多边形的定义讲解
专题7.18 多边形的内角和与外角和(知识梳理与考点分类讲解)
专题7.18 多边形的内角和与外角和(知识梳理与考点分类讲解)【知识点一】多边形及其相关概念1.多边形的概念:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由n(n是大于或等于3的自然数)条线段组成,那么这个多边形就叫做n 边形,如三角形,四边形,五边形,·····,三角形是最简单的多边形.2.多边形的相关概念(1)多边形的边:组成多边形的各条线段叫做多边形的边.(2)多边形的顶点:相邻两边的公共端点叫做多边形的顶点.(3)多边形的内角:多边形相邻两边所组成的在多边形内部的角叫做多边形的内角,简称多边形的角.(4)多边形的外角:多边形的一边和它的邻边的延长线组成的角叫做多边形的外角.(5)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线.特别提醒:1.多边形的边数、顶点数及角的个数相等;2.把多边形问题转化成三角形问题求解的常用方法是连接对角线.【知识点二】正多边形各个角都相等,各条边都相等的多边形叫做正多边形.正多边形必须满同时满足以下两个条件:①各边都相等;②各角都相等.【知识点三】凸多边形与凹多边形多边形分为凸多边形和凹多边形.如图①所示,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的多边形成为凸多边形;而图②就不满足上述凸多边形的特征,因为我们画出CD所在的直线,整个多边形不都在这条直线的同一侧,所以我们称它为凹多边形.【考点目录】...【变式2】(2024上北京朝阳·八年级统考期末).在一张凸n边形纸片上剪去一个三角形纸片,得到一个内角和为︒的凸多边形纸片,则n的值为【变式1】(2023上·广西南宁5.五边形的外角和为(A.180︒【变式2】(2024上·广东汕头6.如图是由射线AB【考点3】正多边形内角和问题;【例3】(2023上·河南商丘7.如图,用n个全等的正五边形按如图方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为接一圈后,中间会形成一个正多边形.(1)求1∠的度数;(2)求2∠的度数;(3)求n的值.【变式1】(2023·全国·八年级课堂例题)8.如图所示,在正五边形ABCDEA.26︒【变式2】(2023下·全国9.将等边三角形、正方形、正五边形按如图所示的位置摆放,则∠+∠+∠=123【考点4】正多边形外角和问题;【例4】(2023上10.如果正多边形的每个内角都比它相邻的外角的(1)它是几边形?A.6【变式2】(202412.若一个正n边形的每个内角为【考点5】多边形外角和实际应用;【例5】(2023上13.亮亮从点M(1)亮亮______(填“能”或“不能(2)亮亮走过的路线围成了______(3)求(2)中图形的周长.【变式1】(2023上·河南许昌A.65︒B.70︒【变式2】(2023上·山东临沂·八年级校考阶段练习)15.一个多边形的每一个外角都等于①过多边形的一个顶点,则原来的是6边形;②不过多边形的顶点,则原来的是5边形,综上所述,原多边形的边数为5或6或7,故答案为:5或6或7.4.180︒【分析】根据多边形的外角和进行解答即可.【详解】解:∵六边形的外角和为360︒,∠+∠+∠+∠+︒+︒=︒,∴12349090360∠+∠+∠+∠=︒.∴1234180【点睛】本题主要考查了多边形的外角和,解题的关键是熟练掌握多边形的外角和为360︒.5.B【分析】本题考查多边形的外角和,根据多边形的外角和均为360︒即可得出答案.【详解】解:五边形的外角和为360︒,故选:B.6.190【分析】本题考查多边形的外角和,结合已知条件,利用多边形的外角和列式计算即可.【详解】解:由图形可得123456360∠+∠+∠+∠+∠+∠=︒,,∠+∠+∠=︒135170∴∠+∠+∠=︒-︒=︒,246360170190故答案为:190.∠=︒7.(1)1108∠=︒(2)2120n=(3)6【分析】本题考查了正多边形的内角.(1)根据正五边形的内角和公式即可求解;(2)由(1)知正五边形内角为108︒,利用周角为360︒即可求解;(3)根据题意得围成的多边形为正多边形,由(2)知该正多边形内角为120︒,根据内角和定理求解即可.a b⊥,90ABC∴∠=︒,∴正多边形的一个外角为∴360845n︒==︒,故选:C.60230︒÷=︒,正五边形的每一个内角()521805108=-︒÷=︒ ,∴图3中的五角星的五个锐角均为:1086048︒-︒=︒.故答案为:48︒.。
考点14 四边形-中考数学考点讲解
考点14 四边形一、多边形1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.2.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型(1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.四、特殊平行四边形的性质与判定1.矩形的性质与判定(1)矩形的性质:①四个角都是直角;②对角线相等且互相平分;③面积=长×宽=2S△ABD=4S△AOB.(如图)(2)矩形的判定:①定义法:有一个角是直角的平行四边形;②有三个角是直角;③对角线相等的平行四边形.2.菱形的性质与判定(1)菱形的性质:①四边相等;②对角线互相垂直、平分,一条对角线平分一组对角;③面积=底×高=对角线乘积的一半.(2)菱形的判定:①定义法:有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.3.正方形的性质与判定(1)正方形的性质:①四条边都相等,四个角都是直角;②对角线相等且互相垂直平分;③面积=边长×边长=2S△ABD=4S△AOB.(2)正方形的判定:①定义法:有一个角是直角,且有一组邻边相等的平行四边形;②一组邻边相等的矩形;③一个角是直角的菱形;④对角线相等且互相垂直、平分.4.联系①两组对边分别平行;②相邻两边相等;③有一个角是直角;④有一个角是直角;⑤相邻两边相等;⑥有一个角是直角,相邻两边相等;⑦四边相等;⑧有三个角都是直角.5.中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一多边形多边形内角和:n边形内角和公式为(n–2)·180°;多边形外角和:任意多边形的外角和为360°;正多边形是各边相等,各角也相等的多边形.典例1 一个多边形的内角和为900°,则这个多边形是A.六边形B.七边形C.八边形D.九边形【答案】B典例2 如果一个多边形的每一个外角都是60°,那么这个多边形是A.四边形B.五边形C.六边形D.八边形【答案】C【解析】多边形外角和为360°,此多边形外角个数为:360°÷60°=6,所以此多边形是六边形.故选C.【名师点睛】计算正多边形的边数,可以用外角和除以每个外角的度数得到.1.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是A.17 B.16 C.15 D.16或15或172.如果一个多边形的每一个内角都是108°,那么这个多边形是A.四边形B.五边形C.六边形D.七边形考向二平行四边形的性质与判定1.平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的性质为我们证明线段平行或相等,角相等提供了新的理论依据.2.平行四边形的判定方法有五种,在选择判定方法时应根据具体条件而定.对于平行四边形的判定方法,应从边、角及对角线三个角度出发,而对于边又应考虑边的位置关系及数量关系两方面.典例3 在ABCD中,∠A∶∠B∶∠C∶∠D的值可能是A.3∶4∶3∶4 B.5∶2∶2∶5C.2∶3∶4∶5 D.3∶3∶4∶4【答案】A【解析】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴在ABCD中,∠A∶∠B∶∠C∶∠D 的值可能是:3∶4∶3∶4.故选A.【名师点睛】本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.典例4在下列条件中,不能判定四边形为平行四边形的是A.对角线互相平分B.一组对边平行且相等C.两组对边分别平行D.一组对边平行,另一组对边相等【答案】D3.平行四边形的周长为24,相邻两边的差为2,则平行四边形的各边长为.A.4,4,8,8 B.5,5,7,7C.5.5,5.5,6.5,6.5 D.3,3,9,94.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形考向三矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例5 如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是A.AB=CD,AC=BD B.OA=OC,OB=ODC.AC⊥BD,AC=BD D.AB∥CD,AD=BC【答案】B【名师点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形.此类题属于中考常考题型.典例6 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是A.1 cm B.2 cmC.3 cm D.4 cm【答案】C【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD=3 cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3 cm,故选C.【名师点睛】本题考查了矩形的性质,等边三角形的判定和性质,熟记各性质并判断出△AOB是等边三角形是解题的关键.5.能判断四边形是矩形的条件是A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直6.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是A.18°B.36°C.45°D.72°考向四菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.2.菱形的判定:四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形.典例7菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例8如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).7.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°8.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向五正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例9如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是A.45°B.60°C.67.5°D.82.5°【答案】C【解析】利用正方形的性质,可知∠CBE=45°,再根据等腰三角形的性质即可得出答案.∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=12×(180°−45°)=67.5°.故选C.典例10下列命题正确的是A.对角线互相垂直平分且相等的四边形是正方形B.对角线相等的四边形是矩形C.一组对边相等,另一组对边平行的四边形是平行四边形D.对角线互相垂直的四边形是菱形【答案】A【名师点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的判定,此题难度不大.9.如图,已知正方形ABCD的边长为53,E为BC边上的一点,∠EBC=30°,则BE的长为A.5B.25C.5 D.1010.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分考向六中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例11如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH为菱形,故D错误;故选D.11.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形12.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD 的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.下面四个图形中,是多边形的是2.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是A.7 B.10 C.35 D.703.n边形的边数增加一倍,它的内角和增加A.180°B.360°C.(n–2)·180°D.n180°4.七边形的外角和等于A.180ºB.360ºC.540ºD.720º5.在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=A.100°B.120°C.135°D.150°6.如图所示,在ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_____个平行四边形.7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=650,则∠AEB=____________.8.