平面图形直观图的画法

合集下载

9.1平面的基本性质第三课时 空间图形直观图的画法

9.1平面的基本性质第三课时 空间图形直观图的画法

首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
解 :点 C′的位置不对. ′ 的位置不对. 画法: 法一: (1)作 画法: 法一 : 作 CD∥x 轴交 y 轴于点 D, ∥ , 画对应轴 O′x′、 ′ y′, ∠ x′O′y′ ′ ′ O′ ′ 使 ′ ′ ′ = 45°. 1 (2)在 x′ 轴上取 O′B′= OB,在 y′ 轴的负半轴上取 O′D′ = OD,过 D′ 作 在 ′ ′ ′ , ′ ′ ′ , ′ 2 D′C′∥ ′轴且 D′C′= DC. ′ ′∥x′ ′ ′ ′∥ (3)连结 O′C′、 ′ C′, 并擦去辅助线, 连结 ′ ′ B′ ′ 并擦去辅助线, △ O′B′C′即为所画三角形的直观图. 则 ′ ′ ′即为所画三角形的直观图. 如 图.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点: 知识要点: 斜二测画法的理解及应用 (1)画图时要紧紧把握住一斜 画图时要紧紧把握住一斜 轴的线段, 画图时要紧紧把握住 一斜——在已知图形的 xOy 平面内垂直于 x 轴的线段,在直观 在已知图形的 两种度量形式, 图中均与 x′轴成 45°或 135°;二测 ′ 或 ;二测——两种度量形式,即在直观图中,平行于 x′轴或平行 两种度量形式 即在直观图中, ′ 于 z′轴的线段长度不变, 平行于 y′轴的线段长度变为原来的一半. ′ 轴的线段长度不变, ′ 轴的线段长度变为原来的一半. (2)画水平放置的平面图形的步骤为:画轴,取点,成图.图形中平行于 x 轴的线段 ,在 画水平放置的平面图形的步骤为: 轴的线段, 画水平放置的平面图形的步骤为 画轴,取点,成图. 直观图中保持不变, 轴的线段,长度变为原来的一半. 直观图中保持不变, 平行于 y 轴的线段,长度变为原来的一半 . 画立体图形的直观图,在画轴时, 画立体图形的直观图 ,在画轴时,要多画一条与平面 x′O′y′垂直的轴 O′z′,且 ′ ′ ′ ′ ′ 平行于 O′z′的线段, 长度不变,其他同平面图形的画法. ′ ′ 的线段,长度不变,其他同平面图形的画法. (3)空间几何体的直观图在数学中有重要作用 ,画得立体感强 ,在做题时立体关系就便于 空间几何体的直观图在数学中有重要作用 空间几何体的直观图在数学中有重要作用,画得立体感强, 观察,图形画得好,在科学实验和日常生活中也会大有作用. 观察,图形画得好, 在科学实验和日常生活中也会大有作用.

高中数学必修(第二册)立体几何专题1-直观图与斜二测画法

高中数学必修(第二册)立体几何专题1-直观图与斜二测画法

直观图与斜二测画法【知识总结】1、用斜二测画法画水平放置的平面图形的直观图的主要步骤如下:①在已知图形中取水平平面,作相互垂直的轴Ox,Oy,使∠xOy=90°;②画直观图时,把轴Ox,Oy画成对应的轴O′x′,O′y′,使∠x′O′y′=45°(或135°),x′O′y′所确定的平面表示水平平面;③已知图形中,平行于x轴、y轴的线段在直观图中分别画成平行于x′轴、y′轴.并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中,平行于x轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了水平放置的平面图形的直观图.2、已知直观图,会根据斜二测画法进行还原。

【巩固练习】1、下图为一平面图形的直观图,因此平面图形可能是()2、如图所示,△A ′B ′C ′是△ABC 的直观图,其中A ′C ′=A ′B ′,那么△ABC 是()A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形3、如图建立坐标系,得到的正三角形ABC 的直观图不是全等三角形的一组是()4、已知正三角形ABC 的边长为a ,那么用斜二测画法得到的△ABC 的直观图△A ′B ′C ′的面积为()A .34a 2B .38a 2C .68a 2D .616a 25、已知等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画出的直观图A B C D ''''的面积为() A.24 B.12 C.226、若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.12倍B.2倍C.24倍D.22倍7、如图所示的直观图的平面图形ABCD 中,2AB =,24AD BC ==,则原四边形的面积()A. B. C.12 D.108、如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°、腰和上底长均为1的等腰梯形,则这个平面图形的面积是()A .12+22B .1+22C .1+2D .2+29、一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图''''O A B C ,如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为()A.1C.2D.10、有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3cm,高为3cm,画出这个正六棱锥的直观图.11、用斜二测画法画出正六棱柱(底面为正六边形,侧面都为矩形的棱柱)的直观图.。

直观图画法

直观图画法

巩固训练
1、判断: (1)水平放置的正方形的直观图可能是 梯形; (×) (2)两条相交直线的直观图可能是平行 直线; (×)
2、课本P16练习1—3
回顾反思
斜二测画法的规则关键是:
“平行性不变;横不变纵半”。
谢 谢 再 见
•; 加工中心 数控铣床 加工中心 数控铣床 ;
数学运用
例2、画水平放置的圆的直观图。
Y Y’
Oபைடு நூலகம்
X
0
X’
数学运用
例3、画棱长为2cm的正方体的直观图
D〞
z C〞
D〞
C〞
B〞
A〞
B〞
A〞
y
D′ C′ D′ C′
o
A′ B′
x
A′
o
B′
数学运用
例4、如图,△A′B′C′是水平放置的△ABC 的直观图,则在△ABC的三边及中线AD中,哪一条 线段最长。
3.在太阳光下,平行于地面的直线在地面上的投 影长不变;等等。
建构数学
先讨论水平放置的平面图形的画法。
例1、画水平放置的正六边形的直观图
F Y
M
E F1
M1
y1
E1
D1
A
0
D
X
A1
01
N1
B1 B
N
x1
C1
C
• 总结画法规则:
1、在已知图形中取互相垂直的轴x轴、y轴;
2、作对应的x’轴、y’轴,夹角∠ x’o’y’=45°; 3、已知图形中平行于x轴、y轴的线段,在直 观图中分别画成平行于x’轴、y’轴的线段 (即平行性不变); 4、已知图形中平行于x轴的线段,在直观图 中保持长度不变;平行于y轴的线段,长度 为原来的一半(即横不变纵拆半)。 • 斜二侧画法中如何找一般位置下的点? • 已知直观图如何画水平放置的平面图形?

