八年级数学:多边形教案

合集下载

部编版八年级数学上册《多边形及其内角和》教案及教学反思

部编版八年级数学上册《多边形及其内角和》教案及教学反思

部编版八年级数学上册《多边形及其内角和》教案及教学反思一、教学目标1. 知识目标1.了解多边形的概念和性质;2.掌握求解多边形内角和的方法;3.掌握多边形的分类。

2. 能力目标1.能够通过给定的多边形求解其内角和;2.能够应用所学知识解答相关数学题目。

3. 情感目标1.培养学生对于数学知识的兴趣和探究欲望;2.提高学生解决实际问题的能力。

二、教学重难点1.求解多边形内角和;2.掌握多边形的分类。

三、教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。

四、教学内容安排第一课时:引入与概念教学目标1.介绍多边形的概念;2.介绍多边形的性质;3.引导学生了解多边形的基本特征。

教学内容1.课前引入:介绍多边形在日常生活中的应用,例如:地图等;2.教师讲解多边形的概念和性质;3.教师演示多边形变化的过程。

教学方法1.演讲法;2.示范法;3.互动式教学。

第二课时:求解多边形内角和教学目标1.了解多边形内角和的概念;2.掌握求解多边形内角和的方法。

教学内容1.教师讲解求解多边形内角和的方法;2.通过案例演示求解多边形内角和。

教学方法1.演讲法;2.示范法;3.案例法。

第三课时:多边形的分类教学目标1.掌握多边形的分类;2.能够判断多边形的种类。

教学内容1.教师讲解多边形的分类;2.通过案例演示多边形的分类。

教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。

第四课时:教学反思教学目标1.自我评价本次教学;2.总结本次教学中的不足与优点。

教学内容1.学生自我评价本次教学;2.教师掌握学生的评价,并进行总结和反思。

教学方法1.互动式教学;2.思维导图法。

五、教学评价1. 对于学生的评价1.通过本次教学,学生掌握了多边形的概念、性质、分类等知识;2.学生参与度高,积极表现。

2. 对于教师的评价1.教师讲解内容清晰易懂;2.教师在教学中注重互动和案例分析。

六、教学反思本次教学中,教师注重课前问题引导,举例子讲解等教学方法,使学生更好地理解和掌握多边形的知识。

初中数学多边形教案

初中数学多边形教案

初中数学多边形教案教学目标:1. 使学生理解多边形的定义及其基本概念;2. 能够计算多边形的内角和;3. 能够计算多边形的对角线数量;4. 能够识别和绘制多边形的基本性质和特殊性质;5. 培养学生的逻辑思维能力和空间想象力。

教学重点:1. 多边形的定义及其基本概念;2. 多边形的内角和的计算方法;3. 多边形的对角线数量的计算方法。

教学难点:1. 多边形的内角和的计算方法;2. 多边形的对角线数量的计算方法。

教学准备:1. 教学课件;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾多边形的定义及其基本概念。

2. 提问学生:多边形有哪些性质和特点?二、新课讲解(15分钟)1. 讲解多边形的内角和的概念及计算方法。

2. 讲解多边形的对角线数量的概念及计算方法。

3. 通过示例和练习,让学生理解和掌握多边形的内角和及对角线数量的计算方法。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 引导学生思考和讨论练习题的解题思路和方法。

四、总结和拓展(5分钟)1. 对本节课的内容进行总结,让学生巩固所学知识。

2. 引导学生思考和讨论多边形的其他性质和特点,激发学生的空间想象力。

五、课后作业(布置作业)1. 根据课堂练习的情况,布置适量的作业,让学生巩固所学知识。

教学反思:本节课通过讲解和练习,使学生掌握了多边形的内角和及对角线数量的计算方法,培养了学生的逻辑思维能力和空间想象力。

在教学过程中,要注意引导学生思考和讨论,激发学生的学习兴趣和主动性。

同时,要加强课堂练习的指导和评价,及时发现和纠正学生的错误,提高学生的学习效果。

浙教版数学八年级下册《4.1多边形》说课稿1

浙教版数学八年级下册《4.1多边形》说课稿1

浙教版数学八年级下册《4.1 多边形》说课稿1一. 教材分析《4.1 多边形》是浙教版数学八年级下册的一个重要内容。

本节课的主要内容是让学生了解多边形的定义、性质以及多边形的相关概念。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生探索多边形的性质,培养学生的观察能力、思考能力和动手能力。