如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.学科!网10.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.11.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线CA平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.1.(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是A.8 B.9C.10 D.112.(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是A.22 B.20C.22或20 D.183.(2017•聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是A.AB=AC B.AD=BDC.BE⊥AC D.BE平分∠ABC4.(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为A.5 B.4 C.342D.345.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=__________.6.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1–∠2=__________.7.(2017•邵阳)如图所示的正六边形ABCDEF,连接FD,则∠FDC的大小为__________.8.(2017•抚顺)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为__________.9.(2017•襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.10.(2017•安顺)如图,DB∥AC,且DB=12AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?3.【答案】B【解析】平行四边形的对边相等,所以两邻边的和为周长的一半.周长为24,则两邻边的和为12.又因为相邻的两边相差2,则可计算出较长的一边长为7,较短的一边长为5.故选B.变式拓展4.【答案】A【解析】对角线互相平分的四边形是平行四边形.故选A . 5.【答案】C【解析】A 、对角线互相平分的四边形是平行四边形,不一定是矩形,故错误; B 、等腰梯形的对角线也相等,故错误;C 、对角线互相平分且相等的四边形是矩形,故正确;D 、对角线互相垂直的四边形不一定是矩形,故错误, 故选C .7.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .8.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 9.【答案】D 【解析】设,CE x =30EBC ∠=︒,2,BE x ∴=根据勾股定理,22353,BC BE CE x =-==5,x ∴=210.BE x ∴==故选D .11.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 12.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,∴EBK ABM S S △△=14,S △AEN =S △EBK ,∴EKMN ABM S S 四边形△=12,同理可得KFPM BCM S S 四边形△=12, QGPM DCM S S 四边形△=12,HQMN DAM S S 四边形△=12,∴EFGH ABCD S S 四边形四边形=12,∵四边形ABCD 的面积记为S 1,中点四边形EFGH 的面积记为S 2,则S 1与S 2的数量关系是S 1=2S 2.故选C .1.【答案】D【解析】根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形,得:D 是考点冲关多边形.故选D.2.【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n–2),解得:n=10,这个正n边形的所有对角线的条数是:(3)10722n n-⨯==35,故选C.6.【答案】4【解析】∵在ABCD中,E,F分别为AB,DC的中点,∴DF=CF=AE=EB,AB∥CD,∴四边形AEFD,CFEB,DFBE是平行四边形,再加上ABCD本身,共有4个平行四边形.故答案为4.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.852【解析】∵正方形ABCD的面积为5,正方形BEFG面积为4,∴正方形ABCD5BEFG的边长为2,∴CE52,△GCE的面积=12 CE•BG=12×(5–2)×2=5–2.故答案为:5–2.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=12AC,同理有GH∥AC,且GH=12AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.11.【解析】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,FAC ECAOA OCAOF COE∠∠⎧⎪⎨⎪∠∠⎩===,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AECF是平行四边形,∵AF=CF,∴四边形AECF是菱形;(2)设CF=x,则AF=x,BF=8–x,∵四边形ABCD是矩形,∴∠B=90°,∴BF2+AB2=AF2,∴(8–x)2+42=x2,解得:x=5,即EC=5,∴S菱形AECF=FC•AB=5×4=20.1.【答案】C【解析】180°–144°=36°,360°÷36°=10,则这个多边形的边数是10.故选C.2.【答案】C【解析】如图,在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+3)=22.故选C.4.【答案】D【解析】∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC22AD CD34∴BO=12AC34D.5.【答案】80°【解析】∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°–∠B=180°–100°=80°,故答案为:80°.6.【答案】24°直通中考【解析】正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5–2)×180°÷5=108°,正六边形的每个内角是:(6–2)×180°÷6=120°,则∠3+∠1–∠2=(90°–60°)+(120°–108°)–(108°–90°)=24°.故答案为:24°.7.【答案】90°【解析】∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°.8.【答案】3【解析】由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.9.【解析】(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=12BD=3,∵∠ADB=30°,∴cos∠ADB=3ODAD,∴AD=3=23.10.【解析】(1)∵E是AC中点,∴EC=12AC.∵DB=12AC,∴DB=E C.又∵DB∥AC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴ADBE是矩形.。
浙教版八年级下册 4.1 多边形 课件(20张PPT)
知识回顾
A
Bቤተ መጻሕፍቲ ባይዱ
C
定义:由不在同一条直线上的三条线段首尾顺次相接 所形成的图形叫三角形.
新课讲解
四边形的定义…
A D
B
C
在同一平面里, 由不在同一条直线上的四条线段 首尾顺次相接所形成的图形叫四边形 .
新课讲解
……
三角形 四边形 五边形 六边形 依此类推, 边数为5的多边形叫五边形, 边数为6的多边形叫六边形, 边数为n的多边形叫n边形. (n为正整数,且n≥3)
B.2π米2
C.3π米2
D.0.5π米2
练一练
4.如图,在四边形ABCD中,∠A=85°,
D
∠D=110°, ∠1的外角是71°, 则∠1= 109 °,∠2= 56°.
A 85° 110°
71° 1 B
2 C
5.如图,在四边形ABCD中, ∠C=110°,∠BAD,∠ABC的外 角都是120°,则∠ADC的外角a 的度数是 50 度.
∴∠1+∠2+∠3+∠4 = 4×180°- 360° = 360°
A1 D 4
2
C
B
3
四边形的外角和等于360°.
例题讲解
例1 如图,四边形风筝的四个内角∠A,∠B,∠C,∠D 的度数之比为1:1:0.6:1.求它的四个内角的度数.
解 ∵∠A+∠B+∠C+∠D=360° (四边形的内角和为360°)
顶点个数 边的条数
表示法
内角和 外角和
3个 3条
可以表示为△ABC、 △BCA、△CAB等
180˚ 360°
4个
4条
可以表示为四边形ABCD、 四边形BCDA、四边形 CDAB、四边形DABC等.
初二数学经典讲义 多边形(提高)知识讲解
多边形(提高)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。
如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗?【答案与解析】解:这个问题,我们可以用图来说明.按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.答:余下的图形是五边形或四边形或三角形.【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.举一反三:【变式1】如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2=。
青岛版小学数学四年级下册认识多边形思维导图知识讲解
青岛版小学数学四年级下册认识多边形思维导图知识讲解一、多边形的概念多边形是由直线段首尾相连组成的封闭图形。
它可以是三角形、四边形、五边形、六边形等等。
多边形的每个角叫做内角,每条边叫做边。
多边形的特点是它有有限个边和角,并且这些边和角都是直线。
二、多边形的分类1. 按边数分类三角形:由三条边组成的多边形,如等边三角形、等腰三角形、直角三角形等。
四边形:由四条边组成的多边形,如正方形、长方形、平行四边形、梯形等。
五边形:由五条边组成的多边形,如正五边形等。
六边形:由六条边组成的多边形,如正六边形等。
2. 按角分类锐角多边形:所有内角都小于90度的多边形。
直角多边形:有一个内角是90度的多边形。
钝角多边形:有一个内角大于90度的多边形。
三、多边形的性质1. 边的性质:多边形的边都是直线段,且相邻的两条边共享一个顶点。
2. 角的性质:多边形的内角和等于(n2)×180度,其中n是多边形的边数。
3. 对角线的性质:多边形从一个顶点出发,可以引出n3条对角线,其中n是多边形的边数。
四、多边形的应用多边形在我们的生活中随处可见,如房屋、道路、家具、电子产品等。
了解多边形的性质和特点,有助于我们更好地理解和应用多边形。
五、多边形的面积计算多边形的面积计算是一个重要的应用。
对于规则多边形,我们可以使用公式来计算其面积。
例如,正方形的面积是边长的平方,长方形的面积是长乘以宽。
对于不规则多边形,我们可以将其分割成若干个三角形,然后计算每个三角形的面积,将它们相加得到总面积。
六、多边形的周长计算多边形的周长是指围绕多边形一周的长度。
对于规则多边形,我们可以使用公式来计算其周长。
例如,正方形的周长是4倍边长,长方形的周长是2倍长加2倍宽。
对于不规则多边形,我们可以将每条边的长度相加得到周长。
七、多边形的对称性多边形具有对称性,这意味着它们可以通过某种方式被折叠或旋转,使得两部分完全重合。
对称性是几何学中的一个重要概念,它可以帮助我们更好地理解和应用多边形。
认识多边形
1 下列图形中,属于多边形的是( )
A.线段 B.角 C.六边形 D.圆
2 从一个n边形的一个顶点出发,分别连接这个顶点 与其余各顶点,若把这个多边形分割成7个三角形, 则n的值是( )
A.6
B.7
C.8
D.9
3 一个四边形截去一个角后,可以变成( ) A.三角形 B.四边形 C.五边形 D.以上都有可能
理由:如图③,以顶点A1为例,由定义可知,共有三 个点(本身与相邻两点)不能与A1连成对角线,即 顶点A1,A2,An,因此从顶点A1引出的对角线 有(n-3)条.其他顶点以此类推,由于n边形有n
个顶点,若用n(n-3)计算,通过观察图形可知,
每条对角线都重复了一次,即
n(n-3)是所有对角线条数的2
17、在人生的竞赛场上,没有确立明确 目标的 人,是 不容易 得到成 功的。 许多人 并不乏 信心、 能力、 智力, 只是没 有确立 目标或 没有选 准目标 ,所以 没有走 上成功 的途径 。这道 理很简 单,正 如一位 百发百 中的神 射击手 ,如果 他漫无 目标地 乱射, 也不能 在比赛 中获胜 。 18、生活就像海洋,只有意志坚强的人 ,才能 到达彼 岸。——马克 思
C.3个
D.4个
导引:紧扣正多边形的定义识别: (1)等腰三角形的底边与腰不一定相等,所以不一
定是正多边形; (2)等边三角形三条边都相等,三个角都相等,是
正多边形; (3)长方形的四个角相等,但长与宽不一定相等,
所以不一定是正多边形; (4)正方形的四条边相等,四个角相等,是正多边
形.
