf("\n2-Pop&Print\n");PrintStack(&ss);return 0;}●算法分析:输⼊元素序列1 2 3 4 5,为什么输出序列为5 4 3 2 1?体现了栈的什么特性?2、在第1题的程序中,编写⼀个⼗进制转换为⼆进制的数制转换算法函数(要求利⽤栈来实现),并验证其正确性。
数据结构栈的实验报告
数据结构栈的实验报告篇一:数据结构栈和队列实验报告一、实验目的和要求(1)理解栈和队列的特征以及它们之间的差异,知道在何时使用那种数据结构。
(2)重点掌握在顺序栈上和链栈上实现栈的基本运算算法,注意栈满和栈空的条件。
(3)重点掌握在顺序队上和链队上实现队列的基本运算算法,注意循环队队列满和队空的条件。
(4)灵活运用栈和队列这两种数据结构解决一些综合应用问题。
二、实验环境和方法实验方法:(一)综合运用课本所学的知识,用不同的算法实现在不同的程序功能。
(二)结合指导老师的指导,解决程序中的问题,正确解决实际中存在的异常情况,逐步改善功能。
(三)根据实验内容,编译程序。
实验环境:Windows xpVisual C++6.0三、实验内容及过程描述实验步骤:①进入Visual C++ 6.0集成环境。
②输入自己编好的程序。
③检查一遍已输入的程序是否有错(包括输入时输错的和编程中的错误),如发现有错,及时改正。
④进行编译和连接。
如果在编译和连接过程中发现错误,频幕上会出现“报错信息”,根据提示找到出错位置和原因,加以改正。
再进行编译,如此反复直到不出错为止。
⑤运行程序并分析运行结果是否合理。
在运行是要注意当输入不同的数据时所得结果是否正确,应运行多次,分别检查在不同情况下结果是否正确。
实验内容:编译以下题目的程序并调试运行。
1)、编写一个程序algo3-1.cpp,实现顺的各种基本运算,并在此基础上设计一程序并完成如下功能:(1)初始化栈s;(2)判断栈s是否非空;序栈个主(3)依次进栈元素a,b,c,d,e;(4)判断栈s是否非空;(5)输出出栈序列;(6)判断栈s是否非空;(7)释放栈。
图3.1 Proj3_1 工程组成本工程Proj3_1的组成结构如图3.1所示。
本工程的模块结构如图3.2所示。
图中方框表示函数,方框中指出函数名,箭头方向表示函数间的调用关系。
图3.2 Proj3_1工程的程序结构图其中包含如下函数:InitStack(SqStack * s) //初始化栈SDestroyStack(SqStack * s) //销毁栈sStackEmpty(SqStack *s) //判断栈空Push(SqStack * s,ElemType e) //进栈Pop(SqStack * s,ElemType e) //出栈GetTop(SqStack *s,ElemType e) //取栈顶元素对应的程序如下://文件名:algo3-1.cpp#include stdio.h#include malloc.h#define MaxSize 100typedef char ElemType;typedef struct{ElemType data[MaxSize];int top; //栈顶指针} SqStack;void InitStack(SqStack * s) //初始化栈S { s=(SqStack *)malloc(sizeof(SqStack));s- top=-1; //栈顶指针置为-1}void DestroyStack(SqStack * s) //销毁栈s{free(s);}bool StackEmpty(SqStack *s) //判断栈空{return(s- top==-1);}bool Push(SqStack * s,ElemType e) //进栈{ if (s- top==MaxSize-1) //栈满的情况,即栈上溢出 return false;s- top++; //栈顶指针增1s- data[s- top]=e; //元素e放在栈顶指针处return true;}bool Pop(SqStack * s,ElemType e) //出栈{ if (s- top==-1) //栈为空的情况,即栈下溢出return false;e=s- data[s- top]; //取栈顶指针元素的元素s- top--;//栈顶指针减1return