二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认知有一定的基础。

但是,对于多边形的深入理解和相关性质的探索还是一个新的挑战。

因此,在教学过程中,我注重引导学生利用已有的知识体系来理解和掌握多边形的性质。

三. 说教学目标1.知识与技能:让学生理解多边形的定义,掌握多边形的性质,能运用多边形的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索几何图形的性质的能力。

3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的观察能力、思考能力和动手能力。

四. 说教学重难点1.教学重点:多边形的定义和性质。

2.教学难点:多边形性质的证明和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、讨论法、观察法等,引导学生主动探索、积极思考。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和动手能力。

六. 说教学过程1.导入:通过展示各种多边形的图片,引导学生观察和思考多边形的特征,激发学生的学习兴趣。

2.新课导入:介绍多边形的定义,引导学生理解多边形的性质。

3.实例分析:通过具体的例子,让学生掌握多边形的性质,并能运用性质解决实际问题。

4.小组讨论:让学生分小组探讨多边形的性质,培养学生的合作能力和思考能力。

5.总结提高:对多边形的性质进行总结,引导学生思考如何运用多边形的性质解决更复杂的问题。

6.课堂练习:布置一些相关的练习题,巩固学生对多边形性质的理解。

七. 说板书设计板书设计要简洁明了,能够突出多边形的定义和性质。

可以设计如下板书:•定义:n条线段组成,首尾相连,形成封闭平面图形•性质:对角线、内角、外角等八. 说教学评价教学评价主要包括两个方面:一是学生的学习效果,通过课堂练习和课后作业来评价;二是学生的学习过程,通过观察学生的讨论、思考和操作来评价。

多边形及其内角和第一课时教案数学八年级上第11章113人教版

多边形及其内角和第一课时教案数学八年级上第11章113人教版

11.3多边形及其内角和第一课时教案一、教学目标(1)观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角,对角线等数学概念;(2)能由实物中辨别寻找出几何体,由几何体图形联想或设计一些实物形状;(3) 了解类比的数学学习方法。

二、教学重难点重点:连接多边形、内角、外角、对角线的概念以及凸多边形的形状的辨别;难点:正多边形的正确理解以及凸多边形的辨别三、专家建议让学生认识生活中的多边形形状,感受数学与生活的联系;在三角形的基础上,学习多边形把多边形的有关问题转化为三角形问题。

在探究多边形的对角线的条数时,从特殊到一般进行分析,让学生体会从特殊到一般的分析问题的方法。

师生共同探究,教师注意多让学生活动,不要急于得出结论,在学生充分讨论的基础上再给出结论,有利于培养学生的探究精神,从而让学生感受成功的乐趣。

四、教学方法情境引入——探索研讨——总结归纳——练习提高五、教学用具多媒体,三角板,直尺六、教学过程(一)、情景导入[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?(二)、多边形及有关概念(1)多边形的定义这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在同一平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。

这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

例题讲解例1:请列出生活中的一些多边形,并指出其特征解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等教师强调:多边形概念的重要提示:在多边形的概念中,要分清以下几个方面(1)在同一平面内;(2)若干线段不在同一直线上;(3)首尾顺次相结;(4)所形成的封闭图形(2)多边形的内角与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。

初中数学社团教案

初中数学社团教案

初中数学社团教案课时:1课时年级:八年级教学目标:1. 让学生了解多边形的定义及其基本性质;2. 通过观察和动手操作,让学生掌握多边形的边数、对角线公式;3. 培养学生的观察能力、动手操作能力和团队协作能力。

教学内容:1. 多边形的定义及分类;2. 多边形的边数和对角线公式;3. 探索多边形的性质。

教学过程:一、导入(5分钟)1. 老师简要介绍多边形的定义及分类,引导学生关注多边形的基本性质;2. 提问:同学们知道多边形有多少条边吗?对角线又有多少条呢?二、探索多边形的边数和对角线公式(15分钟)1. 学生分组讨论,每组尝试找出多边形的边数和对角线公式;2. 各组汇报讨论成果,老师点评并总结;3. 老师给出多边形的边数和对角线公式,引导学生理解其推导过程。

三、动手操作,探索多边形的性质(15分钟)1. 学生分组,每组选择一个多边形进行观察和动手操作;2. 各组记录多边形的性质,如内角和、对角线长度等;3. 各组汇报操作成果,老师点评并总结。