平面图形直观图的画法

平面图形直观图的画法

平面图形直观图的画法先观察下面的图形,总结投影变化规律。

投影规律:1.平行性不变;但形状、长度、夹角会改变;2.平行直线段或同一直线上的两条线段的比不变3。

在太阳光下,平行于地面的直线在地面上的投影长不变表示空间图形的平面图形,叫做空间图形的直观图画空间图形的直观图,一般都要遵守统一的规则,1.斜二测画法我们常用斜二测画法画空间图形及水平放置的平面多边形的直观图.斜二测画法是一种特殊的平行投影画法.2.平面图形直观图的画法斜二测画法的步骤:(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴交于点O′,且使∠x′O′y′=_45°(或135°)_,它们确定的平面表示_水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成_平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变_,_垂直于x轴的线段,长度为原来的_一半_.注意点:1.斜二测画法中的“斜”和“二测”分别指什么?提示:“斜”是指在已知图形的xOy平面内垂直于x轴的线段,在直观图中均与x′轴成45°或135°;“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变;平行于y′轴的线段长度变为原来的一半。

2.圆的斜二测画法,其图形还是圆吗?提示:不是圆,是一个压扁了的“圆",即椭圆。

3.立体图形直观图的画法由于立体图形与平面图形相比多了一个z轴,因此,用斜二测画法画立体图形的直观图时,图形中平行于x轴、y轴或z轴的线段在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.平行于x轴和z 轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.例1.用斜二测画法画水平放置的六边形的直观图解:第一步:在六边形ABCDEF中,取AD所在的直线为X轴,对称轴MN 所在的直线为Y轴,两轴交于点O。

高中数学 必修2(北师大)6.2直观图

高中数学 必修2(北师大)6.2直观图

题型二 画空间几何体的直观图——师生共研 例 1 用斜二测画法画出六棱锥 P -ABCDEF 的直观图,其中底面 ABCDEF 为正六边形,点 P 在底面上的投影是正六边形的中心 O(尺寸 自定).
解析:步骤一:画出六棱锥 P -ABCDEF 的底面.①在正六边形 ABCDEF 中,取 AD 所在的直线为 x 轴,线段 AD 的中垂线为 y 轴,两轴 相交于点 O(如图(1)),画相应的 x′轴、y′轴、z′轴,三轴相交于点 O′, 使∠x′O′y′=45°,∠x′O′z′=90°(如图(2));②在图(2)中,以 O′
答案:28
易错警示
易错原因
纠错心得
忽略与 y 轴平行的线段(即 在斜二测画法中,与 y 轴平行的线段长度
A′D′)长度的变化而致 为原来的一半,且∠x′O′y′变为 45°,
误.错误答案:4.
做题时千万不要忽略这点.
题型三 直观图与原平面图形的面积——师生共研
例 2 如图所示,四边形 ABCD 是一个梯形,CD∥AB,CD=AO =1,三角形 AOD 为等腰直角三角形,O 为 AB 的中点,试求水平放 置的梯形 ABCD 的直观图的面积.
解析:
方法一 在梯形 ABCD 中,AB=2,高 OD=1,水平放置的梯形 ABCD 的直观图仍为梯形,且上底和下底的长度都不变,作 D′E′⊥A′B′于 E′,如图所示,在直观图中,O′D′=12OD=12,梯形 A′B′C′D′ 的高 D′E′= 42,于是梯形 A′B′C′D′的面积为21×(1+2)× 42= 32
步骤二:画正六棱锥 P -ABCDEF 的顶点.在 z′轴的正半轴上取点 P′,点 P′异于点 O′.
步骤三:成图.连接 P′A′、P′B′、P′C′、P′D′、P′E′、 P′F′,并擦去 x′轴、y′轴和 z′轴,将被遮挡的线改为虚线,便可得 到六棱锥 P -ABCDEF 的直观图 P′ -A′B′C′D′E′F′(如图(3)).

平面直观图的画法

平面直观图的画法

平面直观图的画法——斜二测法教学目标:掌握用斜二测法画水平放置的平面图形和空间图形的画法和画图的一般步骤。

教学重、难点:斜二测画法的主要步骤,空间图形直观图的画法. 教学过程: (一)新课讲解:1.空间图形的直观图的概念:在一个平面内不可能画出空间图形的真实形状,为了便于对空间图形的研究,我们将作出空间图形的直观图,即用平面图形表示空间图形,它不是空间图形的真实形状,但它具有立体感. 2.画水平直观图的方法——斜二测画法 例1.坐标平面中,点的直观图的画法.画法:(1)设点(,)C a b ,作坐标系x O y ''',使45x O y '''∠=o;(2)在x 轴上的点A ,画在x '轴上,使O A OA ''=; (3)在y 轴上的点B ,画在y '轴上,使12O B OB ''=; (4)在x O y '''中,作y '轴的平行线x a '=,作x '轴的平行线2by '=,直线x '与直线y ' 相交于C '点(,)2ba .点C '即为点C 的直观图.图(1) 图(2)例2.坐标平面内直线与线段的直观图的画法. 画法:略。

例3.水平放置的正六边形的直观图.画法:(1)在已知正六边形ABCDEF 中,取对角线AD 所在的直线为x 轴,取对称轴GH为y 轴,x 轴、y 轴相交于点O ;任取点'O ,画出对应的'x 轴、'y 轴,使''45x Oy ∠=o ;(2)以点'O 为中点,在'x 轴上取''A D AD =,在y '轴上取12G H GH ''=,以点H '为中点画//F E x '''轴,并使F E FE ''=;再以G '为中点画//B C x '''轴,并使B C BC ''=;(3)顺次连结,,,A B C D D E F A '''''''',所得到的六边形A B C D E F ''''''就是水平放置的,)b(,)2b a '正六边形ABCDEF 的直观图.说明:图画好后,要擦去辅助线. 练习:画水平放置的正五边形的直观图. 例4.空间图形的直观图的画法.画棱长为2cm 的正方体的直观图.画法:(1)作水平放置的正方形的直观图ABCD ,使45BAD ∠=o,2AB =cm ,1AD =cm . (2)过点A 作z '轴使90BAz '∠=o,分别过点,,,A B C D ,沿z '轴的正方向取1111AA BB CC DD ====2cm .(3)连结11111111,,,A B B C C D D A ,得到的图形就是所求的正方体直观图. 图(1) 图(2)说明:上述画直观图的方法叫做斜二测法。