true;}bool GetTop(SqStack *s,ElemType e) //取栈顶元素 { if (s- top==-1) //栈为空的情况,即栈下溢出return false;e=s- data[s- top]; //取栈顶指针元素的元素return true;}设计exp3-1.cpp程序如下 //文件名:exp3-1.cpp#include stdio.h#include malloc.h#define MaxSize 100typedef char ElemType;typedef struct{ElemType data[MaxSize];int top; //栈顶指针} SqStack;extern void InitStack(SqStack *extern void DestroyStack(SqStack *extern bool StackEmpty(SqStack *s);extern bool Push(SqStack * s,ElemType e);extern bool Pop(SqStack * s,ElemTypeextern bool GetTop(SqStack *s,ElemTypevoid main(){ElemType e;SqStack *s;printf( 栈s的基本运算如下:\nprintf( (1)初始化栈s\nInitStack(s);printf( (2)栈为%s\n ,(StackEmpty(s)? 空 : 非空 )); printf( (3)依次进栈元素a,b,c,d,e\nPush(s, aPush(s, bPush(s, cPush(s, dPush(s, eprintf( (4)栈为%s\n ,(StackEmpty(s)? 空 : 非空 )); printf( (5)出栈序列:while (!StackEmpty(s)){Pop(s,e);printf( %c ,e);}printf( \nprintf( (6)栈为%s\n ,(StackEmpty(s)? 空 : 非空 ));printf( (7)释放栈\nDestroyStack(s);}运行结果如下:2)、编写一个程序algo3-2.cpp,实现链栈的各种基本运算,并在此基础上设计一个主程序并完成如下功能:(1)初始化链栈s;(2)判断链栈s是否非空;(3)依次进栈a,b,c,d,e;(4)判断链栈s是否非空;(5)输出链栈长度;(6)输出从栈底到栈顶元素;(7)输出出队序列;(8)判断链栈s是否非空;图3.3 Proj3_2工程组成(9)释放队列。
数据结构实验报告队列的表示与实现
一旦visit失败, 则操作失败。
链队列:
//单链队列-—队列的链式存储结构
typedef struct QNode{
QElemType data;
struct QNode *next;
}QNode,*QueuePtr;
typedef struct{
if(! Q.front )exit(OVERFLOW); //存储分配失败
Q.front —〉next =NULL;
return OK;}
Status DestoryQueue(LinkQueue &Q){//销毁队列Q, Q不再存在
while(Q.front){
Q。rear=Q.front —〉next;
DestoryQueue(&Q)//初始条件:队列Q已存在
//操作结果: 队列Q被销毁, 不再存在
ClearQueue(&Q)//初始条件:队列Q已存在
//操作结果: 将Q清为空队列
QueueEmpty(Q)//初始条件: 队列Q已存在
//操作结果:若队列Q为空队列, 则返回TRUE, 否则FALSE
QueuePtr front;//队头指针
QueuePtr rear;//队尾指针
}LinkQueue;
//—---—单链队列的基本操作的算法描述—-————
status INitQueue(LinkQueue &Q){//构造一个空队列Q
Q.front=Q。rear=(QueuePtr)malloc(sizeof(QNode));
数据结构实验报告
姓名
学号
号
实验地点
数学楼
国开数据结构(本)数据结构课程实验报告
国开数据结构(本)数据结构课程实验报告1. 实验目的本次实验的主要目的是通过实际操作,掌握数据结构的基本概念、操作和应用。