四、课堂小结(5分钟)1. 老师引导学生回顾本节课所学内容,巩固多边形的性质;2. 学生分享学习收获,提出疑问;3. 老师解答疑问,总结课堂内容。

五、课后作业(5分钟)1. 请学生运用所学知识,回家后找一些多边形进行观察和分析;2. 完成课后练习,巩固多边形的性质。

教学反思:本节课通过让学生探索多边形的性质,培养了学生的观察能力、动手操作能力和团队协作能力。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握多边形的性质。

同时,要注重课后作业的布置,让学生能够将所学知识运用到实际生活中。

八年级上册数学人教版教案《多边形》

八年级上册数学人教版教案《多边形》

《11.3.1 多边形》教学设计一、教材分析《多边形及其内角和》是新人教版八年级数学上册第十一章第三单元第一节课的内容。

本节教材属于平面几何图形内容,是在学习了“三角形”有关知识后认识的一种基本图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

本节课主要介绍多边形的有关概念、理解凸多边形与凹多边形的联系与区别、会找出多边形的所有的对角线。

为使学生感受、理解数学知识来源于生活并应用于生活。

理解数学知识的产生和发展过程,培养学生的抽象思维,我将通过例举日常生活中的一些与多边形的关的图片引出多边形的概念;通过多媒体演示使学生对多边形的边,内角,外角,对角线有直观的表象;引导学生操作、观察、猜想、归纳、类比等方法探究多边形的特点.二、学情分析1.我授课的是陆川县初级中学八年级二班的学生,学生在学习了三角形的有关概念的基础上,在认识三角形的边,内角,外角方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力通过欣赏图片,自主学习,理解掌握多边形的边,内角,外角等概念。

关键是要理解什么是对角线的概念。

会记住几种特殊的正多边形。

班级学生,基础较好,思维活跃,表现力强,学习积极性高的特点,但学生的抽象思维能力不很好。

2.班级学生的年龄大多在14岁到16岁间.他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣.3.学生已有的与本课相联系的知识与技能、问题解决的方法,以及生活经验对多边形学习是在三角形有关知识的延续,它与三角形的联系较紧,由于学生以前没学过对角线的概念。

在这方面要让他们加强画对角线的操作,由于他们的推理归纳能力相对不高,缺乏实践经验,因此要让他们主动参与,勤于动手.自己总结归纳得出结论。

《11.3.1 多边形》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《11.3.1 多边形》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《多边形》教学设计方案(第一课时)一、教学目标1. 掌握多边形的定义和基本性质。

2. 学会运用多边形的基本性质进行问题解决。

3. 培养观察、分析和抽象思维的能力。

二、教学重难点1. 教学重点:多边形的定义和性质的理解与应用。

2. 教学难点:多边形内角和外角的计算以及多边形形状的判断。

三、教学准备准备教学用PPT,准备多边形模型,准备几何工具以便学生动手操作。

四、教学过程:本节课的教学设计主要分为以下几个环节:1. 引入新课起首,我会回顾之前学过的三角形相关知识,帮助学生回忆三角形的边和角,并引导学生思考多边形的基本特征。