总结
对于正多边形的识别,各条边都相等,各个角都相等, 这两个条件缺一不可.
倍,因此n边形共有 n(n 3)
五年级上册数学 多边形的面积知识总结
多边形的面积知识总结一、概述在五年级上学期的数学课程中,学生们将接触到多边形的面积计算。
多边形是平面几何中的重要概念,而对多边形的面积计算则是其中的一个重要内容。
通过学习多边形的面积知识,学生们将能够更好地理解和运用几何知识,同时也为日后学习数学打下坚实的基础。
二、多边形的定义1. 多边形是指由若干条线段首尾相连而围成的封闭图形。
其特点是由若干个直角三角形组成,每个三角形之间没有交集,并且共用一个顶点。
常见的多边形有三角形、四边形、五边形等。
2. 多边形的面积是指多边形所围成的区域的大小,通常用平方单位来表示。
三、常见多边形的面积计算方法1. 三角形的面积计算公式:三角形的面积可以用底边和高来计算,公式为:S = 1/2 * 底边 * 高2. 等边三角形的面积计算公式:当三角形的三条边都相等时,可以使用海伦公式来计算面积,公式为:S = 根号3 / 4 * 边长的平方3. 矩形的面积计算公式:矩形的面积可以用长和宽来计算,公式为:S = 长 * 宽4. 正方形的面积计算公式:当矩形的长和宽相等时,即为正方形,面积计算公式与矩形相同:S = 边长的平方5. 梯形的面积计算公式:梯形的面积可以用上底、下底和高来计算,公式为:S = 1/2 * (上底+ 下底) * 高6. 领域边形的面积计算公式:具体的面积计算方法取决于多边形的具体形状,需要根据情况进行相应的计算。
四、多边形面积计算实际应用多边形的面积计算在日常生活中有着广泛的应用。
比如在房屋装修中,需要计算墙面的面积来购物涂料或瓷砖;在土地测量中,需要计算不规则形状的面积来划定地界等等。
学习多边形面积计算不仅可以帮助学生掌握数学知识,还能促进他们将所学知识运用到实际生活中。
五、学习多边形面积计算的重要性1. 帮助提高数学能力:学习多边形的面积计算能够培养学生的逻辑思维能力和数学计算能力,为学生建立起数学思维框架。
2. 培养抽象思维和几何想象能力:数学中的几何学是一个抽象而又直观的学科,学生通过学习多边形的面积计算,可以培养其对几何图形的抽象思维和几何想象能力。
凸多边形的定义和凹多边形的定义
凸多边形的定义和凹多边形的定义在几何学中,我们常常碰到各种各样的多边形。
今天呢,我们就来聊聊凸多边形和凹多边形这两个概念。
为了让大家更容易理解,我会用简单的语言和日常的例子来解释,希望大家能够轻松掌握这两个有趣的几何概念!1. 凸多边形的定义1.1 什么是凸多边形?凸多边形,顾名思义,就是“凸出来的”多边形。
它的特点很简单:如果你把一条线段放在这个多边形的任何两点之间,那么这条线段都完全在多边形内部。
换句话说,就是从任何一个点出发,向外画一条线,都不会穿过多边形的边界。
1.2 举个简单的例子想象一下一个规则的正方形,或者说是长方形。
它们的边缘都是平直的,角度都是直角。
无论你在正方形的哪个角落,都可以画一条线段连接两个点,这条线段都会完全在正方形的内部,毫无疑问这是个凸多边形。
看,简单吧!2. 凹多边形的定义2.1 什么是凹多边形?凹多边形的定义和凸多边形正好相反。
你可以这么想,凹多边形就像是多边形的“凹进去的”那种。
它的特征是存在至少一个角度大于180度,这样的多边形里面会有一些部分“凹进去”。
所以,从某些点之间的直线段可能会穿过多边形的边界,跑到外面去。
2.2 举个简单的例子拿一个星星形状的图案来说,它的角落尖得很厉害,而且里面有些部分明显地“凹”进去。
假设你在一个星星的尖角处画一条线段,可能会发现这条线段会穿过星星的边界,回到外面去。
这样,星星就是一个典型的凹多边形。
3. 凸多边形与凹多边形的比较3.1 凸多边形的优势凸多边形的好处多多,首先它们在计算面积、周长等几何性质时要简单得多。
而且,凸多边形在实际生活中非常常见,比如大多数的书本封面、桌子顶面,都是凸多边形,这使得它们的使用变得更加便利。
3.2 凹多边形的挑战凹多边形则稍微复杂一点。
由于它们的形状有凹进去的部分,这使得在进行一些几何计算时,可能需要分解成更简单的部分来处理。
此外,凹多边形的视觉效果也常常显得更具动感和艺术感,因此它们在设计领域有其独特的魅力。
中考总复习:多边形与平行四边形--知识讲解(基础)
中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。
中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)
中考数学复习考点知识与题型专题讲解专题14 多边形【知识要点】多边形的相关知识:➢ 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
➢ 连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
➢ 一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为2)3( n n凸多边形 :画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形 :各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹ 多边形的内角和➢ n 边形的内角和定理:n 边形的内角和为(n −2)∙180°➢ n 边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
【考查题型】考查题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.典例1.(2018·云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(2021·宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考查题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(2021·隆化县模拟)下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(2017·海南中考模拟)如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )A.12B.15C.16D.18【答案】B【解析】如图,分别作直线AB、BC、HG的延长线和反向延长线使它们交于点B、Q、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APH、△BEF、△DHG、△CQG都是等边三角形.∴EF=BE=BF=1,DG=HG=HD=2.∴FC=5-1=4,AH=5-2= 3,CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考查题型三计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(2021·辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A、B、C、D均为格点,则四边形的面积为()A .7B .10C .152D .8 【答案】A 【提示】利用分割法即可解决问题.【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(2021·山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是()A .12B .14C .38D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯=5, 所以落在△ABC 内部的概率是516, 故选D .变式3-2.(2021·江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系.【详解】观察图形可得12342.5,3,3,6,S S S S ====∴23234,6S S S S S =+==,故选:B .考查题型四 计算多边形对角线条数【解题思路】熟记n 边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(2017·山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【答案】C【解析】解:根据题意,得:(n ﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14,故选C . 变式4-1.(2018·山东济南市·中考模拟)若凸n 边形的每个外角都是36°,则从一个顶点出发引的对角线条数是( )A .6B .7C .8D .9【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.故选:B.变式4-2.(2021·莆田市二模)从n边形的一个顶点出发可以连接8条对角线,则n ()A.8B.9C.10D.11【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n的值即可.【详解】解:由题意得:n-3=8,解得n=11,故选:D.变式4-3.(2021·湖南长沙市模拟)已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(2021·广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(2021·河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D.考查题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(2018·山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .变式5-1.(2021·甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(2021·湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.考查题型六正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(2021·湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(2021·湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(2021·河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n=_________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.∠变式6-3.(2021·福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC 等于_______度.【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC,BC=AF,∴CD=CF,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.考查题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(2021·五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( )A .360°B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°,故选D .变式7-1.(2021·河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A .17B .16C .15D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据()21802520,n -⋅︒=解得:n=16,则多边形的边数是15,16,17.故选D .变式7-2.(2021·贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为()A .6或7或8B .6或7C .7或8D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7,如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A .考查题型八 正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度.典例8.(2021·江苏无锡市·中考真题)正十边形的每一个外角的度数为()A.36︒B.30C.144︒D.150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(2021·江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(2021·湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5B.6C.7D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考查题型九多边形外角和的实际应用【解题思路】典例9.(2021·湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7B.8C.9D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(2021·山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考查题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(2021·西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8B.9C.10D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(2021·陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(2021·中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(2021·西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°+180°, n=7.故选C.考查题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.变式11-1小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n 取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
11.3.1多边形的有关概念(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形相关的实际问题,如多边形地板的铺设。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量多边形的内角和,演示多边形的基本原理。
-多边形对角线数量的计算:如何从n边形的一个顶点引出的对角线数量为(n-3)条,学生可能觉得难以掌握。
-多边形外接圆与内切圆的性质:理解外接圆与内切圆的半径、圆心与多边形顶点的关系,以及如何应用这些性质解决问题。
-多边形的分类及其特性:学生可能难以区分不同多边形的特性,如五边形的对称性、六边形的可分割性等。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解多边形的基本概念。多边形是由三条或三条以上的线段首尾顺次相连组成的封闭图形。多边形在我们的生活中无处不在,理解它们的性质对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个六边形的性质,展示多边形在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了多边形的基本概念、分类、内角和定理等知识点,并通过实践活动和小组讨论加深了对多边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在解释多边形内角和定理的推导过程时,可以通过剪纸或动态软件演示,将多边形分割成三角形,从而引导学生发现内角和的计算规律。对于多边形对角线数量的计算,可以通过图形直观展示,使学生看到从一个顶点出发的对角线与多边形边数的关系,进而理解计算公式。
人教版八年级多边形及其内角和PPT讲解
C
3
4 D
么关系?
从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回 到点A.最后再转回出发时的方向。在行程中所转的各个角的和, 就是多边形的外角和。
由于在这个运动过程中走了一周,也就是说所 转的各个角的和等于一个周角。
即:多边形的外角和等于360º
多边形 三角形 四边形 五边形 六边形 n边形
G
F
B
E
D C
……..
三角形 四边形 五边形 六边形 八边形
对角线是解决多边形问题的常用辅助线
多边形问题 转化 三角形问题
(未知)
(已知)
请探索任意一个多边形的内角和与外 角和的规律.