直观图

直观图

[例1] 画水平放置的正五边形的直观图. [思路点拨]
[精解详析] 画法:(1)在已知正五边形ABCDE中, 取对角线BE所在的直线为x轴,取对称轴AF为y轴,画 对应的x′轴、y′轴,使∠x′O′y′=45°.
(2)以 O′为中点, x′轴上截取 B′E′=BE, y′ 在 在 1 正半轴上取一点 A′,使 O′A′=2OA,在 y′负半轴上 1 取一点 F′,使 O′F′=2OF. (3)再过点 F′作 C′D′∥O′E′,且在 C′D′上 取对应点 C′,D′,使 C′F′=CF,F′D′=FD. (4)连接 A′B′,B′C′,D′E′,E′A′(擦去辅 助线)所得的五边形为正五边形 ABCDE 的直观图.
5.如右图,直观图所表示(A′C′∥O′y′,B′C′∥O′x′) 平面图形是 A.正三角形 ( )
B.锐角三角形
C.钝角三角形 D.直角三角形 解析:平行O′y′的还原后平行y轴,平行O′x′的还原 后平行x轴;故AC⊥BC,所以得到的平面图形为直角三角形.
答案:D
6.如果一个水平放置的平面图形的斜二测直 观图是一个底角为 45° ,腰和上底均为 1 的 等腰梯形,那么原平面图形的面积是 1+ 2 B. 2 D.1+ 2 ( )
[答案] C
[一点通]
1. 还原图形的过程是画直观图的逆过程,关键是找
与x′轴,y′轴平行的直线或线段.平行于x′轴的线段长度
不变,平行于y′轴的线段还原时长度变为原来的2倍,由
此确定图形的各个顶点,顺次连接即可.
2.求直观图形的面积,关键是能先正确画出直观图 形,然后根据直观图形求出它的相应边的长度. 3.求原图形的面积,关键是要能够根据直观图形把 它还原成实际图形.
问题1:一个水平放置的平面图形,如果是正方形,那 么它的直观图还是正方形吗? 提示:不再是正方形,是平行四边形.

立体几何知识点和例题(含有答案)

立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。

平面的基本性质。

平面图形直观图的画法。

2.两条直线的位置关系。

平行于同一条直线的两条直线互相平行。

对应边分别平行的角。

异面直线所成的角。

两条异面直线互相垂直的概念。

异面直线的公垂线及距离。

3.直线和平面的位置关系。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

4.两个平面的位置关系。

平面平行的判定与性质。

平行平面间的距离。

二面角及其平面角。

两个平面垂直的判定与性质。

二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。

对于异面直线的距离,只要求会计算已给出公垂线时的距离。

2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。

对于异面直线上两点的距离公式不要求记忆。

3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。

能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。

三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。

(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。

直观图的画法ppt课件

直观图的画法ppt课件
的平面表示水平平面;
(3)已知图形中平行于x轴、y轴或z轴的线段,在
直观图中分别画成平行于 x'轴 y'轴或 z'轴的线段;
(4)已知图形中平行于x轴和z轴的线段,在直观 图中保持长度不变;平行于y轴的线段,长度为原 来的一半
1. 下列结论是否正确.
(1)角的水平放置的直观图一定是角. (2)相等的角在直观图中仍相等. (3)相等的线段在直观图中仍相等. (4)若两条线段平行,则在直观图中
(1)右图看起来像什么? (2)正方体的各个面都是正方形,在此图 形中各个面都画成正方形了吗? (3)立体图形的直观图要有立体感,即把 不在同一平面内的点集在同一平面内表现出 来,为此,它往往与立体图形的真实形状不 相同,那么怎么画立体图形的直观图呢?
▪ 什么叫直观图 ?
▪ 把空间图形画在平面内,使得既富有立体感,又 能表达出图形各主要部分的位置关系和度量关系 的图形.
的一个组合体?
·O
·O
▪ 如何画出一个圆 柱的直观图?
·O
·
O
正视图
▪ 如何画出一个圆
侧视图
锥的直观图?
▪ 思考三视图与直
·
观图有何关系?
俯视图
·Z
y
O y x
Ox
练习
1.已知一四边形ABCD的水平放置的直观 图是一个边长为2的正方形,请画出这个 图形的真实图形。
2、如图为水平放置的正方形ABCO,它在 直角坐标系xOy中点B的坐标为(2,2), 则在用斜二测画法画出的正方形的直观图 中,顶点B‘到x’轴的距离为(2 )
对应的两条线段仍平行.
2. 利用斜二测画法得到的 ①三角形的直观图是三角形 ②平行四边形的直观图是平行四边形 ③正方形的直观图是正方形 ④菱形的直观图是菱形