通过引导学生观察身边的多边形物体,让学生感受多边形在生活中的广泛应用,激发学生对多边形的学习兴趣。

2. 探索新知接下来,我将引导学生探索多边形的定义和性质。

通过展示不同形状的多边形,让学生观察它们的共同特征,并引导学生通过观察、测量、比较等方法,归纳出多边形的定义和性质。

在此过程中,我会鼓励学生积极参与讨论,培养学生的观察能力和推理能力。

3. 实践操作为了加深学生对多边形性质的理解,我将组织学生进行实践操作。

通过设计一些与多边形相关的实际问题,让学生运用所学知识解决实际问题。

例如,让学生设计一个多边形图案,并计算其面积或周长等。

通过实践操作,学生可以更好地掌握多边形的性质和应用。

4. 教室小结最后,我将引导学生对本节课所学知识进行总结和归纳。

通过回顾多边形的定义、性质和应用,帮助学生稳固所学知识,并培养学生的总结能力和归纳能力。

同时,我也会强调多边形在平时生活中的应用和价值,鼓励学生将所学知识应用到实际生活中。

在每个环节中,我都会注重学生的参与度和教学效果,采用多种教学方法和手段,激发学生的学习兴趣和积极性。

同时,我也会关注学生的个体差别,根据学生的实际情况调整教学策略,确保每个学生都能在教室中获得进步和发展。

教学设计方案(第二课时)一、教学目标1. 学生能够熟练掌握多边形的内角和公式,并能够运用该公式计算多边形的内角和。

(部编)人教数学八年级上册《11.3 多边形及其内角和 多边形的外角和》教案_104

(部编)人教数学八年级上册《11.3 多边形及其内角和 多边形的外角和》教案_104

多边形的外角和教学目标1、知识与技能目标:理解与掌握多边形的外角和为360°的定理。

并能用它来解决一些简单的问题。

2、过程与方法目标:通过对多边形的外角和的分析,并用四种角度来理解与体会多边形的外角和恒为360°的道理,层层推动,梯次展开,把学生带进思维的王国,并通过对一些问题的分析,体会利用多边形的外角和解决问题所带来的方便。

3、情感与态度目标:学生通过积极参与、分析讨论,感受学习数学的快乐,体会数学之美,本节课引导学生多体会数学的内在和谐美。

激发学生的学习数学的兴趣。

教学重点:多边形的外角和为360°的探索、深入理解与应用。

教学难点:对多边形的外角和为360°的深入理解与应用。

教学过程:1、复习提问①n边形的内角和是多少?生:(n-2)·180°。

②什么叫三角形的外角?生:三角形的一边和这个顶点的另一边的延长线所组成的图形叫做三角形的外角。

③一个三角形有多少个外角?理由。

生:有6个,每个顶点处有两个外角,共6个。

(师:每个顶点处的两个外角是相等的)。

④什么叫三角形的外角和?生:每个顶点处取一个外角,再相加,叫三角形的外角和。

2、新课过程如图,∠BAE,∠FBC,∠ACD是三角形的外角,你能利用三角形的内角和求出三角形的外角和吗?师:谁来说一说如何证明?生:利用∠CAE,∠ABF,∠BCD是平角,∠CAE+∠ABF+∠BCD =540°,又因为∠ABC+∠ACB+∠BAC=180°(三角形的内角和为180°),∴∠EAB+∠FBC+∠ACD=360°。

师:这个证法很好,我们还能够利用三角形的一个外角等于和不它不相邻的两个内角之和,同学们下来还能够去想想,现在请大家用语言来总结这个结论。

生:三角形的外角和为360°。

师:刚才我们定义了三角形的外角和,你能定义多边形的外角和吗?生:在多边形的每一个顶点处取一个外角,它们之和就叫做多边形的外角和。

2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案

2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案

第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。

学生:三角尺、直尺、多边形纸片。

六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。

八年级数学上册《多边形》教学设计

八年级数学上册《多边形》教学设计

识,运用知识,但基础薄弱一点的学生学起来有一定的难度
教材的地位和作 为学习求多边形内角和垫基础

重点 教
理解多边形的相 关概念
材]
掌握正多边形的定义及判定及多边形对角线总

难点
数的探究

易混
多边形的对角线总数与从多边形一个顶点画对角
(错)点
线条数
考点
多边形对角线的条数
学科特性
探究、归纳
知识与技能
理解多边形的相关概念;
板书设计 课后反思
3/3
对角线总共条数
2 5 9 ……
n(n − 3) 2
过一个顶点 成三角形个 2 3 4 …… n-2
1、下列图形中,是正多边形的是( )
A、直角三角形 B 、等腰三角形 C、长方形 D、正方形
2、过 n 边形的一个顶点的所有对角线 ,把多边形分成 8 个三角形,则这个多边 形的边数是 。
3、一个多边形的对角线的条数等于它的边数的 4 倍,求这个多边形的边数。
二、自主合作 彰显自信
自学 1:自学课本 P19-页,掌握多边形的相关由一些线段
组成的封闭图形叫做多边形。多边形
组成的角叫做它的内角,
.
组成的角叫做多边形的外角
自学 2:自学教材 P3 例 1,动手操作 下列问题,总结出 对顶角性质。5 分钟
总结归纳:①
八年级数学上册《多边形》教学设计
八年级数学上册《多边形》教学设计
探究时间: 年 9 月 13 日 课题名称 授课对象
多边形 八(4)班
学时分配: 1 学时
课型
新课
任课教师
学情分析
学生整体基础较差,小学没有养成良好的学习习惯,通过上学期的 努力,.在学生 所学知识的掌握程度上,对优生来说,能够透彻理解知