三角形
四边形
五边形
……
六边形
n边形
多边形
边 数
分成三 角形的
个数
图形
三角形 3
1
四边形 4
2
五边形 5
3
六边形 6
多边形问题 转化 三角形问题
(未知)
(已知)
n边形从一个顶点出发的对角线有(n-3)条(n≥3) n边形共有对角线 n(n - 3) 条(n≥3)
2
n边形的内角和为(n-2) ×180°(n≥3)
任何多边形的外角和为360°
由上述这些图形,你能找 到哪些我们熟习的几何图 形?
三角形
四边形
六边形
八边形 ……..
三角形的定义:
在同一平面内,由不在同一条直线上的三 条线段首尾顺次相接所组成的图形。
四边形的定义:
在同一平面内,由不在同一条直线上的四条线段 首尾顺次相接所组成的图形。
五边形
六边形
七边形
……
多边形的面积整理与复习课件
矩形面积公式及应用
矩形面积公式
$面积 = 长 \times 宽$
应用实例
在城市规划、土地利用、房屋建设等领域,矩形的面积计算是基础且重要的工作。
平行四边形面积公式及应用
平行四边形面积公式
$面积 = 基 \times 高$
应用实例
在农业、林业、土地利用等领域,平行四边形的面积计算对于评估和决策具有重要意义。
忽视多边形面积公式的使用条件
三角形面积公式
特殊三角形面积公式
平行四边形面积公式
特殊平行四边形面积公式
$S_{\triangle} = \frac{1}{2} \times \text{底} \times \text{ 高}$,适用于计算一般三角形 的面积。
Hale Waihona Puke $S_{\text{等腰直角三角形}} = \frac{1}{2} \times \text{底 }^2$,$S_{\text{等边三角形}} = \frac{\sqrt{3}}{4} \times \text{边长}^2$,适用于计算 特殊三角形的面积。
梯形面积的经典例题解析
总结词:掌握梯形面 积的基本公式和计算 方法,了解梯形面积 在几何学习和实际生 活中的应用。
详细描述
梯形面积公式的推导 过程和基本公式。
梯形面积公式的变形 和扩展,如直角梯形、 等腰梯形等。
梯形面积在实际生活 中的应用,如土地测 量、图形面积比较等。
PART 05
易错点总结
详细描述 三角形面积公式的推导过程和基本公式。
矩形面积的经典例题解析
详细描述
矩形面积公式的推导过程和基本 公式。
矩形面积公式的变形和扩展,如 长方形、正方形等。
总结词:熟悉矩形面积的基本公 式和计算方法,了解矩形面积在 几何学习和实际生活中的应用。
正多边形和圆知识点归纳
正多边形和圆知识点归纳1. 正多边形①定义:各边相等,各角也相等的多边形,叫做正多边形;②定义中两个条件缺一不可.我们知道三边相等的三角形是正三角形,三个角相等的三角形也是正三角形.但菱形四条边相等,却不是正四边形.矩形四角都相等,也不是正四边形.所以正多边形的定义中各边相等和各角相等两个条件缺一不可.2. 正多边形与圆的关系把一个圆分成相等的一些弧,就可以得到这个圆的内接正多边形,这个圆是这个多边形的外接圆.3、正多边形中各元素间的关系一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.如图,设正多边形的边长为a n,半径为R,边心距为r n,中心角为αn,则它们有如下关系:;正n边形的中心角;正n边形的周长P n=na n;正n边形的面积.4、正多边形有关计算在解决有关正多边形计算时,通常运用转化的思想方法,将正多边形的有关计算化为一个边长分别是正多边形的半径、正多边形边长的一半,正多边形的边心距的直角三角形来解决.5、正多边形的对称性①多边形都是轴对称图形,当边数为偶数时,它的对称轴是每一边的垂直平分线和正多边形的边心距所在的直线,当边数为奇数时,它的对称轴是边心距所在的直线;②只有正偶边形才是中心对称图形;③正n边形绕着它的中心每旋转就与它本身重合.典例讲解例1、填空题1. 如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为()A. B. C. D.答案:D2. 正六边形两条平行边间的距离是1,则它的边长为()A. B. C. D.答案:C3. 已知正三角形的边长为2,则它的内切圆和外接圆组成的圆环面积为()A. B. C. D.答案:B4. 边长为a的正三角形的边心距、半径和高之比为()A.1∶2∶3B.C. D.答案:A例2、如图,圆内接正六边形ABCDEF中,对角线BD、EC相交于点G,求∠BGC的度数.解:正六边形ABCDEF中DC=DE,,∴,同理可证:∠2=,∴∠BGC=∠1+∠2=.例3、如图,已知正三角形ABC外接圆的半径为R,求正三角形ABC的边长、边心距、周长和面积.思路点拨:过中心向正多边形的边作垂线得到Rt△OCH,在Rt△OCH中包含了中心角的一半、边心距、半径、边长的一半等基本元素.解:连接OB、OC,作OH⊥BC于H.例4、如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:由题意知PD=PE=FQ设PD=PE=FQ=xcm,则EF=ED=(4-2x)cm,∵∠P=90°,由勾股定理ED=,∴,∴正八边形的边长为4-2x=cm,面积为.。
人教版八年级数学上册11.3.1《多边形》说课稿
人教版八年级数学上册11.3.1《多边形》说课稿一. 教材分析《多边形》是人教版八年级数学上册第11章第3节的内容,本节课主要介绍了多边形的概念、性质和分类。
通过本节课的学习,使学生了解多边形的基本概念,掌握多边形的性质,能够对多边形进行分类,并为后续学习多边形的面积和角等知识打下基础。
二. 学情分析八年级的学生已经学习了图形的初步知识,对图形的性质和分类有一定的了解。
但是,对于多边形的概念和性质,学生可能还比较陌生,需要通过本节课的学习来逐步理解和掌握。
同时,学生需要通过实例来加深对多边形概念和性质的理解。
三. 说教学目标1.知识与技能目标:理解多边形的基本概念,掌握多边形的性质,能够对多边形进行分类。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生体验到成功的喜悦。
四. 说教学重难点1.教学重点:多边形的基本概念,多边形的性质。
2.教学难点:多边形的分类,多边形性质的证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、几何画板、黑板等。
六. 说教学过程1.导入:通过展示一些生活中的多边形图片,引导学生观察和思考,引出多边形的概念。
2.自主学习:学生通过阅读教材,了解多边形的性质,并尝试对多边形进行分类。
3.合作交流:学生分组讨论,分享对多边形性质的理解和分类方法,教师巡回指导。
4.讲解与演示:教师讲解多边形的性质和分类,利用几何画板进行动态演示,帮助学生理解。
5.练习与拓展:学生进行练习题,巩固对多边形概念和性质的理解,教师及时反馈。
6.总结与反思:学生总结本节课的收获,教师进行点评和总结。
七. 说板书设计板书设计要清晰、简洁,能够突出多边形的基本概念和性质。
可以设计如下板书:•定义:由三条以上边构成的图形•性质:对角线、内角和、外角和等•分类:三角形、四边形、五边形等八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、练习题的正确率等方面进行评价。
八年级(下)数学 同步讲义 多边形和平行四边形(解析版)
多边形是四边形章节第一节的内容,主要讲解的是多边形的内角和及外角和与边数之间的关系,比较基础,题目相对较简单.平行四边形是特殊的四边形的基础内容,奠定了特殊的四边形的基础,题型比较灵活,综合性也比较强,是综合证明题及计算题的理论依据,为进一步学习特殊的平行四边形打好基础.1、由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形.2、组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点.3、多边形相邻两边所在的射线组成的角叫做多边形的内角.4、联结多边形的两个不相邻顶点的线段,叫做多边形的对角线.5、对于一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形.6、多边形内角和定理:n边形的内角和等于(2)180n-⋅︒.7、由多边形的一个内角的一边和另一边的反向延长线组成的角,叫做多边形的外角.8、对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有外角的和,叫做多边形的外角和.9、多边形的外角和等于360°.多边形及平行四边形的性质内容分析知识结构模块一:多边形知识精讲2 / 21【例1】 (1)从五边形的一个顶点出发,可画出__________条对角线;(2)从一个多边形内的一点出发,分别联结各个顶点,可得出6个三角形,这个多 边形共有__________条对角线. 【答案】(1)2;(2)20.【解析】(1)多边形的一个顶点可以画()3n -条对角线,所以是5-3=2条.(2)由题意知,一个多边形可以切割成()2n -个三角形,则()2n -=6,由多边形的对角线条数公式()32n n -,可知这个多边形共有()883202⨯-=条对角线.【总结】考察多边形对角线的概念及条数公式.【例2】 四边形的内角和为( )A .90°B .180°C .360°D .720° 【答案】C【解析】四边形可以分割成两个三角形,所以内角和是360°.也可以通过多边形内角和 定理来计算:()1802n -. 【总结】考察多边形的内角和定理.【例3】 一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .7 【答案】C【解析】多边形内角和定理是:()1802n -,所以720°=()1802n -,解得6n =. 【总结】考察多边形的内角和定理的应用.例题解析【例4】 如果一个四边形的四个内角的度数之比为1:2:3:4,那么这个四边形的最大内角的度数是__________. 【答案】144°.【解析】四边形的内角和为360°,由题意可设四个内角度数分别为,2,3,4x x x x ,列方 程234360x x x x +++=,解得:36x =,所以最大内角4144x =. 【总结】考查多边形的内角和定理的应用.【例5】 已知一个多边形的内角和是外角和的8倍,且这个多边形的每个内角都相等,求这个多边形的边数与每个内角的度数. 【答案】边数是18,每个内角的度数为160°.【解析】因为多边形的外角都是360°,所以这个多边形的内角和为360°×8=2880°,又因为多边形的内角和公式是()1802n -,所以()1802n -=2880°,解得:18n =. 因为每个内角都相等,所以每个内角度数为2880°÷18=160°. 【总结】考察多边形内角和外角的应用.