苏教版数学必修二新素养同步讲义:1.1.4 直观图画法

苏教版数学必修二新素养同步讲义:1.1.4 直观图画法

1.1.4 直观图画法1.了解斜二测画法的基本特征.2.理解斜二测画法的规则.3.掌握斜二测画法的基本步骤.1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴与y ′轴,两轴交于点O ′,且使∠x ′O ′y ′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x 轴或y 轴的线段在直观图中分别画成平行于x ′轴或y ′轴的线段.(3)长度规则:已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z 轴,直观图中与之对应的是z ′轴.(2)平面x ′O ′y ′表示水平平面,平面y ′O ′z ′和x ′O ′z ′表示竖直平面.(3)已知图形中平行于z 轴(或在z 轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.1.判断(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )★★答案★★:(1)× (2)×2.下列关于用斜二测画法画直观图的说法中,正确的是( )A .水平放置的正方形的直观图不可能是平行四边形B .平行四边形的直观图仍是平行四边形C .两条相交直线的直观图可能是平行直线D .两条垂直的直线的直观图仍互相垂直解析:选B.因斜二测画法保持平行性不变,A 错,B 正确;因斜二测画法中相交性不变,故C 错;两条垂直直线的直观图应为夹角为45°的两条相交直线,故D 错.3.关于斜二测画法,下列说法不正确的是( )A .原图形中平行于x 轴的线段,其对应线段平行于x ′轴,且长度不变B .原图形中平行于y 轴的线段,其对应线段平行于y ′轴,且长度变为原来的12C.画与直角坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同★★答案★★:C4.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连结B′C′,则△A′B′C′就是原图形.画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.解:(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD 所在直线为y轴建立平面直角坐标系.画相应的x′轴和y′轴,使∠x′O′y′=45°,如图①②所示.(2)在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连结B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.(1)在已知图中建立直角坐标系时尽量利用原有图形的对称性和垂直关系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.1.用斜二测画法画如图所示的水平放置的正三角形的直观图.解:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高AO所在的直线为y 轴,建立平面直角坐标系.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上取O′B′=O′C′=OB=OC,在y′轴上取O′A′=12OA,连结A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.画几何体的直观图已知一个正四棱台的上底面边长为2 cm,下底面边长为6 cm,高为4 cm,用斜二测画法画出此正四棱台的直观图.解:(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz =90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6 cm,在y轴上取线段GH,使得GH=3 cm,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连结AD、BC,这样就得到了正四棱台的下底面ABCD的直观图.(3)画上底面.在z轴上截取线段OO1=4 cm,过O1作O1x′∥Ox、O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中重复(2)的步骤画出上底面A1B1C1D1的直观图.使得A1B1=2 cm,B1C1=1 cm.(4)连结AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).利用斜二测画法画空间图形的直观图应遵循的基本原则:(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.(2)画法规则可简记为:两轴夹角为45°,竖轴垂直仍不变,平行不变,长度变,横竖不变,纵折半.2.用斜二测画法画长、宽、高分别是 4 cm 、3 cm 、2 cm 的长方体ABCD -A ′B ′C ′D ′的直观图.解:(1)画轴.如图所示,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中心,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32 cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连结A ′,B ′,C ′,D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.关于直观图的计算问题如图是四边形ABCD 的水平放置的直观图A ′B ′C ′D ′,则原四边形ABCD 的面积是( )A .14B .102C .28D .14 2解析:因为A ′D ′∥y ′轴,A ′B ′∥C ′D ′,A ′B ′≠C ′D ′,所以原图形是一个直角梯形,如图所示.又A ′D ′=4,所以原直角梯形的上、下底及高分别是2,5,8,故其面积为S =12×(2+5)×8=28.★★答案★★:C求直观图的面积的关键是依据斜二测画法,求出相应的直观图的底边和高.在原来实际图形中的高线,在直观图中变为与水平直线成45°角且长度为原来的一半的线段, 以此为依据来求出直观图中的高线即可.直观图的面积是原图形面积的24倍. 3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 解析:选D.如图①②所示为实际图形和直观图.由②可知,B ′C ′=BC =a ,O ′A ′=12OA =34a ,在图②中作A ′D ′⊥B ′C ′于点D ′,则A ′D ′=22O ′A ′=68a .所以S △A ′B ′C ′=12B ′C ′·A ′D ′=12×a ×68a =616a 2.1.斜二测画法中的建系原则在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线或图形的对称直线为坐标轴,图形的对称点为原点或利用原有互相垂直的直线为坐标轴等.2.直观图中的“变”与“不变”平面图形用其直观图表示时,(1)平行关系不变;(2)点的共线性不变;(3)线的共点性不变;(4)角的大小有变化(特别是垂直关系有变化);(5)有些线段的度量关系也发生变化.一梯形的直观图是一个如图所示的等腰梯形,且梯形OA ′B ′C ′的面积为2,求原梯形的面积.