人教版八年级数学上册《第十一章第3单元多边形及其内角和》教案设计

人教版八年级数学上册《第十一章第3单元多边形及其内角和》教案设计

人教版八年级数学上册《第十一章第3课时多边形及其内角和》教案设计11.3.1多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A .14或15或16 B .15或16 C .14或16 D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线.方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A .6 B .7 C .8 D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( ) A .等腰三角形 B .长方形 C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.11.3.1 多边形教学过程(师生活动)复习:1.什么是三角形?怎样表示?2.什么是三角形的边,角以及外角?图片观赏:你能从图中找出几个由一些线段围成的图形吗?学生回答,相互补充,教师点明本节课题.这些线段围成的图形有何特性?如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)明确概念:1.多边形相邻两边组成的角叫做多边形的内角2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.课本P21练习1.2.课堂小结1、今天本节课学习的主要内容(概念)。

多边形人教版八年级(初二)上册数学教案

多边形人教版八年级(初二)上册数学教案

一、自主学习:1、多边形的有关概念(1)在平面内,由一些线段______相接组成的图形叫做多边形(2)多边形相邻两边组成的角叫做多边形的_______;多边形的边与它的邻边的延长线组成的角叫做多边形的_______.(3)多边形分为_____和______.(4)各个角都相等,各条边都相等的多边形叫做_____(两者缺一不可)2、多边形的对角线连接______两个顶点的线段叫做多边形的对角线.二、合作展示:例1、下列图形中,属于多边形的有()个A、3个B、4个C、5个D、6个例2、如图:任意给出一个四边形、一个五边形从四边形的一个顶点出发,可画条对角线,把四边形分成了个三角形,从五边形的一个顶点出发,可画______条对角线,把五边形分成了________个三角形例3、试完成下表:猜想:从n边形一个顶点出发可以画_____条对角线,把n边形分成____个三角形,n边形共有____条对角线,应用:(1)某足球赛有32支参赛队伍,如果采用单循环赛制,一共需要赛几场?(2)有6个好朋友见面相互握手致意,每两个握手一次,一共握手几次?三、拓展提升:1、n边形有条边,个顶点,个内角,个外角2、12边形从它的一个顶点出发对角线的条数为________,它所有的对角线的条数为_____条。

3、若一个多边形共有9条对角线,则这个多边形是_____边形。

4、一个多边形的对角线的条数与它的边数相等,则这个多边形的边数为()A、7B、6C、5D、45、过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有2条对角线,求(m-k)n的值。