【例6】 一个多边形除了一个内角外,其余各内角的和为2750°,这个内角是多少度? 这个多边形有几条边? 【答案】18【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()275018022750180n -+,解此不等式地17.2718.27n ,n 为边数只能取正整数,所以18n =. 【总结】考察多边形内角和的应用.4 / 21【例7】 某人从点A 出发,沿直线前进100米后向左转30°,在沿着直线前进100米,又 向左转,...,照这样下去,他第一次回到出发点A 时,一共走了多少米. 【答案】1200米.【解析】由题意知A 回到出发点时,所走轨迹是一个正多边形,由多边形的外交和是360°, 所以360°÷30°=12次,所以共走了12个100米,一共走了12×100=1200米. 【总结】考察多边形外角和的应用.【例8】 在四边形ABCD 中,∠A =80°,∠B 和∠C 的外角分别为105°和32°,求∠D 的度数. 【答案】57°【解析】多边形外角和为360°,由题意知∠A 的外角为180°-80°=100°,所以∠D 的 外角为360°-100°-105°-32°=123°,对应的∠D=180°-123°=57°. 【总结】考察多边形外角和的应用.【例9】 设一个凸多边形,除去一个内角以外,其他内角的和为2570°,则该内角为( )A 、 40°B 、90°C 、120°D 、130° 【答案】D【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()257018022570180n <-<+,解此不等式地16.2717.27n ,n 为边数只能取正整数,所以17n =,所以这个内角为()()1802-2570180172-2570130n -=⨯-=. 【总结】考察多边形内角和的应用.【例10】 一个凸n 边形的内角中,恰好有4个钝角,则n 的最大值是( ) A 、5 B 、6 C 、7 D 、8 【答案】C【解析】因为多边形的内角和是180°的倍数,所以内角中有4个钝角,就会有()4n -个直角或者锐角,可知内角和一定小于4×180°+()490n -⨯, 即()1802n -< 4×180°+()490n -⨯,解得:8n <,最大值是7. 【总结】考察多边形内角和的应用.【例11】 已知,一个多边形的内角和与一个外角的差为1560°,求这个多边形的边数和这个外角的度数. 【答案】11,60°.【解析】多边形的内角和为()1802n -,则这个外角为()18021560n --,由于每一个外角都大于0°且小于180°,所以()018021560180n <--<,解得10.711.7n <<, 所以11n =,这个外角的度数为()()18021560180112156060n --=⨯--=. 【总结】考察多边形内外角和的应用.【例12】 已知凸n 边形12n A A A ⋅⋅⋅(n >4)的所有内角都是15°的整数倍,且123285A A A ∠+∠+∠=︒,那么n =__________.【答案】10【解析】多边形的内角和为()1802n -,其余共()3n -个内角和为()1802-285n -,可知()18022850n -->是15°的倍数也是()3n -的倍数, ()()18022851803105105718015123333n n n n n n ----⎛⎫==-=- ⎪----⎝⎭, 可知31n -=或者37n -=,又n >4,所以10n =. 【总结】考察多边形内外角和的应用.模块二:平行四边形的概念及性质6 / 211、 两组对边分别平行的四边形叫做平行四边形.平行四边形用符号“”表示,如:ABCD . 2、平行四边形性质定理①如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等. 简述为:平行四边形的对边相等.②如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等. 简述为:平行四边形的对角相等.③如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分. 简述为:平行四边形的两条对角线互相平分.④平行四边形是中心对称图形,对称中心是两条对角线的交点. ⑤推论:夹在两条平行线间的平行线段相等.【例13】 在平行四边形ABCD 中,若∠A 的度数比∠B 大20°,则∠B 的度数为__________,∠C 的度数为__________.【答案】80°,100°.【解析】因为是平行四边形,所以180A B ∠+∠=,又-20A B ∠∠=,解得80100B A ∠=∠=;.因为平行四边形的对角相等,所以100C ∠=. 【总结】考察平行四边形的内角和及内角的性质.知识精讲例题解析【例14】 在ABCD 中,E 在BC 上,AB =BE ,∠AEB =70°,求平行四边形ABCD 各内角的度数.【答案】40140B D BAD BCD ∠=∠=∠=∠=;.【解析】由题知,在∆BAE 中,70BEA BAE ∠=∠=,所以40B D ∠==∠, 18040140BAD BCD ∠=∠=-=.【总结】考察平行四边形的内角度数相关知识点.【例15】 如果ABCD 的周长是50cm ,AB 比BC 短3cm ,那么CD 、DA 分别是多少. 【答案】1411DA cm CD cm ==,.【解析】平行四边形的对边平行且相等,所以50225AB BC cm +=÷=,又-3BC AB cm =, 解得1411.BC cm AB cm ==,又因为,AB CD BC AD ==,所以14,11DA cm CD cm ==. 【总结】考察平行四边形的边的相关知识点.【例16】 如图,在△ABC 中,AB =AC =8,D 是底边BC 上一点,DE //AC ,DF //AB ,求四边形AEDF 的周长. 【答案】16【解析】由题意知DE //AC ,所以C EDB ∠=∠,又因为C B ∠=∠ 所以B EDB ∠=∠,得EB=ED .同理可得FD=FC ,所以四边形AEDF 的周长=AE +ED +DF+AF =AE +EB +CF +AF =AB +AC =8+8=16.【总结】考察平行四边形的边的平行性质的应用.【例17】 如图,已知平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =2,DE =1,则平行四边形ABCD 的周长等于__________.【答案】10【解析】由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠,即AE =AB =2. 因为AD=AE+ED =2+1=3,所以平行四边形ABCD 的周长等于=2×(AB +AD )=2×(2+3)=10. 【总结】考察平行四边形的综合应用.AB CDEABCDEF8 / 21【例18】 如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,已知△BOC 的周长比△AOB 的周长多8cm ,求ABCD 各边的长. 【答案】AB =CD =11cm ,BC =AD =19cm . 【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =8,又因为2×(AB +BC )=60,所以得BC +AB =30,BC -AB =8, 所以AB =CD =11cm ,BC =AD =19cm . 【总结】考察平行四边形的性质的综合应用.【例19】 平行四边形的一角平分线分对边为3和4两部分,这个平行四边形的周长为________.【难度】★★ 【答案】20或22.【解析】如图由题意可分两种情况:1、AE=3,ED =4,由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠, 即AE =AB=3,因为AD=AE+ED =3+4=7,所以这个平行四边形的周长为2×(AB +AD )=2×(3+7)=20; 2、AE =4,ED =3,同理可求这个平行四边形的周长为22; 故该平行四边形的周长为20或22.【总结】考察平行四边形的性质及等腰三角形的综合应用.ABCDOABCD E【例20】 如图,在ABCD 中,AE ⊥BC 、AF ⊥CD ,垂足分别为E 、F ,若∠ B =50°, 求∠F AE 的度数. 【答案】50゜.【解析】因为平行四边形的对角相等,所以50B D ∠=∠=.因为平形四边形的邻角互补,所以18050130BAD ∠=-=.在直角三角形BAE 中,40BAE ∠=,同理40DAF ∠=, 所以130404050FAE ∠=--=.【总结】考察平行四边形的性质及直角三角形的性质的综合应用.【例21】 平面直角坐标系中,ABCD 的对角线交点在坐标原点,若A 点的坐标为(4,3),B 点的坐标为(-2,2),求点C 、D 的坐标及ABCD 的周长.【答案】C (-4,-3);D (2,-2);229237+.【解析】因为平行四边形的对角线相互平分,所以可知C 点的坐标为(-4,-3),D 点的坐标为(2,-2).由两点间的距离公式可得()()22423237AB =++-=,()()22242329CB =-+++=,所以ABCD 的周长=2×(3729+)=237229+.【总结】考察平行四边形的性质的在平面直角坐标系中的运用.【例22】 在平面直角坐标系内,平行四边形ABCD 的边AB //x 轴,B 、D 均在y 轴上,又知道A 、D 在直线y =2x -1上,且B 点坐标(0,1),求A 、C 、D 的坐标及ABCDS. 【答案】A (1 ,1);C (-1 ,-1);D (0 ,-1);ABCDS =2.【解析】由题意知A 的纵坐标与B 相同,把y =1代入y =2x -1中,可得A 的横坐标为1,所以A 的坐标为A (1 ,1),D 为y =2x -1与y 轴的交点, 所以D 为(0,-1).因为AB //CD 且AB =CD , 所以C 的坐标为(-1,-1).从而可求CD=1,BD=2,且BD ⊥CD ,所以ABCDS=122CD BD ⨯=⨯=.【总结】考察平行四边形的性质在平面直角坐标系中的应用. 【例23】 如图,已知ABCD 的面积为24,求阴影部分的面积.【答案】12.【解析】因为平行四边形是中心对称图形,可知每一个小阴A BCDEFABCDO xy10 / 21影三角形都有一个小空白三角形与之完全重合. 所以阴影部分的面积是24.【总结】考察平行四边形的中心对称性的运用.【例24】 已知在ABCD 中,M 是AD 的中点,AD =2AB ,求∠BMC 的度数. 【答案】90°.【解析】由题知AM=AB=CD=MD ,设2ABC D ∠=∠=Φ.