【解】 如图,由斜二测画法原理知,原梯形与直观图中的梯形上下底边的长度是一样的,不一样的是两个梯形的高,原梯形的高OC是直观图中OC′长度的2倍,OC′的长度是直观图中梯形的高的2倍,由此知原梯形的高OC的长度是直观图中梯形高的22倍,故其面积是梯形OA′B′C′面积的22倍,又梯形OA′B′C′的面积为2,所以原梯形的面积是4.由于直观图中的等腰梯形只知道面积,不知道高和上下底边的长,所以要求原梯形的面积,关键是根据斜二测画法的规则将图形还原,确定原梯形与直观图中的梯形在高和上下底边长两方面的关系.在解答本题过程中易得原直角梯形的高为h的错误,导致该种错误的原因是忽视了在直观图中平行于y轴的线段长是原图中线段长的一半.1.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是________.解析:根据把模型放在水平视线的左上角绘制的特点,并且由几何体的直观图画法及立体图形中虚线的使用,知①正确.★★答案★★:①2.若正方形的边长为2,以正方形相邻两边所在直线分别作为x轴、y轴,则用斜二测画法画出的直观图是边长分别为________的四边形.解析:如图(1)为原图形OABC,则用斜二测画法画出的直观图为如图(2)所示的O′A′B′C′,其边长分别为O′A′=C′B′=2,O′C′=A′B′=1.★★答案★★:2,2,1,13.若用斜二测画法画出的直观图是△A′B′C′,且∠A′B′C′=45°,A′B′=1,B′C′=2,则原图形为________.解析:按斜二测画法规则,原图形△ABC满足∠ABC=90°,AB=2A′B′=2,BC=B′C′=2,故原图形为两直角边都为2的等腰直角三角形.★★答案★★:两直角边都为2的等腰直角三角形[A基础达标]1.如图,A′B′∥O′y′,B′C′∥O′x′,则直观图所示的平面图形是() A.任意三角形B.锐角三角形C.直角三角形D.钝角三角形解析:选C.因为A′B′∥O′y′,且B′C′∥O′x′,所以原平面图形中AB⊥BC.所以△ABC为直角三角形.第1题图第2题图2.正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 cm B.8 cmC.(2+32)cm D.(2+23)cm解析:选B.如图,OA=1 cm,在Rt△OAB中,OB=2 2 cm,所以AB=OA2+OB2=3 cm.所以四边形OABC的周长为8 cm.3.已知两个圆锥,底面重合在一起(底面平行于水平面),其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cmC.2.5 cm D.5 cm解析:选D.圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5(cm),在直观图中与z轴平行的线段长度不变,仍为5 cm,故选D.4.如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°、腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ) A.12+22 B .1+22 C .1+ 2D .2+ 2解析:选D.因为A ′D ′∥B ′C ′,所以AD ∥BC .因为∠A ′B ′C ′=45°,所以∠ABC =90°.所以AB ⊥BC .所以四边形ABCD 是直角梯形,如图所示.其中,AD =A ′D ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =2+ 2.5.如图所示为一个平面图形的直观图,则它的原图形四边形ABCD 的形状为________.解析:因为∠D ′A ′B ′=45°,由斜二测画法规则知∠DAB =90°,又因四边形A ′B ′C ′D ′为平行四边形,且A ′B ′=2B ′C ′,所以AB =BC ,所以原四边形ABCD 为正方形.★★答案★★:正方形6.如图所示,一个水平放置的正方形ABCD ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图A ′B ′C ′D ′中,顶点B ′到x ′轴的距离为________.解析:正方形的直观图A ′B ′C ′D ′如图所示.因为O ′A ′=B ′C ′=1,∠B ′C ′x ′=45°,所以顶点B ′到x ′轴的距离为1×sin 45°=22. ★★答案★★:22 7.如图,平行四边形O ′P ′Q ′R ′是四边形OPQR 的直观图,若O ′P ′=3,O ′R ′=1,则原四边形OPQR 的周长为________.解析:由四边形OPQR 的直观图可知原四边形是矩形,且OP =3,OR =2,所以原四边形OPQR 的周长为2×(3+2)=10.★★答案★★:108.如图所示,已知用斜二测画法画出的△ABC 的直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析:过C ′作C ′M ′∥y ′轴,且交x ′轴于M ′.过C ′作C ′D ′⊥x ′轴,且交x ′轴于D ′,则C ′D ′=32a .因为∠C ′M ′D ′=45°,所以C ′M ′=62a .所以原三角形的高CM =6a ,底边长为a ,其面积为S =12×a ×6a =62a 2(或S 直观=24S 原,所以S 原=42·34a 2=62a 2). ★★答案★★:62a 2 9.用斜二测画法画出下列水平放置的平面图形的直观图(不写画法,保留作图痕迹).解:(1)如图所示,四边形O ′A ′B ′C ′是四边形OABC 的直观图.(2)如图所示,△O ′A ′B ′是△OAB 的直观图.10.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,求原平面图形的面积.解:过A 作AE ⊥BC ,垂足为E ,又因为DC ⊥BC 且AD ∥BC ,所以四边形ADCE 是矩形,所以EC =AD =1,由∠ABC =45°,AB =AD =1知BE =22,所以原平面图形是梯形且上下两底边长分别为1和1+22,高为2,所以原平面图形的面积为12×⎝⎛⎭⎫1+1+22×2=2+22. [B 能力提升] 1.如图所示的是水平放置的三角形ABC 的直观图△A ′B ′C ′,其中D 是A ′C ′的中点,在原三角形ABC 中,∠ACB ≠60°,则原图形中与线段B ′D 的长相等的线段有( )A .0条B .1条C .2条D .3条解析:选C.先按照斜二测画法把直观图还原为真正的平面图形,然后根据平面图形的几何性质找出与线段B ′D 长度相等的线段.把三角形A ′B ′C ′还原后为直角三角形,则D 为斜边AC 的中点,所以AD =DC =BD .故选C.2.如图,Rt △O ′A ′B ′是一平面图形的直观图,直角边O ′B ′=1,则这个平面图形的面积是________.解析:因为O ′B ′=1,所以O ′A ′=2,所以在Rt △OAB 中,∠AOB =90°,OB =1,OA =22,所以S △AOB =12×1×22= 2. ★★答案★★: 23.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,求这个平面图形的面积.解:与y 轴平行的那条边和在x 轴上的边垂直,且与y 轴平行的那条边长应是原长的2倍,故其面积应为12×|-2|×⎝⎛⎭⎪⎫2×|-2|2=2 2. 4.(选做题)如图为一几何体的展开图,沿图中虚线将它们折叠起来,请画出其直观图.解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.。