四、师生反思:五、当堂达标(5min,20分)1、十五边形从它的一个顶点出发对角线的条数为________,它所有的对角线的条数为_____条。

2、过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是_______。

3、一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数。

最新人教版八年级数学上册《多边形》优质教案

最新人教版八年级数学上册《多边形》优质教案

11.3多边形及其内角和11.3.1多边形一、新课导入1.导入课题:请同学们仔细观察下面的三个图形,它们给我们以由一些线段围成的图形的形象,这些图形叫做什么形呢?这节课我们就来学习多边形.2.学习目标:(1)能叙述多边形、多边形的内角、外角和对角线的意义.(2)知道什么是凸多边形和正多边形.3.学习重、难点:重点:多边形及其有关的概念.难点:多边形的边的特征.二、分层学习1.自学指导:(1)自学内容:教材第19页的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,可以结合下面的自学参考提纲学习,通过观察、比较,初步建立边的概念,初步认识四边形、五边形、六边形等平面图形,理解多边形、多边形的内角及其外角的定义.(4)自学参考提纲:①认识多边形a.回忆三角形的概念,说说多边形的概念.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.b.下面这些图形分别是几边形?五边形六边形八边形如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.②认识多边形的内角、外角多边形的内角是多边形相邻两边组成的角,多边形的外角是多边形的边与它的邻边的延长线组成的角,指出图2中多边形ABCDEF的外角∠1,∠2,∠3,∠4,∠5,∠6.③列举出我们生活中见到的多边形.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:在日常生活中,学生接触的多边形比较多,本层次的内容学生能够很快掌握.②差异指导:引导学生列举出生活中的多边形.(2)生助生:学生之间相互交流学习的成果和困惑.4.强化:(1)多边形及其有关的角的概念.(2)练习:下列图形包含了哪些多边形?六边形四边形五边形和六边形1.自学指导:(1)自学内容:教材第20页内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课本,抓住各个概念中的关键词.(4)自学参考提纲:①什么叫多边形的对角线?连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②什么叫凸多边形?指出下列多边形哪些是凸多边形.画出多边形任何一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做凸多边形.a,c,e是凸多边形.③什么叫正多边形?正多边形有什么特征?各个角都相等,各条边都相等的多边形叫做正多边形.正多边形各个角相等,各条边相等.④试从四边形、五边形、六边形中探究n边形的对角线条数m与边数n之间的关系.m=n(3)2n(n≥4)2.自学:同学们可参照自学指导进行自学.3.助学:(1)师助生:①明了学情:多边形的对角线比较多,一般学生会有疏漏,应注意了解.②差异指导:引导学生领会对角线的重要应用是它可以把多边形分为几个三角形,从而把多边形的问题转化为三角形的问题来解决.(2)生助生:学生之间相互交流帮助.4.强化:(1)多边形的对角线的定义,正多边形的定义.(2)练习:画出右图多边形的全部对角线.(3)完成教材第21页练习第2题.答:四边形的一条对角线将四边形分成2个三角形,从五边形的一个顶点出发,可以画出2条对角线,它们将五边形分成了三个三角形.三、评价1.学生自我评价(围绕三维目标):学生当众交谈自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测3.教师自我评价(教学反思):学习本课时,可让学生先自主探索再合作交流,小组内、小组之间充分交流后概括所得结论,既巩固了三角形的知识,又用类比的方法引出多边形的有关概念,加深对本课时的学习.一、基础巩固(每小题10分,共50分)1.六边形的对角线共有(D)A.6条B.7条C.8条D.9条2.下列属于正多边形的是(B)A.长方形B.等边三角形C.梯形D.圆3.从一个顶点出发的对角线,可以把十边形分成互不重叠的三角形的个数(B)A.7个B.8个C.9个D.10个4.四边形有2条对角线,五边形有5条对角线,十边形有35条对角线.5.十二边形共有54条对角线,过一个顶点可作9条对角线,可把十二边形分成10个三角形.二、综合应用(20分)6.某学校七年级六个班举行篮球比赛,比赛采用单循环积分制(即每个班都进行一次比赛).一共需要多少场比赛?解:一共需要15场比赛.如图:三、拓展延伸(30分)7.四边形中,过一个顶点可画一条对角线,共可画两条对角线;五边形中,过一个顶点可画两条对角线,共可画五条对角线;六边形中,过一个顶点可画三条对角线,共可画九条对角线,请从以上三种情况寻找一下规律,看一看多边形的边数和对角线之间有关系吗?如果有,请找出来.如果是n边形,可画多少条对角线呢?解:有关系,多边形对角线的条数等于边数与(边数-3)的乘积的12即n边形对角线的条数=n(3)2n.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

浙教版数学八年级下册4.1《多边形》说课稿2

浙教版数学八年级下册4.1《多边形》说课稿2

浙教版数学八年级下册4.1《多边形》说课稿2一. 教材分析《多边形》是浙教版数学八年级下册第四章的第一节内容。

本节课的主要内容是多边形的定义、分类和性质。

教材通过引入实际生活中的多边形实例,让学生感受多边形的特征,进而引导学生探究多边形的性质。

本节课的内容是学生对平面几何图形认识的重要组成部分,也是学生进一步学习立体几何的基础。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,对图形的认识有一定的基础。

但是,多边形作为一个新的概念,学生对其定义和性质还不够了解。

此外,学生的空间想象力有待提高,因此,在教学过程中,需要引导学生通过实际实例来感受多边形的特征,培养学生的空间想象力。

三. 说教学目标1.知识与技能:理解多边形的定义,掌握多边形的分类和性质。

2.过程与方法:通过观察实际生活中的多边形实例,培养学生的空间想象力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.重点:多边形的定义、分类和性质。