则可得ABM MBC AMB ∠=∠=∠=Φ,在三角形DMC 中,DM=DC ,2D ∠=Φ, 可得90DMC ∠=-Φ,所以()180-1809090BMC AMB DMC ∠=∠-∠=-Φ--Φ=. 【总结】考察平行四边形的性质的综合应用.【例25】 如图所示,平行四边形ABCD 中,G 、H 是对角线BD 上两点,DG =BH ,DF =BE . 求证:∠GEH =∠GFH .【解析】在DFG ∆与BHE ∆中,因为DG =BH ,DF =BE ,CDB DBA ∠=∠,所以DFG ∆≅BHE ∆,所以GF=EH ,DGF BHE ∠=∠.从而FGH GHE ∠=∠,所以GF//EH . 又因为GF=EH ,所以四边形GEHF 为平行四边形,从而∠GEH=∠GFH . 【总结】考察平行四边形的性质的应用.A BCDE F GH【例26】 如图所示,在平行四边形ABCD 中,DE ⊥AB 于点E ,BM =MC =DC . 求证:∠EMC =3∠BEM .【解析】延长EM 交DC 于F 点,易证()BEM CMF AAS ∆≅∆,则MF=ME ,即M 为EF 中点. 设BEM ϕ∠=,则F BEM ϕ∠=∠=,在直角∆FED 中,ME=MF=MD ,得CDM F ϕ∠=∠=, 所以2EMD F MDC ϕ∠=∠+∠=,又因为CM=CD , 所以MDC CMD ϕ∠=∠=,综上,233EMC CMD EMD BEM ϕϕϕ∠=∠+∠=+==∠. 【总结】考察平行四边形的性质及角的和差的综合应用.【例27】 如图所示,在平行四边形ABCD 中,直线FH 与AB 、CD 相交,过点A 、D 、C 、 B 向直线FH 作垂线,垂足分别为点G 、F 、E 、H ,求证:AG DF CE BH -=-.【解析】过A 点做AM ⊥DF ,易证四边形AMFG 为矩形,则AG=MF ,所以AG -DF=MF -DF=-DM . 同理过C 点做CN ⊥BH ,可证CE=HN , CE -BH=HN -BH=-BN .因为BH//AG ,所以GAB HBA ∠=∠, 可知90HBA BAM GAB BAM ∠+∠=∠+∠=, 又180DAB ABC ∠+∠=,所以()1809090DAM HBC DAB ABC MAB HBA ∠+∠=∠+∠-∠+∠=-=. 可得90DAM HBC ∠+∠=,从而得DAM BCN ∠=∠(同角的余角相等). 在∆ADM 和∆CNB 中,AD=BC ,90AMD CNB ∠=∠=︒,又DAM BCN ∠=∠得()AMD CNB AAS ∆≅∆,可得DM=BN ,从而-DM=-BN , 再得CE -BH=AG -DF .【总结】考察平行四边形的性质的应用.ABCDEMABCDEF G H12 / 21【例28】 如图,在平行四边形ABCD 中,∠BAD = 60°,AE 平分∠BAD 交CD 于E ,BF平分∠ABC 交CD 于F ,又AE 与BF 交于O ,已知OB =OE =1.试求平行四边形ABCD 的面积.【答案】1+3.【解析】因为AE 、BF 分别平分BAD ∠和ABC ∠,又BAD ∠+ABC ∠=180°,所以AOB ∠=90°. 在直角∆AOB 中,∠BAO=12∠BAD = 30°,OB =1,得OA =3.连接BE ,可求得∆BAE 的面积=()1113131222AE OB +⨯⨯=⨯+⨯=,所以平行四边形ABCD 的面积=2×BAE S ∆=13+. 【总结】考察平行四边形的性质的综合应用.【例29】 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F .(1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),求∠BDG 的度数. 【答案】(1)见解析;(2)45°.【解析】(1)因为AE 平分∠BAD ,所以∠BAE=∠BEA .又因为AB//CD ,所以∠F =∠BAE =∠BEA=∠CEF ,从而得CE=CF ;(2)连接BG 、CG .由(1)可知CE=CF ,且BE=BA=DC 又∠ECF=90°. 因为G 是EF 的中点,CG=EG,∠F=∠FEC=45°,从而∠GCD=∠GEB =135°. 综上,可得()BEG DCG SAS ∆≅∆,可得GB=GD ,∠DGC=∠BGE , 所以90°=∠BGD=∠DGA+∠BGE=∠DGA+∠DGC , 从而知∆GBD 是等腰直角三角形,所以∠BDG=45°. 【总结】考察平行四边形的性质的综合应用.ABCD EF O【习题1】 如果一个凸多边形的每一个内角都等于140°,那么,这个多边形共有多少条对角线?【答案】27【解析】由题意知共有360°÷(180°-140°)=9条边,根据多边形的对角线条数公式()()39932722n n -⨯-==条.【总结】考察多边形的基本知识的应用.【习题2】 两个凸多边形,它们的边长之和为12,对角线的条数之和为19,那么这两个多边形的边数分别是_________和_________.【答案】5,7【解析】设这两个凸多边形的边数分别为x 条和y 条,可列方程x +y =12,192)3(2)3(=-+-y y x x ,解得:12125577x x y y ==⎧⎧⎨⎨==⎩⎩. 所以这两个多边形的边数分别是5和7. 【总结】考察多边形的基础知识的应用.【习题3】 若一个多边形的内角和是它外角和的3倍,求这个多边形的边数. 【答案】8【解析】由题可知该多边形的内角和为360°×3=1080°()1802n =-,解得8n =. 【总结】考察多边形的内外角和的应用.随堂检测14 / 21【习题4】 如图, ABCD 中,AF ∶FC =1∶2,S △ADF =6cm 2,则ABCDS 的值为________.【答案】36cm 2.【解析】∆AFD 与∆CFD 同高,所以面积比等于底之比 AF :FC =1:2,所以22612DFC S cm ∆=⨯=, 则261218DAC S cm ∆=+=,所以2=218=36ABCDScm ⨯.【总结】考察平行四边边形的性质的应用.【习题5】 如图,ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,若CE =2,DF =1,∠EBF =60°,则ABCD 的面积为________.【答案】3【解析】因为360-D DFB DEB EBF ∠=∠-∠-∠=360°-90°-90°-60°=120°,所以180********A D ∠=-∠=-=,又60A C ∠=∠=,在直角∆BEC 中, 60C ∠=,EC =2,可得BC=4,BE =3AD=BC =4,所以AF=AD -DF =4-1=3. 在在直角∆AFB 中,60A ∠=,AF =3,可得AB =6. 综上平行四边形的面积为623123⨯ 【总结】考察平行四边形的性质的应用.【习题6】 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD于点M ,若△CDM 周长为a ,那么□ABCD 的周长为 ________.【答案】2a .【解析】由平行四边形的性质可知OA=OC ,又MO=MO ,MOA MOC ∠=∠,所以∆MOA ≅∆MOC ,所以MA=MC .所以∆CMD 的周长=a =CM+DM+CD=AM+DM+CD=AD+CD , 所以平行四边形的周长=()2AD 2CD a +=.【总结】考察平行四边形的对角线互相平分的性质的应用.20︒20︒20︒M【习题7】 在平面直角坐标系内,平行四边形ABCD 的边AB //y 轴,B 、D 均在x 轴上,又知道A 、D 在直线y =2x +1上,且B 点 坐标(1,0),求A 、C 、D 的坐标及ABCDS和ABCDC.【答案】A (1,3);C (12-,-3);D (12-,0);ABCD S=92; ABCDC=635+.【解析】由题可知A 的横坐标为1,代入y =2x +1可得A 的纵坐标为3,所以A (1,3).因为D 为y =2x +1与x 轴的交点,所以可得D (12-,0).因为ABCD 为平行四边形,CD=AB =3,所以C (12-,3).所以ABCD S =193122AB BD ⎛⎫⨯=⨯+= ⎪⎝⎭,2222333522AD AB BD ⎛⎫=+=+= ⎪⎝⎭,则ABCD C=()322356352AB AD ⎛⎫+=⨯+=+⎪⎝⎭. 【总结】考察平行四边形的性质的综合应用.【习题8】 如图所示,小华从M 点出发,沿直线前进10米后,向左转20°,再沿直线前进10米后,又向左转20°,…这样走下去,他第一次回到出发地M 时,行走了多少米?【答案】180米【解析】多边形的外角和为360°,每个外角为20°,可知共有360°÷20°=18条边,多边形的周长为18×10=180米. 【总结】考察多边形的外角的应用.【习题9】 如图,已知M 是 ABCD 边AB 的中点,CM 交BD 于点E ,且DE =2BE ,则图中阴影部分面积与 ABCD 的面积之比为( ) A .16 B .14 C .13 D .512【答案】C【解析】设∆BEM 的面积为x ,因为DE=2BE ,所以∆DEM 的面积为2x .在梯形MBCD 中,2DEM CBE S S x ∆∆==,同理可知24DCE BCE S S x ∆∆==.AB CDO xy16 / 21GDBCA FE则162DCB BCE DCE S S S x ∆∆∆=+==平行四边形ABCD 的面积,可知平行四边形的面积是 12x ,阴影部分的面积是224x x x +=,所以阴影部分面积与 ABCD 的面积之比为41123x x =,选C . 【总结】考察平行四边形有关的面积的综合应用.【习题10】 如图,已知ABCD 是平行四边形,E 在AC 上,AE =2EC ,F 在AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则□ABCD 的面积是________. 【答案】92cm .【解析】∆BEF 和∆AEF 的面积之比等于BF:AF =2:1,所以2221AEF BEF S S ∆∆=÷=÷=2cm . ∆BEA 和∆BEC 的面积之比等于AE:EC=2:1,所以2(21)2 1.5BEC BEA S S ∆∆=÷=+÷=, 从而得21.53 4.5ABC EBC ABE S S S cm ∆∆∆=+=+=, 从而得平行四边形的面积=222 4.59ABC S cm ∆=⨯=. 【总结】考察平行四边形有关的面积的综合应用.【习题11】 如图,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是( ) A .60°B . 65°C .70°D .75°【答案】B【解析】作DE 的中点M ,连结AM设∠ADB =Φ=∠DBC ,则∠ABD =75°-Φ,取DE 中点M ,连接AM .可知∠DAF =∠AFC =90°.