水平放置平面图形的直观图的画法

水平放置平面图形的直观图的画法

《水平放置的平面图形直观图的画法》说课稿一、教材分析:《水平放置的平面图形直观图的画法》是立体几何第二节第一课时内容。

立体几何是学生学习的一个难点。

之所以难,关键就是不能很好的识图和画图。

而这节课就是解决这个问题的基础。

所以,这节课在整个立体几何教学中有着不可替代的作用。

鉴于对学生已有知识和认知能力的分析,依据《教学大纲》的要求,我确定可本节课的教学目标和重难点如下:知识与技能:理解斜二测画法。

掌握斜二测画法画水平放置的平面图形的直观图。

过程与方法:通过分析,掌握两种不同位置顶点的对应点的确定方法。

情感态度价值观:培养学生动手实践能力和想象能力,激发学生的学习兴趣。

重点:水平放置的平面图形直观图画法。

难点:不同位置顶点的对应点的确定。

二、教学方法:本节课我采用了我校所倡导的“导引自学,探究体验,反思提高”的教学模式。

在教学过程中,我尽量留给学生一定的思考时间,让学生说出自己的想法,然后再做适当的引导。

三、学法指导。

1、让学生观察正方体模型,然后通过解释“斜”和“二测”的含义,同时用自己的语言总结规则,从而达到理解和记忆的目的。

2、画直观图的实质是确定原图形各顶点的对应点,所以在教学中,主要引导学生掌握两种不同位置顶点的对应点的确定方法。

即点所在的边与坐标轴平行和点所在的边不与坐标轴平行的确定方法。

3、通过观察对比原图形和直观图,使学生明白,在立体几何学习中,不能只看图,而要结合定义,然后经过合理想象,得到原图形的性质。

四、教学过程设计说明。

1、斜二测画法规则的教学。

对斜二测画法规则的教学,我首先是让学生通过观察正方体的两个表面,即与视线垂直的表面和水平位置的表面,找到平面图形水平放置时的变与不变。

然后自学规则,最后解释“斜”和“二测”的含义,加深对规则的理解。

在理解的基础之上用自己的语言总结,即平行性不变,长度是横不变,纵减半。

理解规则以后,引导学生思考发现画直观图的实质就是确定顶点的位置。

2、例题和练习题的选用及处理。

10.1(4)空间图形的平面直观图的画法

10.1(4)空间图形的平面直观图的画法

这样的直观图叫做斜二轴测图
“斜二测”画图法有两条重要性 质:
1.平行直线的斜二测图仍是 平行直线
2.线段及其线段上定比分点的 斜二测图保持原比例不变
例2: 用斜二测画法画长、宽、高分别为4、3、2的长方体 的直观图
练习1. 画水平放置的边长为3cm的正三角形直观图
A
B
M
C
3cm
AHale Waihona Puke BM 3cmC
135°
y x
这样的画图方法叫做
(2)规定x方向上线段与其表示的真 实长度相等,而在y轴方向上,线 段的长度是其表示的真实长度的二 分之一.
有了以上规定之后,左右方向
和前后方向分别测量空间图形在对 应方向上线段的长度,并计算出这 些线段在x轴、y轴方向上相应的长 度,从而画出空间图形的直观图.
斜二测画法
10.1(4)空间图形的平面直 观图的画法
为了把空间图形画得即富有立体感,又能 表达出图形各主要部分的位置关系和度量关系, 我们通常采用斜二测画法画空间图形的直观图。
例1: 用斜二测画法画一个水平放置的正六边形的直观图 y
F
ME
A
O G
x D
B aN C
“斜二测”画图法
(1)规定按图所示的位置和夹角作二 条轴分别表示左右方向以及前后方 向的轴,依次把它们叫做x轴和y轴.
注:画空间图形的直观图时,应先在前后、左右、 上下这三个方向上找到容易画的直观图形。
谢谢大家!

平面图形水平放置图

平面图形水平放置图

练习:
1.关于“斜二测”直观图的画法,下列说法中正确的有

①用斜二次画法画出的直观图是在平行投影下画出的空间图形
②几何体的直观图的长宽高与几何体的长宽高的比例相同
③水平放置的矩形的直观图是平行四边形
④水平放置的圆的直观图是椭圆
2.判断: ①水平放置的正方形的直观图可能是梯形 ②两条相交直线的直观图可能是平行直线 ③互相垂直的两条直线的直观图仍然互相垂直 ④正方形的直观图可能是平行四边形 ⑤梯形的直观图可能是平行四边形
第三步: 连结AC,BC,所得三角形ABC就是正三角形ABC的直观图.
练习:
画水平放置的正六边形的直观图.
y
F
E
y
A B
Dx
O
A
C
B
F
E
x
O
D
C
——斜二测画法
主要步骤: ① 在已知图中取互相垂直的x轴和y轴,两轴相交于点O; ② 作x轴,y轴,两轴相交于O,且使∠xOy=45或135 ; ③ 已知图中平行于x轴的线段仍与x轴平行,且保持原长度不变;平行于y 轴的线段仍与y轴平行,长度变为原来的一半; ④ 连接其余线条,擦去多余的辅助线.
3.如图,直观图表示的平面图形是
A.任意三角形 B.锐角三角形 C.直角三角形 D.钝角三角形 y A
()
B O 上图中,若△ABC的面积是3,则△ABC的面积是______.
C x
4.如果一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和 上底长均为1的等腰梯形,那么这个平面图形的面积是多少?
画水平放置的正三角形的直观图.
yC y
C
xxAOBAOB
第一步: 在已知的正三角形ABC中,取AB边所在的直线为x轴,取对称轴 CD为y轴,两轴相交于点O;画对应的x轴、y轴,使∠xOy=45(或 135). 第二步:在x轴上取OA=OA,OB=OB,在y轴上取OC=0.5OC.

北师大版数学必修二课件:1.2直观图

北师大版数学必修二课件:1.2直观图
(1)三角形的直观图可能为一条线段. (
)
(2)菱形的直观图可能为长方形. (
)
(3)空间几何体的直观图是唯一的. (
)
(4)如果一个水平放置的△ABC的面积为S,用斜二测画法画出的
直观图的面积为S',那么S与S'的关系是S'= √2 S. (
)
4
答案:(1)× (2)√ (3)× (4)√
探究一
∠x'O'y'=45°.
如图所示,作D'H'⊥x'轴于点H',
√2
则 A'B'=4 cm,A'D'=1 cm,D'H'=
√2
2
cm,
所以 S 四边形 A'B'C'D'=4× =2√2(cm2).
2
探究一
探究二
探究三
易错辨析
探究二画空间几何体的直观图
【例2】画出底面边长为1.2 cm的正方形,侧棱均相等且高为1.5
易错辨析
探究三由直观图还原平面图
【例3】 导学号91134004(1)在如图所示的直观图中,A'B'∥y'
轴,B'C'∥A'D'∥x'轴,且B'C'≠A'D',则其对应的平面图形ABCD是(
A.任意梯形
B.直角梯形
C.任意四边形
D.平行四边形
(2)已知等边三角形ABC的直观图△A'B'C'的面积为 ,则等边三
A,B,C,D,即四边形ABCD为底面正方形的直观图.
(3)画高.在z'轴上截取OP,使OP=1.5 cm.

直观图的画法

直观图的画法
画水平放置旳正三角形旳直观图.
y
B
A
O
B
第一步: 在已知旳正三角形ABC中,取AB边所在旳直线为x轴,取对称轴CD为y轴, 两轴相交于点O;画相应旳x轴、y轴,使∠xOy=45(或135).
第二步:在x轴上取OA=OA,OB=OB,在y轴上取OC=0.5OC. 第三步: 连结AC,BC,所得三角形ABC就是正三角形ABC旳直观图.
小结:
平面图形旳水平放置
立体图形旳直观图
正方形
锐角为45且长宽比为2:1旳平行四边形
圆 椭圆
空间几何体(立体图形)旳直观图旳画法
作业:
课本16-17页练习第6题.
斜二测画法旳主要作用是为了画空间几何体.
四个环节:取面、画轴、平行性、长度.
例题 画棱长为2cm旳正方体旳直观图.
z
D
第一步 画水平放置旳正方形旳直观图ABCD, A
使∠BAD=45,AB =2cm,AD=1cm.
y
C B
第二步 过A作z轴,使∠BAz=90.分别过
D 点B,C,D作z旳平行线,在z轴及这组平行
2、如图,直观图所示的平面图形是( B )
A.任意四边形
B.直角梯形
C.任意梯形
D.等腰梯形
y
B
o
A D
C
x
3.如图,直观图表达旳平面图形是 A.任意三形 B.锐角三角形 C.直角三角形 D.钝角三角形
y A
C ( )
B O 上图中,若△ABC旳面积是3,则△ABC旳面积是______.
C x
4.假如一种水平放置旳平面图形旳斜二测直观图是一种底角为45,腰和上底长均 为1旳等腰梯形,那么这个平面图形旳面积是多少?