2.难点:多边形性质的证明和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和黑板进行教学。

六. 说教学过程1.导入:通过展示实际生活中的多边形实例,如自行车轮胎、足球等,引导学生观察和思考多边形的特征。

2.新课导入:介绍多边形的定义,引导学生理解多边形的概念。

3.实例分析:分析不同类型的多边形,如三角形、四边形等,引导学生掌握多边形的分类。

4.性质探究:引导学生通过实际实例和几何画板软件,探究多边形的性质,如对角线的长度、内角和等。

5.小组讨论:让学生分组讨论,分享自己发现的多边形性质,培养学生的团队合作精神。

6.总结与拓展:总结本节课的主要内容,提出相关的拓展问题,激发学生的学习兴趣。

七. 说板书设计板书设计如下:多边形的定义与性质1.多边形的定义•由三条以上的线段依次首尾相接围成的封闭平面图形。

人教版数学八年级上册11.3.1《多边形》教学设计

人教版数学八年级上册11.3.1《多边形》教学设计

人教版数学八年级上册11.3.1《多边形》教学设计一. 教材分析《多边形》是人教版数学八年级上册第11.3.1节的内容,本节主要介绍多边形的定义、性质以及多边形的计算。

本节课的内容是学生学习了平面几何基础知识后的进一步拓展,对于学生来说,掌握多边形的定义和性质,了解多边形的计算方法,对于提高他们的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析八年级的学生已经掌握了平面几何的基本知识,具备了一定的逻辑思维能力和空间想象能力。

但是,对于多边形的定义和性质,以及多边形的计算方法,他们可能还比较陌生。

因此,在教学过程中,我需要注重引导学生从已有的知识出发,逐步理解和掌握多边形的相关概念。

三. 教学目标1.了解多边形的定义和性质,能正确识别各种多边形。

2.掌握多边形的计算方法,能熟练计算多边形的周长和面积。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.多边形的定义和性质。

2.多边形的计算方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出多边形的相关概念。

2.使用多媒体教学,通过动画和图片展示多边形的性质和计算方法。

3.学生进行小组讨论和合作交流,提高他们的逻辑思维能力和空间想象能力。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入多边形的概念,例如:“一个正六边形的边长是6cm,求这个正六边形的周长和面积。

”让学生思考并讨论,引出多边形的定义和性质。

2.呈现(15分钟)使用PPT展示多边形的定义和性质,通过动画和图片展示多边形的各种形态,让学生直观地感受多边形的特征。

同时,引导学生回顾平面几何的基本知识,为新知识的学习做好铺垫。

3.操练(15分钟)让学生通过练习题来巩固所学知识。

练习题包括识别多边形、计算多边形的周长和面积等。

在学生练习过程中,教师应及时给予指导和解答疑问。

4.巩固(5分钟)通过小组讨论和合作交流,让学生进一步巩固多边形的定义和性质,以及多边形的计算方法。

人教版八年级数学上册11.3.1多边形教案

人教版八年级数学上册11.3.1多边形教案

树人学校数学学科教师备课活页(八年级)课题:多边形备课人:时间:前预习:1、从现实生活中的图片抽象多边形并掌握多边形的定义。

2、认识多边形的边与角及顶点。

3、什么样的多边形叫做正多边形?4、从多边形的一个顶点出发可以引多少条对角线?可把一个多边形分成几个三角形?一个多边形共有多少条对角线?5、如何应用以上内容?一、课前预习自主学习P2—P4内容,对照三角形的概念和特点,记忆多边形的概念,并找出多边形的顶点,边,内角和外角,正确理解对角线的定义,并探索研究对角线的条数,找出规律。

理解并记忆正多边形的定义,并会判断,说出长方形和菱形不是正多边形的原因。

独立完成P20的练习,基础训练的课前预习。

活动一:温故而知新(方法:1、抢答2、小组展示互评)1、在△ABC中,(1)∠C = 90º,∠B=30º, 则∠A=º;(2)∠A = 100º,∠B=∠C , 则∠B =º;(3)若△ABC中的三个内角度数之比为2:3:4,则相应外角之比为.(4)三角形的三个内角中,最多有个锐角,最多有个直角,最多有个钝角.(5) 什么叫三角形?活动二:(多媒体出示图片)观察下列图案,由这图形你抽象出什么几何图形?探索:多边形的定义你能仿照三角形的定义给出多边形的定义吗?在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。