在直角三角形ADE 中,MA =12DE =AB ,所以∠AEB =∠ABD =75°-Φ,又因为∠AEB =∠ADM +∠DAM =Φ+Φ=2Φ, 所以2Φ=75°-Φ,解得:Φ=25°,所以∠AED =90°-∠ADM =90°-25°=65°. 【总结】考察平行四边形的性质的综合应用.【习题12】 如图,在□ABCD 中,E 为AD 上一点,F 为AB 上一点,且BE =DF ,BE与DF 交于点G ,求证:∠BGC =∠DGC . 【答案】见解析【解析】作CM ⊥BE 、CN ⊥DF ,垂足分别为M 、N 连接CF 、CE .DABC E由题意知CFD CBE S S ∆∆==12平行四边形的面积, 即1122BE CM DF CN ⨯⨯=⨯⨯,因为BE=DF ,所以CM=CN , 在∠DGB 中,CM=CN ,可知CG 是∠DGB 的角平分线,即∠BGC =∠DGC . 【总结】考察平行四边的性质与角平分线性质的综合应用.【习题13】 如图,在凸五边形ABCDE 中,已知AB ∥CE ,BC ∥AD ,BE ∥CD ,DE ∥AC ,求证:AE ∥BD . 【答案】见解析【解析】因为BC//AD ,所以ABD ACD S S ∆∆=.因为AC//DE ,所以ACD ACE S S ∆∆=.因为AB//CE ,所以ACE BCE S S ∆∆=. 因为CD//BE ,所以BCE BDE S S ∆∆=,所以ABD EBD S S ∆∆=,所以AE//BD . 【总结】考察同底等高的两个三角形面积相等的综合运用.【作业1】 若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( ) A .9 B .10C .11D .12【答案】D【解析】由题知这个多边形的内角为180°×(2n -)=360°×5,12n =. 【总结】考察多边形的基础知识.课后作业18 / 21α110°106°78°【作业2】 如果一个凸多边形的每一个内角都等于120°,那么这个多边形共有多少条对角线? 【答案】9条.【解析】由题意知共有360°÷(180°-120°)=6条边,根据多边形的对角线条数公式()()3663922n n -⨯-==条.【总结】考察多边形的基础知识.【作业3】 如右图中的α∠的度数为__________. 【答案】106°【解析】由题知()10678180110360α∠+++-=.α∠=106°. 【总结】考察多边形的内角的应用.【作业4】 如图,ABFE 和CDEF 是完全相同的两个平行四边形,图中和△AOE 面积相同的三角形(△AOE 除外)有________个. 【答案】5【解析】由平行四边形的性质知AOE COF AOF COE DOE BOF S S S S S S ∆∆∆∆∆∆===== 【总结】考察平行四边形的面积综合应用.【作业5】 已知某平行四边形的周长为80mm ,它被两条对角线分成四个三角形,其中相 邻两个三角形的周长差为12mm ,求这个平行四边形一组邻边的长. 【答案】26mm ,14mm .【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =12mm .又因为2×(AB+BC)=80mm ,所以得BC+AB =40mm ,BC -AB=12mm , 所以AB =CD =26mm ,BC =AD =14mm .【总结】考察平行四边形的对角线互相平分的综合应用.【作业6】 如图所示,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC =a +b ,BD =a +c , AB =m ,求m 的取值范围.【答案】22b c b cm a -+<<+. A B CD E F OABCDO【解析】过C 作DB 的平行线交AB 的延长线于G ,可知四边形CDBG 为平行四边形. 可知CD =AB =BG ,BD=CG ,在∆ACG 中,AC+CG>AG=2AB , AC -CG<AG=2AB即2a b a c m +++>,()-2a b a c m ++<,得22b c b cm a -+<<+. 【总结】考察平行四边形的性质的综合应用【作业7】 若凸多边形的n 个内角与某个外角之和为1350°,求n 的值 . 【答案】9【解析】设这个外角为Φ(0180<Φ<),由题知()135018021710-180n n Φ=--=, 则01710-180180n <<,得8.59.5n <<,所以n =9. 【总结】考察多边形内外角的综合应用.【作业8】 已知:AB ∥EF ∥GH ,BE =GC .求证:AB =EF +GH . 【答案】见解析.【解析】过B 点做BO//AF ,交FE 的延长线于O . 可知四边形ABOF 为平行四边形,所以AB=FO , ∠ABO=∠FEG=∠HGC=∠BEO ,∠A=∠GHC=∠O .在∆BEO 和∆GHC 中,∠BEO=∠HGC ,BE=GC ,∠GHC=∠O , 所以∆BEO ≅∆GHC ,则EO=HG ,所以AB=FO=FE+EO=FE+GH . 【总结】考察平行四边形的性质与全等的综合应用.ABCF EH G20 / 21【作业9】 已知:CD 为Rt △ABC 斜边AB 上的高,AE 平分∠BAC 交CD 于E ,EF ∥AB , 交BC 于点F .求证:CE =BF . 【答案】见解析.【解析】分别过E 、F 做EM ⊥CA 、FN ⊥AB ,垂足分别为M 、N .因为AE 平分∠BAC ,所以ED =EM .因为EF //AB ,所以ED =FN ,所以EM =FN . 在直角△ABC 中,CD ⊥AB ,∠CAB +∠ACD =∠CAB +∠B =90゜.所以∠ACD =∠B . 在∆CEM 和∆BFN 中,EM =FN ,∠ACD =∠B ,∠CME =∠BNF =90゜ 所以∆CEM ≅∆BFN ,从而得CE =BF . 【总结】考察平行四边形的性质与全等的综合应用.【作业10】 如图所示,平行四边形ABCD 中,EF ∥BD ,EF 分别交AB 、AD 的延长线 于E 、F ,交BC 、CD 于G 、H .求证:EG =FH . 【答案】见解析.【解析】因为EF ∥BD ,DC ∥BA ,所以DH =BE ,∠DHF =∠E ,∠EGB =∠F 所以∆DHF ≅∆BGE ,所以EG =FH . 【总结】考察平行四边形的性质的综合应用.【作业11】 如图所示,平行四边形ABCD 中,P 为△BAD 内一点,若2PAB S =△,5PCB S =△, 求PBD S △的值. 【答案】3【解析】由题知1S S 2PAD PBC ∆∆+=平行四边形的面积=ABD APD ABP PBD S S S S ∆∆∆∆=++ 可得:S PBC ∆=ABP PBD S S ∆∆+,可得523PBD CBP ABP S S S ∆∆∆=-=-=. 【总结】考察平行四边形的面积的综合应用.A BCDEFABCDEFGHA B CDP【作业12】 如图所示,平行四边形ABCD 中,点E 在BC 边上,点F 在CD 边上, EF ∥BD .求证:ABE ADF S S =△△.【答案】见解析【解析】由CD //AB ,AD //BC ,EF //BD ,得:A ADF BDF BDE B E S S S S ∆∆∆∆===. 【总结】考察平行四边形的面积的综合应用.A BC D E F。
2023年中考数学复习----多边形基础知识与例题讲解
2023年中考数学复习----多边形基础知识与例题讲解一、多边形1、多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n−.2、多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3、正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn−⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.典型例题讲解1、(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意; 故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2、021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°【答案】A【分析】 根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒−︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.3、021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B. 对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C. 过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D. 三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.4、21·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.5、021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯−=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.6、021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒−︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.7、021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.。
多边形基础知识讲解