1. 1.4 直观图画法

1. 1.4 直观图画法

1.1.4直观图画法下图所示是江南著名古镇之一的乌镇,它是由不同的几何体组合而成的,建筑工人在建造时要依据工程设计的图纸进行施工,工程师是利用什么方法画出图纸的呢?1.表示空间图形的平面图形叫做空间图形的直观图.2.斜二测画法是一种画直观图的方法,是一种特殊的平行投影画法,其步骤为:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面;②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段;③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.3.画水平放置图形的步骤:①在水平放置的图形中建适当的直角坐标系xOy,使图形中的点尽可能地在坐标轴上或关于坐标轴对称;②画出直观图中的坐标系x′O′y′,使∠x′O′y′=45°(或135°);③在原图中取关键点,得到在坐标轴上或与坐标轴平行的线段;④按照画法规则,平行于x轴的线段长度不变,与y轴平行的减半,在直观图的坐标系中取出相应的点,得到相应的直观图.4.画空间几何体直观图的步骤:①取相互垂直的Ox、Oy轴,再取Oz轴,使∠xOz=90°且∠yOz=90°;②画O′x′、O′y′、O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°;③画底面,平行于x轴的线段在直观图中长度不变,平行于y轴的线段在直观图中长度减半;④画侧棱(或高),平行于z轴的线段在直观图中长度不变;⑤成图,顺次连接各个线段的端点,构成直观图(注意实线与虚线).,一、用斜二测画法画水平放置图形的步骤①在水平放置的图形中建适当的直角坐标系xOy,使图形中的点尽可能地在坐标轴上或关于坐标轴对称;②画出直观图中的坐标系x′O′y′,使∠x′O′y′=45°(或135°);③在原图中取关键点,得到在坐标轴上或与坐标轴平行的线段;④按照画法规则,平行性不变,长度与y轴平行的减半,在直观图的坐标系中取出相应的点,得到相应的直观图.二、用斜二测画法画空间几何体直观图的步骤①取互相垂直的Ox、Oy轴,再取Oz轴,使∠xOz=90°且∠yOz =90°;②画O′x′、O′y′、O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°;③画底面,平行于x轴的线段在直观图中长度不变,平行于y轴的线段在直观图中长度减半;④画侧棱(或高),平行于z 轴的线段在直观图中保持长度不变;⑤成图,顺次连接各个线段的端点,构成直观图(注意实线与虚线).基础巩固知识点一直观图的斜二测画法1.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形;⑤梯形的直观图是梯形.以上结论,正确的是________(填序号).解析:因平行性不改变,故②正确,①也正确,梯形的两底保持平行且不相等,故⑤也正确;平行于y轴的线段,长度变为原来的一半,故③、④不正确.答案:①②⑤2.在用斜二测画法画水平位置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中,∠A′的值为__________.解析:因∠A的两边平行于x轴,y轴,且∠A=90°,在直观图中,按斜二测画法规则知∠x′O′y′=45°或135°,即∠A′=45°或135°.答案:45°或135°知识点二由平面图形判断其直观图3.如下图,建立坐标系,得到的两个正三角形ABC的直观图不是全等三角形的一组是(C)解析:由斜二测画法规则易知A、B、D中的直观图全等.4.利用斜二测画法画边长为1 cm的正方形的直观图,正确的是(C)解析:正方形的直观图应为平行四边形且平行于y′轴的线段的长度减半,故只有C正确.知识点三由直观图判断平面图5.下图(1)为一平面图形的直观图,因此平面图形可能是选项中的(C)解析:根据直观图,平面图形的一边在x′轴上,另一边与y′轴平行,故此平面图形是左边为直角腰的直角梯形.6.如下图所示的直观图,其原图形是________三角形.解析:因在直观图中边B′C′与x′轴平行,边A′C′与y′轴平行,故原图形中∠ACB=90°,故△ABC为直角三角形.答案:直角能力升级综合点一平面图形、空间几何体的直观图的画法7.画出水平放置的等腰梯形的直观图.解析:画法:(1)如图(1),取AB所在直线为x轴,AB的中点O为原点,AB 的中垂线为y轴建立直角坐标系,画出对应的直观图中的坐标系x′O′y′,使∠x′O′y′=45°(或135°).(2)以O′为中点在x′轴上取A′B′=AB,在y′轴上取O′E′=12OE,以E′为中点画C′D′∥x′轴并使C′D′=CD.(3)连接B′C′、D′A′,如图(2),所得到的四边形A′B′C′D′即是水平放置的等腰梯形ABCD的直观图.综合点二已知三视图画直观图8.下图是已知几何体的三视图,用斜二测画法画出它的直观图.解析:(1)画轴,如图(1)画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.画出底面⊙O假设交x轴于A,B两点,在z轴上取点O′,使OO′等于三视图中相应高度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′.利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′,B′两点.(3)成图,连接A′A,B′B.去掉辅助线,将被遮挡的部分改为虚线,即得到给出三视图所表示的直观图(2).综合点三水平放置平面图形直观图中的计算问题9.如果一个水平放置的图形的斜二测画法得到的直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是多少?解析:由题意,知原图形为直角梯形,且上底为1,下底为1+2,高为2,所以实际图形的面积=(1+1+2)×22=2+ 2.10.下图为水平放置的正方形ABCD,它在直角坐标系中点B 的坐标为(2,2),则在斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为多少?直观图的面积是多少?解析:下图为正方形ABCD在x′O′y′中的直观图,作B′D′⊥x′轴,则在Rt△B′C′D′中,∠B′C′D′=45°,B′C′=1,∴B′D′=B′C′·sin 45°=1×22=22.S▱A′B′C′O′=O′C′×B'D'=2×22= 2.即B′到x′轴的距离为22,直观图的面积为 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形直观图的画法
先观察下面的图形,总结投影变化规律。

投影规律:
1.平行性不变;但形状、长度、夹角
会改变;
2.平行直线段或同一直线上的两条
线段的比不变
3.在太阳光下,平行于地面
的直线在地面上的投影长不变
表示空间图形的平面图形,叫做
空间图形的直观图
画空间图形的直观图,一般都要
遵守统一的规则,
1.斜二测画法
我们常用斜二测画法画空间图形及水平放置的平面多边形的直观图.斜二测画法是一种特殊的平行投影画法.
2.平面图形直观图的画法
斜二测画法的步骤:
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴交于点O′,且使∠x′O′y′=_45°(或135°)_,它们确定的平面表示_水平面.
(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成_平行
于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变_,_垂直于x轴的线段,长度为原来的_一半_.
注意点:
1.斜二测画法中的“斜”和“二测”分别指什么?
提示:“斜”是指在已知图形的xOy平面内垂直于x轴的线段,在直观图中均与x′轴成45°或135°;“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变;平行于y′轴的线段长度变为原来的一半。