通过对实验内容的了解和实际操作,达到对数据结构相关知识的深入理解和掌握。
2. 实验工具与环境本次实验主要使用C++语言进行编程,需要搭建相应的开发环境。
实验所需的工具和环境包括:C++编译器、集成开发环境(IDE)等。
3. 实验内容本次实验主要包括以下内容:3.1. 实现顺序存储结构的线性表3.2. 实现链式存储结构的线性表3.3. 实现栈和队列的顺序存储结构和链式存储结构3.4. 实现二叉树的顺序存储结构和链式存储结构3.5. 实现图的邻接矩阵和邻接表表示4. 实验步骤实验进行的具体步骤如下:4.1. 实现顺序存储结构的线性表- 定义数据结构- 实现插入、删除、查找等操作4.2. 实现链式存储结构的线性表- 定义数据结构- 实现插入、删除、查找等操作4.3. 实现栈和队列的顺序存储结构和链式存储结构- 定义数据结构- 实现入栈、出栈、入队、出队操作4.4. 实现二叉树的顺序存储结构和链式存储结构- 定义数据结构- 实现插入、删除、查找等操作4.5. 实现图的邻接矩阵和邻接表表示- 定义数据结构- 实现插入、删除、查找等操作5. 实验结果与分析通过对以上实验内容的实现和操作,得到了以下实验结果与分析: 5.1. 顺序存储结构的线性表- 实现了线性表的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.2. 链式存储结构的线性表- 实现了线性表的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.3. 栈和队列的顺序存储结构和链式存储结构- 实现了栈和队列的入栈、出栈、入队、出队操作- 通过实验数据进行性能分析,得出了相应的性能指标5.4. 二叉树的顺序存储结构和链式存储结构- 实现了二叉树的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.5. 图的邻接矩阵和邻接表表示- 实现了图的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标6. 总结与展望通过本次数据结构课程的实验,我们深入了解并掌握了数据结构的基本概念、操作和应用。
中南大学数据结构实验报告
[键入文档副标题][键入文档标题]实验题目:(1)单链表的实现(2)栈和队列(3)二叉树的遍历(4)查找与排序学生姓名:代巍学生学号:0909121615指导老师:余腊生所在学院:信息科学与工程学院专业班级:信息安全1201班指导教师评定:签名:实验一单链表的实现一、实验目的了解线性表的逻辑结构和各种存储表示方法,以及定义在逻辑结构上的各种基本运算及其在某种存储结构上如何实现这些基本运算。
在熟悉上述内容的基础上,能够针对具体应用问题的要求和性质,选择合适的存储结构设计出相应的有效算法,解决与线性表相关的实际问题二、实验内容用C/C++语言编写程序,完成以下功能:(1)运行时输入数据,创建一个单链表(2)可在单链表的任意位置插入新结点(3)可删除单链表的任意一个结点(4)在单链表中查找结点(5)输出单链表三、程序设计的基本思想,原理和算法描述:(包括程序的结构,数据结构,输入/输出设计,符号名说明等)用一组地址任意的存储单元存放线性表中的数据元素。
以元素(数据元素的映象) + 指针(指示后继元素存储位置) = 结点(表示数据元素或数据元素的映象)以“结点的序列”表示线性表称作线性链表(单链表)单链表是指数据接点是单向排列的。
一个单链表结点,其结构类型分为两部分:(1)、数据域:用来存储本身数据。
(2)、链域或称为指针域:用来存储下一个结点地址或者说指向其直接后继的指针。
1、单链表的查找对单链表进行查找的思路为:对单链表的结点依次扫描,检测其数据域是否是我们所要查好的值,若是返回该结点的指针,否则返回NULL。
2、单链表的插入因为在单链表的链域中包含了后继结点的存储地址,所以当我们实现的时候,只要知道该单链表的头指针,即可依次对每个结点的数据域进行检测。
假设在一个单链表中存在2个连续结点p、q(其中p为q的直接前驱),若我们需要在p、q之间插入一个新结点s,那么我们必须先为s分配空间并赋值,然后使p的链域存储s的地址,s的链域存储q的地址即可。
《数据结构》上机实验报告—利用栈实现迷宫求解