多边形基础知识讲解学习目标1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题;体验并掌握探索、归纳图形性质的推理方法;进一步培养说理和进行简单推理的能力.要点梳理知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中;各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角;一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段;叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线;如果整个多边形都在这条直线的同一侧;那么这个多边形就是凸多边形;如果整个多边形不在直线的同一侧;这个多边形叫凹多边形.如图:要点诠释: 1正多边形必须同时满足“各边相等”;“各角相等”两个条件;二者缺一不可;2过n 边形的一个顶点可以引n-3条对角线;n 边形对角线的条数为(3)2n n -; 3过n 边形的一个顶点的对角线可以把n 边形分成n-2个三角形. 知识点二、多边形内角和 n 边形的内角和为n-2·180°n ≥3.要点诠释:1内角和公式的应用:①已知多边形的边数;求其内角和;②已知多边形内角和求其边数;2正多边形的每个内角都相等;都等于(2)180n n-°; 知识点三、多边形的外角和多边形的外角和为360°.要点诠释:1在一个多边形的每个顶点处各取一个外角;这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°;它与边数的多少无关;2正n 边形的每个内角都相等;所以它的每个外角都相等;都等于360n°; 3多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.典型例题类型一、多边形的概念凸多边形 凹多边形1.如图;在六边形ABCDEF中;从顶点A出发;可以画几条对角线它们将六边形ABCDEF分成哪几个三角形答案与解析解:如图;P从顶点A出发;可以画三条对角线;它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.总结升华从一个多边形一个顶点出发;可以连的对角线的条数n-3条;分成的三角形数是个数n-2个.举一反三:变式过正十二边形的一个顶点有条对角线;一个正十二边形共有条对角线答案9;54..类型二、多边形内角和定理2.证明:n边形的内角和为n-2·180°n≥3.思路点拨先写出已知、求证;再画图;然后证明.答案与解析已知:n边形A1A2……An;求证:∠A1+∠A2+……+∠An=n-2·180°;证法一:如图1所示;在n边形内任取一点O;连O与各顶点的线段把n边形分成了n个三角形;n个三角形内角和为n·180°;减去以O为公共顶点的n个角的和2×180°即一个周角得n边形内角和为n·180°-2×180°-n-2·180°.证法二:如图2所示;过顶点A1作对角线;把n边形分成了n-2个三角形;这n-2个三角形的内角和恰是多边形的内角和;即n-2·180°.方法三:如图3所示;在多边形边上任取一点P;连这点与各顶点的线段把n边形分成了n-1个三角形;n边形内角和为这n-1个三角形内角和减去在点P处的一个平角;即n-1·180°-180°=n-2·180°.总结升华证明多边形内角和定理;关键是构造三角形;利用三角形的内角和定理进行证明.举一反三:高清课堂:多边形及其内角和2、多边形的内角和---练习变式练习:求下列图中的x的值.答案3.2014秋旬阳县期中如图;一个多边形纸片按图示的剪法剪去一个内角后;得到一个内角和为2520°的新多边形;求原多边形的边数.思路点拨根据多边形的内角和定理即可列方程求的新多边形的边数;减去1即可得到原多边形的边数.答案与解析解:设新多边形是n边形;则180n﹣2=2520解得:n=16.则原多边形的边数是:16﹣1=15.答:原多边形的边数是15.总结升华本题考查根据多边形的内角和计算公式求多边形的边数;解答时要会根据公式进行正确运算、变形和数据处理.高清课堂:多边形及其内角和例11、举一反三:变式一个多边形的内角和是540o;那么这个多边形的对角线的条数是. 答案5类型三、多边形的外角和4.如图所示;五边形公园中;∠1=90°;张老师沿公园边由A 点经B →C →D →E →F 散步;则张老师共转了A .440°B .360°C .260°D .270°思路点拨解答该问题中应注意张老师没转过与∠1相邻的这个外角;所以用五边形的外角和减去它即得答案;答案D解析解:360°-180°-90°=270°;所以张老师共转了270°;故应选D .总结升华解决此题的关键同样是把生活实际问题转化为数学问题;在散步之中感悟数学知识.其中蕴含了多边形的外角和为360°的有关知识.举一反三:变式1如图;一辆小汽车从P 市出发;先到B 市;再到C 市;再到A 市;最后返回P 市;这辆小汽车共转了多少度角答案:如图;当小汽车从P 出发行驶到B 市;由B 市向C 市行驶时转的角是α;由C 市向A 市行驶时转的角是β;由A 市向P 市行驶时转的角是γ.因此;小汽车从P 市出发;经B 市、C 市、A 市;又回到P 市;共转 360=++γβα. 高清课堂:多边形及其内角和例12、变式2已知一个多边形的内角和与外角和共2160o;则这个多边形的边数是. 答案12变式32015 漳州一个多边形的每个内角都等于120°;则这个多边形的边数为A.4B.5C.6D.7答案C.解:∵多边形的每一个内角都等于120°;∴多边形的每一个外角都等于180°﹣120°=60°;∴边数n=360°÷60°=6.故选:C .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、多边形分为__凸__多__边__形___和___凹__多__边__形___两类.
谁愿挑战?
1、下列叙述正确的是( D ) A、每条边都相等的多边形是正多边形。 B、如果画出多边形某一条边所在的直线, 这个多边形都在这条直线的同一侧,那么 它一定是凸多边形。 C、每个角都相等的多边形叫正多边形。 D、每条边、每个角都相等的多边形叫正多边形。
总的对角线条数 0
2
5
9
14 …
n(n-3) 2
3.多边形的分类
比一比.画一画
请分别画出下列两个图形各边所在的直线,你能
得到什么结论?
D
E
A
C
G
B (1)
F
(2)
H
多边形的分类
A
在图1中,画出任意一边所在的直线,
D
整个多边形都在直线的同侧,这样的
多边形叫做凸多边形.
B 图1 C
图2中,多边形ABCD不在CD所在
平面图形
生活中的平面图形
由这图形你抽象出什么几何图形?
八边形
八边形,它是由八条不在同一直 线上的线段首尾顺次连结组成的
平面图形
多边形的定义
那么多边形的定义呢?
一般地,由n条不在同一直线 上的线段首尾顺次连结组成的 平面图形称为n边形,又称为 多边形.
多边形概念的重要提示:
在多边形的概念中,要分清以下几个方面 (1)在平面内; (2)若干线段不在同一直线上; (3)首尾顺次相接; (4)所形成的封闭图形
E
C
D
如:∠2是五边形ABCDE的一个外角.
关于多边形的角
那么五边形有几个内角?几条边?几个外角呢? 五边形有5个内角,5条边,10个外角
那么六边形有几个内角?几条边?几个外角呢? 六边形有6个内角,6条边,12个外角
那么n边形有几个内角?几条边?几个外角呢? n边形有n个内角,n条边,2n个外角A源自B DC四边形
四边形是由四条不在同一直线上 的线段首尾顺次连结组成的平面
图形,记为四边形ABCD
生活中的平面图形
A
B E
C
D
五边形,它是由五条不在同一直 线上的线段首尾顺次连结组成的 平面图形,记为五边形ABCDE
生活中的平面图形
由这图形你抽象出什么几何图形?
六边形
六边形,它是由六条不在同一直 线上的线段首尾顺次连结组成的
2、小学学过的下列图形中不可能是正多边形
的是( D )
A、三角形
B、正方形
C、四边形
D、梯形
3、已知一个多边形有35条对角线,你能 求出它的边数吗?
4、有一个家庭联谊会,参加的家庭全部 是三口之家,在联谊会期间,每个人都 要和别的家庭的每个成员握一次手。 (1)若参加会议的人数为15,则一共要 握手多少次? (2)若一共握手170次,则参加会议的 人数是多少?
多边形的对角线:
A
连接多边形不相邻的两个顶点
的线段,叫做多边形的对角线. B E
如图中的线段AC、AD、BE等
C
D
三角形是最简单的多边形,研究可借助对角线将 其分为若干个三角形
边数
3 4 5 6 7… n
从一个顶点出发 的对角线的条数
0
1
234
n-3
上述对角线分成 的三角形个数
1
2 3 4 5 … n-2
如图中的∠A、∠B、∠C
多边形的内角:
B
A C
多边形相邻两边组成的角叫做它的内角. A
B
如:五边形ABCDE的内角有
∠A、∠B、∠C、∠D、∠E
共5个.
C
E D
三角形的外角
A
三角形一边与另一边的延长线组成的角
如∠1就是∆ABC的一个外角 多边形的外角:
B
C
1
A2
B
多边形的边与它的邻边的延长 线组成的角叫做多边形的外角.
当n>3时,必须同时满足以下两个条件:
(1)是各边相等, (2)是各角相等.
两者缺一不可 如长方形各角相等,但各边不一定相等,菱形各 边相等,但各角不一定相等,所以它们都不是正 多边形。
正三角形 正方形
菱形
矩形
课堂练习
小试身手
1、如图,此多边形应记作__五___边形__A_B_C_D_E__, AB边的邻边是___A_E___、____B_C_____,顶点E处 的内角为__∠__A_E_D____,过顶点A画出这个多边形的 对角线,共有______2___条,它们把多边形分成 ____3_____个三角形。
小结
1、多边形的定义 在平面内,由一些线段首尾顺次相接组成的图形
2、多边形的相关概念
a.多边形的内角
多边形相邻两边组成的角
b.多边形的外角 多边形的一边与它相邻边的延长线组成的角
c.多边形的对角线 连接多边形不相邻的两个顶点的线段
5、凸多边形和正多边形 各个角相等,各条边都相等的多边形
祝同学们学习进步
例题讲解
例1:请列出生活中的一些多边形,并指出其特征
分析:生活中存在很多的多边形,它们的形状都 是为了与生活相适应。
解:房屋顶是三角形,因为三角形有稳定性; 螺母底面为六边形,是为了方便安装和拆卸; 黑板为四边形,是为了满足教学的使用;等等
2.多边形的相关概念
三角形的内角
三角形两边的夹角叫做三角形的内角
E
D A
B
C
2、n边形有___n___个顶点,__n___边,有__n___个 角,有____n____个不共顶点外角. 3、四边形有__2___条对角线。五边形有___5___条 对角线。四边形的一条对角线将它分成___2___个
三角形.
4、从五边形的一个顶点出发可以画__2___条对角 线,它们将五边形分成___3___个三角形.
A
直线的同侧,就不是凸多边形,叫
凹多边形.
没有特别说明,我们研究的 多边形都是指凸多边形.
C
B
图2 D
观察图中的多边形,他们的边、角有什么特点?
正三角形 正方形 正五边形 正六边形 正八边形
正多边形的概念
在平面内,各个角都相等、各条边都相等的多 边形叫做正多边形。
判断一个n边形是正n边形的条件是:
古埃及金字塔
美国国防部大楼——五角大楼
中国第一奇村诸葛八卦村
生活中的平面图形
§7.3.1
多边形
1.多边形的定义
生活中的平面图形
由这图形你抽象出什么几何图形?
三角形
三角形是由三条不在同一条直线上的 线段首尾顺次连结组成的平面图形
既然我们已经知道什么叫三角形,你能根据三角形 的定义,说出什么叫四边形吗?