2.圆的斜二测画法,其图形还是圆吗?
提示:不是圆,是一个压扁了的“圆”,即椭圆。

3.立体图形直观图的画法
由于立体图形与平面图形相比多了一个z轴,因此,用斜二测画法画立体图形的直观图时,图形中平行于x轴、y轴或z轴的线段在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.平行于x轴和z 轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.
例1.用斜二测画法画水平放置的六边形的直观图
解:
第一步:在六边形ABCDEF中,取AD所在的直线为X轴,对称轴MN 所在的直线为Y轴,两轴交于点O。

画相应的X’轴和Y’轴,两轴交于点O’,使∠x’Oy’=45°
第二步:以O’点为中心,在X’上去A’D’=AD,在y’轴上去M’N’=。

以点N’为中心,话B’C’平行于x’轴,并且等于BC,再以M’为中心,画E’F’平行于X’轴,并且等于EF。

第三步:连接A’B’,C’D’,E’F’,F’A’。

第四步:擦去辅助线x’轴和y’轴,便获得六边形ABCDEF水平放置的直观图A’B’C’D’E’F’
总结画法规则:
1、在空间图形中取互相垂直的x轴和y轴,两轴交于O点,再取z 轴,使∠xoz=900,且∠yoz=900;
2、画直观图时把它们画成对应的x’轴、y’轴和z’轴,它们交于O’,并使∠x’oy’=450(或1350),∠x’oz’=900, x’轴和y’轴所确定的平面表示水平平面。

3、已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x’轴、y’轴或z’轴的线段。

(即平行性不变)。

4、已知图形中平行于x轴和z轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的一半(即横不变纵折半)。

是为斜二测画法。

平面图形直观图的画法
基本步骤:
(1)建系;
(2)画轴;
(3)作平行线段(横不变纵减半);
(4)连线;
(5)擦去辅助线(也可保留辅助线);
课堂检测:
1关于斜二测画法的下列结论:
(1)三角形的直观图还是三角形;
(2)平行四边形的直观图还是平行四边形;
(3)正方形的直观图还是正方形;(
(4)菱形的直观图还是菱形
其中正确的是()
A(1)(2)B(1)(3)C(3)(4)D(1)(2)(3)(4)2 下列说法中正确的是()
A水平放置的矩形的直观图可能是梯形
B 水平放置的梯形的直观图可能是平行四边形
C 水平放置的平行四边形的直观图可能是矩形
D 水平放置的菱形的直观图不可能是平行四边形
重要规律:在画水平放置的平面图形的直观图时,选取适当的坐标系是关键,一般要使得平面多边形尽可能多的顶点在坐标轴上,以便于画点;原图中的共线点,在直观图中仍是共线点,原图中的平行线,在直观图中仍是平行线.
对于直观图,除了了解其画图规则外,还要了解原图形面积S 与其直
观图面积S′之间的关系S′=24S ,能进行相关问题的计算.
已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图
△A′B′C′的面积为 ( ) a 2 2 Ca 2 a 2
解析:如图①、②所示的实际图形和直观图.
由②可知,A′B′=AB =a ,O′C′=12OC =34a ,
在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.
∴S △A′B′C′=12A′B′·C′D′=12×a×68a =616a 2.
答案:D
将直观图还原为平面图
把一个水平放置的平面图形的直观图,通过逆向思维,逆 用斜二测画法规则可还原为原来的图形.
例题2、如图是一梯形OABC 的直观图,其直观图面积为S ,求梯形OABC 的面积.
【思路点拨】 还原→求原图形的高→求原图形的面积
【解】 设O ′C ′=h ,则原梯形是一个直角梯形且高为′B ′=CB ,O ′A ′=OA .
过C ′作C ′D ⊥O ′A ′于D ,则C ′D =22h .
由题意知12C ′D (C ′B ′+O ′A ′)=S ,
即24h (C ′B ′+O ′A ′)=S .
又原直角梯形面积为
S ′=12·2h (CB +OA )
=h(C′B′+O′A′)=4S
2
=22S,
所以梯形OABC的面积为22S.
注意:由直观图还原为平面图形时,注意平行y′轴的线段,要变为2倍长度.
如图,矩形O′A′B′C′是水平放置的一个
平面图形的直观图,其中O′A′=6 cm,
O′C′=2 cm,则原图形

()
A.正方形B.矩形
C.菱形D.一般的平行四边形
解析:将直观图还原得?OABC,则
∵O′D′=2O′C′=22(cm),
OD=2O′D′=42(cm),
C′D′=O′C′=2(cm),∴CD=2(cm),
OC=CD2+OD2=22+?42?2=
6(cm),
OA=O′A′=6 (cm)=OC,
故原图形为菱形.
答案:C
立体图形直观图的画法
斜二测画法的步骤:
(1)在已知图形中取互相垂直的x 轴和y 轴,两轴相交于o 点.画直观图时,把它画成对应的x′轴、y′轴,使
,它确定的平面表示水平平面。

(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不 变;平行于y 轴的线段,长度为原来的一半.
例:用斜二测画法画长,宽,高分别是
4cm,3cm,2cm 的长方体ABCD -A’B’C’D’的直观图
解:
第一步:画轴。

画x 轴,y 轴,z 轴,三轴交
于点O ,使得∠xOy=45°,∠xOz=90°
第二步:画底面。

以O 为中心,在x 轴上取
线段MN ,使得MN=4cm ,在y 轴上取线段
PQ ,使得PQ=;分别国电作y 轴的平行线,
过点P ,Q 作x 轴的平行线,作出平行四边形
ABCD
第三步:画侧棱,过点A,B,C,D,分别作z 轴的平行线,并在这些平行线上分别截取2cm 长的线段AA’,BB’,CC’,DD’。

()
x Oy =45135''∠或
第四步:成图,连接A’,B’,C’,D’去掉辅助线,即
可画出直观图
总结基本步骤:
(1)画轴;
(2)画底面;
(3)画侧棱;
(4)成图;
总结:
斜二测画法的规则;关键是“平行性不变;横不变纵折半”。

相关文档
最新文档