《数据结构》上机实验报告—利用栈实现迷宫求解实验目的:掌握栈的基本操作和迷宫求解的算法,并能够利用栈实现迷宫求解。
实验原理:迷宫求解是一个常见的路径问题,其中最常见的方法之一是采用栈来实现。
栈是一种先进后出的数据结构,适用于这种类型的问题。
实验步骤:1.创建一个迷宫对象,并初始化迷宫地图。
2.创建一个栈对象,用于存储待探索的路径。
3.将起点入栈。
4.循环执行以下步骤,直到找到一个通向终点的路径或栈为空:a)将栈顶元素出栈,并标记为已访问。
b)检查当前位置是否为终点,若是则路径已找到,结束。
c)检查当前位置的上、下、左、右四个方向的相邻位置,若未访问过且可以通行,则将其入栈。
5.若栈为空,则迷宫中不存在通向终点的路径。
实验结果:经过多次实验,发现利用栈实现迷宫求解的算法能够较快地找到一条通向终点的路径。
在实验中,迷宫的地图可通过一个二维数组表示,其中0表示可通行的路径,1表示墙壁。
实验结果显示,该算法能够正确地找出所有可行的路径,并找到最短路径。
实验结果还显示,该算法对于大型迷宫来说,解决速度相对较慢。
实验总结:通过本次实验,我掌握了利用栈实现迷宫求解的算法。
栈作为一种先进后出的数据结构,非常适合解决一些路径的问题。
通过实现迷宫求解算法,我深入了解了栈的基本操作,并学会运用栈来解决实际问题。
此外,我还了解到迷宫求解是一个复杂度较高的问题,对于大型迷宫来说,解决时间较长。
因此,在实际应用中需要权衡算法的速度和性能。
在今后的学习中,我将进一步加深对栈的理解,并掌握其他数据结构和算法。
我还将学习更多的路径算法,以便更好地解决迷宫类问题。
掌握这些知识将有助于我解决更加复杂的问题,并提升编程能力。
实验二:线性表的链式表示和实现
实验二:线性表的链式表示和实现一、实验目的:1.掌握线性列表链式存储结构的表达与实现2.掌握对链表进行创建、插入、删除和查找等操作的算法。
3.掌握算法的设计与分析过程。
4.进一步熟悉VC++开发环境,熟悉应用程序的设计过程,掌握程序编辑、调试和集成的方法和技巧。
二、实验要求:1.采用教材中C语言描述的单链表存储结构,模块化设计流程,设计高效算法完成各种操作任务,并根据实际数据实现各种操作。
2.完成程序编写,调试成功后,书写实验报告。
三、实验任务:1.创建有n(n为正整数)数据元素的单链表,数据从键盘输入。
2.查找第i个结点,找到返回其值,否则返回0;3.对已经创建的单链表分别进行插入结点操作,在第i 个元素之前插入1个结点。
4.删除节点并删除第i个节点的元素。
5.在本地反转单链表。
6.将链表按值的奇偶数分解成两个链表。
要求:创建单链表后,其他操作可以是任意选择进行的。
(考虑设计菜单调用各功能模块)四、设计指南:1.结点的定义#include#includetypedefintdatatype;typedefstructnode{datatypedata;structnode*n ext;}lnode,*linklist;2.将复杂的问题分解成若干个相对容易的小问题,并设计好解决每个小问题的函数的函数名、入口参数及其返回值;设计出各个函数的程序框架及完整的主函数程序。
(注:每个功能一个函数)例如://输出链表数据voiddisplay(linklistl){linklistp;p=l->next;第1页/共3页而(p){printf(\p=p->next;}printf(\}//单链表初始化linklistlistinit(linklistl){l=(linklist)malloc(sizeof(lnode));l->next=null;returnl;}//创建单链表linklistlistcreate(linklistl,inta){inti;linklistp;//具体操作请大家自己完成display(l);returnl;}voidlistsearch(){}//单链表插入LinkListInsert(linklistl){linklistp,q;p=l;//具体操作请填写显示(L);returnl;}//单链表删除linklistlistdelete(linklistl){linklistp,q;p=l;//请自行完成具体操作voidmain(){第2页,共3页inti;inta,b,c;linklistl;l=listinit(l);while(1){printf(\单链表*****\\n\printf(\创建*****\\n\printf(\查找*****\\n\printf(\插入*****\\n\printf(\删除*****\\n\printf(\退出*****\\n\printf(\请输入您的选择:\\n\scanf(\switch(i){case1:printf(\请输入元素个数:\\n\scanf(\listcreate(l,a);break;case2:listsearch();break;case3:listinsert(l); break;case4:listdelete(l);display(l);break;case0:exit(0);default:printf(\您的输入有误,请重新输入!\\n\}}}第3页,共3页。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过本次实验,旨在加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解和运用,提高编程能力和问题解决能力,培养算法设计和分析的思维。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、数组与链表的实现与操作分别实现整数数组和整数链表的数据结构。
实现数组和链表的插入、删除、查找操作,并比较它们在不同操作下的时间复杂度。
2、栈与队列的应用用数组实现栈结构,用链表实现队列结构。
模拟栈的入栈、出栈操作和队列的入队、出队操作,解决实际问题,如表达式求值、任务调度等。
3、二叉树的遍历构建二叉树的数据结构。
实现先序遍历、中序遍历和后序遍历三种遍历算法,并输出遍历结果。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,并分析它们的时间复杂度。
四、实验步骤1、数组与链表数组的实现:定义一个固定大小的整数数组,通过索引访问和操作数组元素。
链表的实现:定义链表节点结构体,包含数据和指向下一个节点的指针。
插入操作:对于数组,若插入位置在末尾,直接赋值;若不在末尾,需移动后续元素。
对于链表,找到插入位置的前一个节点,修改指针。
删除操作:数组需移动后续元素,链表修改指针即可。
查找操作:数组通过索引直接访问,链表需逐个节点遍历。
2、栈与队列栈的实现:用数组模拟栈,设置栈顶指针。
队列的实现:用链表模拟队列,设置队头和队尾指针。
入栈和出栈操作:入栈时,若栈未满,将元素放入栈顶,栈顶指针加 1。
出栈时,若栈不为空,取出栈顶元素,栈顶指针减 1。
入队和出队操作:入队时,在队尾添加元素。
出队时,取出队头元素,并更新队头指针。
3、二叉树构建二叉树:采用递归方式创建二叉树节点。
先序遍历:先访问根节点,再递归遍历左子树,最后递归遍历右子树。
中序遍历:先递归遍历左子树,再访问根节点,最后递归遍历右子树。
数据结构实验报告(二)栈的应用
数据结构实验报告(⼆)栈的应⽤实验说明数据结构实验⼆ 栈的实验——栈的简单应⽤⼀、实验⽬的通过本实验使学⽣了解栈的简单应⽤,熟悉栈的特性及栈在顺序存储上的操作特点,深刻理解栈的基本操作与⽤栈解决应⽤问题的关系;特别训练学⽣使⽤栈解决实际问题的能⼒,为今后⽤栈解决相关问题奠定基础。
⼆、实验内容1.编程实现对给定的⼀组括号序列判断其是否匹配正确。
要求:(1)它必须成对出现,如“(”“)”是⼀对,“[”与“]”是⼀对;(2)出现时有严格的左右关系;(3)可以以嵌套的⽅式同时出现多组多括号,但必须是包含式嵌套,不允许交叉式嵌套。
⽐如“( )”、“[([][])]”这样是正确的,“[(])”或“([()))”或 “(()]”是不正确的。
(4)将处理的括号扩展为针对“()”“[]”“{}”三类。
2.编程实现⼀个简单的⾏编辑功能:⽤户可以输⼊⼀⾏内容,并可进⾏简易编辑。
要求:(1)遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;(2)“@”表⽰之前的内容均⽆效。
实验报告1.实现功能描述编程实现对给定的⼀组括号序列判断其是否匹配正确,将处理的括号扩展为针对“()”“[]”“{}”三类,遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;“@”表⽰之前的内容均⽆效。