可表示为:五边形ABCDE或五边形DCBAE对角线:连接多边形不相邻的两个顶点的线段。

内角:多边形相邻两边组成的角外角:多边形的边与它的邻边的延长线组成的角。

比一比:你能说出这两幅图形的异同点吗?如图(1)这样,画出多边形的任何一条边所在的直线,整个四边形都在这条直线的同一侧,那么这个多边形就是凸多边形。

本节我们只讨论凸多边形。

二、后预习多媒体展示后预习目标,提问中下等学生,回答概念性的问题,一题多答,教师点出特点,理解记忆,课件出示图片,让学生找出顶点,边,角,画出对角线。

多边形 教案

多边形 教案

多边形课题多边形授课类型新授课教学目标知识与技能:观察大量的图片,认识一些简单的几何图形,了解多边形、正多边形及其内角、对角线等数学概念。

过程与方法经:经历由实物找出几何图形,由几何图形联想或设计实物的形状,丰富学生对几何图形的感性认识。

情感态度与价值观:了解类比这种重要的数学思想方法,体验生活中处处有数学的道理。

教学重点了解多边形、正多边形、内角、外角、对角线等数学概念以及凸多边形的辨别。

教学难点对正多边形的正确理解以及凸多边形的辨别。

教学准备多媒体投影教学方法引导发现法教师活动学生活动教学过程一、创设情境 复习导入。

老师出示下列图片:学生能由老师的引导自觉的、认真的欣赏老师所出示的图片,驼铃、回答、补充下列问题:找一找:你能从上述图中找出几个由一些线段围成的图形吗?对于不足之处学生可以相互补充,尽快投入到本节课的学习中来。

学生能由老师的引导以小组为单位,围绕“你对多边形了解有多少”为问题,学生类比三角形从定义、边内角、外二、尝试活动探索新知。

老师引导学生总结多边形的有关的知识点:定义边内角外角对角线三角形四边形五边形多边形正多边形三、尝试反馈理解新知。

角方面畅所欲言,了解多边形,了解多边形中比三角形多一个元素,加深对对角线的理解。

教学过程老师出示下列问题:1.什么是多边形的对角线?你能画出任意一个多边形的对角线吗?2.什么是凸多边形,它与凹多边形有什么不同呢?3.什么是正多边形,你能举出正多边形的实例吗?4.正多边形一定是凸凹凹多边形吗?四、总结拓展。

老师引导学生完成本节课知识的小结:今天本节课都学习了哪些内容,本节课在学习新知识的过程中运用了哪些重要的方法,日常生活中你发现哪些方面能用到几何呢?你能举例说明吗?学生能由老师的引导,通过认真的阅读教材、小组讨论等活动学习以下的知识点:1.多边形的对角线的概念及条数。

2.凸凹多边形的概念。

3.正多边形的概念及其自身的有关的性质。

学生能在老师的引导下完成本节课的小结,巩固本节课所学习的知识点,并能列举现实生活中的多边形的实例,体验生活中处处有数学的道理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学:多边形教案

⎪⎪⎩⎪
⎪⎪⎨⎧对角线顶点外角内角边
学生活动:看完课本,同桌之间互相说出多边形的定义及相关概念:多边形的边,内角,外角,顶点,对角线。

同桌之间画一个任意的多边形并指出它的边、内角、外角、顶点、对角线,完成任务后小组讨
论刚才的问题:多边形的定义中“平面内”三个字的含义。

小组展示讨论结果。

教师:模型操作,用四支笔给学生展示一个不在同一平面内的四条线段所组成的空间四边形。

课件展示空间四边形,加深学生的认识:各条线段必须都在同一平面内,否则有可能是空间多边形,如空间四边
形。

(二)n 边形对角线的条数公式。

学生活动:独立画出四边形、五边形、六边形、七边形的对角线并分
别写出其总条数。

老师在黑板上画出并将课件切换到四边形、五边形、六边形、七边形。

待大部分学生完成时
学生活动:小组讨论“如何才能又对又快地画出多边形的所有对角线”。

小组展示:最早完成的小组在黑板上展示作图过程并写出相应的对角
线的条数。

课件演示:
不同的颜色展示这几个多边形的对角线,针对小组展示情况,使学生进一步知道,可以分别从多边形的一个顶点画多边形的对角线,即从n 边形一个顶点可引(n-3)条对角线。

小组讨论:如何得出n边形的对角线条数公式为
2
)3
(
n
n。

小组之间交流,发言。

教师总结:n边形的每个顶点可引(n-3)条对角线,n边形共有n个顶
点,每次连接重复两次。

老师课件展示:。

相关文档
最新文档