2.⽅案⽐较与选择(1)可以使⽤栈和队列来实现。
因为栈的功能⾜以完成题⽬要求,所以初步打算使⽤栈来实现。
(2)因为编写⼀个标准的栈⽐较繁琐,⽽且本题中也没有⽤到所有栈的标准操作,所以通过模拟栈来完成本题。
(3)可以使⽤数组或链表来模拟栈。
因为括号匹配只有3对,所需空间不是很⼤,⼜因为特殊操作#、@可以在数组中通过-1和赋0值实现,因此选择了数组法来模拟栈。
3.设计算法描述(1)定义3个变量,分别⽤于记录()、[]、{}的出现次数。
遇到左符号时变量++,遇到右符号时--,变量为0时表⽰空栈。
当读到#时,再往前读⼀个字符,如果是()、[]、{}中的⼀种,则对其进⾏反向运算,即遇到右符号时++,遇到左符号时--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)选择菜单上的0,退出该程序的运行,结束实验内容。
初始化栈操作,将栈的栈顶指针置为空值,即设栈S和栈顶指针top,S→top=null。
如果所建栈里有数据元素,要将其置空,同样也是将栈顶指针的值置为空值。
入栈操作,向栈里插入数据元素。首先要为插入数据元素分配结点,将插入数据元素的值赋值给插入结点的数据域,其次修改栈顶指针的指向关系,即修改插入结点和栈顶指针的地址,最后修改栈顶指针。
测试结果:
实验成绩:
实验题目:
实验日期:
实验要求:
概要设计:
详细设计:
调试分析:
测试果:
实验成绩:
实验题目:
实验日期:
实验要求:
概要设计:
详细设计:
调试分析:
测试结果:
实验成绩:
实验题目:
实验日期:
实验要求:
概要设计:
详细设计:
调试分析:
测试结果:
实验成绩:
实验题目:
实验日期:
实验要求:
概要设计:
出栈操作,从栈里删除数据元素。首先要判断栈是否为空栈,如是空栈则操作失败。否则,进行出栈操作,修改删除结点和栈顶指针,最后释放删除结点。
取栈顶元素。
详细设计:
//链栈类型定义
typedef int ElemType;
typedef struct stacknode
{
ElemType data;
stacknode *next;
s->top=p;
}
//出栈
ElemType popstack(LinkStack *s)
{
ElemType x;
StackNode *p;
p=s->top;
if(s->top==0)
{
printf("栈空,不能出栈!!\n");
return 0;
exit(0);
}
x=p->data;
printf("%d\n",x);
}StackNode;
typedef struct
{
stacknode *top;
}LinkStack;
//入栈
void pushLstack(LinkStack *s,ElemType x)
{
StackNode *p;
p=new StackNode;
p->data=x;
p->next=s->top;
s->top=p->next;delete p;
return x;
}
//取栈顶元素
ElemType StackTop(LinkStack *s)
{
ElemType x;
if(s->top==0)
{
printf("链栈空!!\n");
return 0;
}
else
{
x=s->top->data;
printf("当前链栈的栈顶元素为%d",x);
return 0;
}
}top
toptop
1,入栈示意图 2,出栈示意图
3,出栈4,取栈顶元素
调试分析:
在调试中出现以上错误,经过查找原程序发现scanf("%d",&cord);中少填写了地址符。
在调试中出现了初始化以后,没有在主菜单中选择操作就直接运行入栈了,经过查找原程序发现在swich语句中少了break。
数据结构实验报告册
班 级:
学 号:
姓 名:
实验日期:
实验要求:
1.认真阅读和掌握本实验的相关知识。
2.编写程序实现栈的链式存储方式。
3.编写程序实现对栈空的判断以及栈的入栈和出栈操作、取栈顶元素。
4.保存程序的运行结果,结合程序分析链式结构的特点。
5.填写实验报告
概要设计:
(1)初始化链栈。
(2)将链栈置空。
详细设计:
调试分析:
测试结果:
实验成绩: