弹塑性力学-弹塑性本构关系

合集下载

弹塑性本构关系简介

弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1

o A 1
o
1
C
D

弹性

f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0

如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如

f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl

弹塑性力学第5章—塑性本构关系

弹塑性力学第5章—塑性本构关系

3 2
sij

Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J

2
=
2 9
⎡ ⎢⎣
ε1p

ε
p 2
2+
ε
p 2

ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G

( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ

0
,
σ

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

弹塑性本构关系简介

弹塑性本构关系简介

2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1

弹塑性力学-弹塑性本构关系

弹塑性力学-弹塑性本构关系
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0

07 塑性本构关系

07 塑性本构关系
哈工大 土木工程学院
3 / 66
07 塑性本构关系
几种简化模型
哈工大 土木工程学院
4 / 66
07 塑性本构关系
第1节 弹性本构关系
当应力状态处于屈服曲面内部时,材料处于弹性状态, 当应力状态处于屈服曲面内部时,材料处于弹性状态,本 构关系就是广义虎克(Hooke)定律 构关系就是广义虎克 定律 在直角坐标系里,对各向同性材料, 在直角坐标系里,对各向同性材料,有:
e xx e yy ezz e xy e yz e zx 1 = = = = = = s xx s yy szz s xy s yz szx 2G
εx εy ε y εz γ xy γ yz εz εx γ zx 1 = = = = = = σ x σ y σ y σ z σ z σ x 2τ xy 2τ yz 2τ zx 2G
1 ′ 2G I 2
2
哈工大 土木工程学院
8 / 66
07 塑性本构关系
也可通过偏张量关系式代入第二不变量得到该关系式
1 ′ I 2 = (σ 1 σ 2 )2 + (σ 2 σ 3 )2 + (σ 3 σ 1 )2 6 2 1 = ( 2G ) [(ε 1 ε 2 )2 + (ε 2 ε 3 )2 + (ε 3 ε 1 )2 ] 6
1 ε x = [σ x v (σ y + σ z )] E 1 ε y = [σ y v (σ z + σ x )] E 1 ε z = [σ z v (σ x + σ y )] E
γ xy = γ yz = γ zx =
τ xy
G
E:弹性模量 :
τ yz
G
ν:泊松比

弹塑性本构关系的认识及其在钢筋混凝土中的应用浅谈_塑

弹塑性本构关系的认识及其在钢筋混凝土中的应用浅谈_塑

弹塑性本构关系的认识及其在钢筋混凝土结构中的应用浅谈摘要:本文首先对弹塑性本构关系和钢筋混凝土材料的本构模型作了简要概述,然后结合上课所学知识和自己阅读的几篇文章,从材料的屈服准则、流动准则、硬化准则和加载卸载准则等四个方面详细阐述了弹塑性本构关系。

最后,结合上述准则简要论述了混凝土这一常用材料在地震作用下的弹塑性本构关系。

关键词:弹塑性本构关系,钢筋混凝土,地震Understanding of Elastoplastic Constitutive Relation and a Brife Talk of Its Aapplication to Reinforced Concrete StructureAbstract:This paper firstly makes a brief overview about elastoplastic constitutive relation and reinforced concrete constitutive model. Then,elaborating the elastoplastic constitutive relation from the four aspects of material yield criterion,flow rule,hardening rule,loading and unloading criterion based on what I have learned in class and reading from a few articles. Lastly,a simply introduction on the elastoplastic constitutive of reinforced concrete under earthquake is demonstrated.Keywords:elastoplastic constitutive relation; reinforced concrete structure; earthquake1 引言钢筋混凝土结构材料的本构关系对钢筋混凝土结构有限元分析结果有重大的影响,如果选用的本构关系不能很好地反映材料的各项力学性能,那么其它计算再精确也无法反映结构的实际受力特征。

弹塑性力学塑性本构关系

弹塑性力学塑性本构关系

0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H

塑性力学--第四章 塑性本构关系

塑性力学--第四章 塑性本构关系

向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.

15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

15第10章经典弹塑性本构关系、第11章岩土本构关系和第12章 弹塑性力学边值问题分析(第15讲)

A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
dσ ij
= Dijkl dε kl − Dijkl
∂g ∂σ kl
∂f ∂σ ij
Dijkl
A+
∂f ∂σ ij
Dijkl
∂g ∂σ kl
d ε kl
=
( Dijkl

Dijkl A+
∂g ∂σ kl ∂f ∂σ ij
∂f ∂σ ij
Dijkl
Dijkl
¾塑性应变εijp硬化定律: ¾塑性功Wp硬化定律: ¾ 塑性体应变εvp 硬化定律
2
¾塑性应变εijp硬化定律:
ξβ
=
ξβ

p ij
)


= ∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
d ξβ
=
∂Φ ∂σ ij
d σ ij
+ ∂Φ ∂ξβ
∂ξβ
∂ε
p ij

p ij
=0
得:
∂Φ ∂σ ij
=
dsij
/
2G,

p ij
= deipj ,
dεm
=
1 3K

m
∂f / ∂sij = sij ,

p ij
=
dλsij
展开为

p x
=

p y
=

p z
=

p xy
=

p yz
=

p zx
=

sx
sy

塑性力学-塑性本构关系

塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。

Il’yushin(伊柳辛)理论。

•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。

Levy-Mises理论和Prandtl-Reuss理论。

3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。

塑性力学03-塑性本构关系ppt课件

塑性力学03-塑性本构关系ppt课件
的应力和应变的改变量, 即B点的应
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线

最新7.弹塑性力学--塑性本构关系汇总

最新7.弹塑性力学--塑性本构关系汇总

f g J2 k
Cep ijkl
ij kl
ik jl
il jk
k2
sij skl
d ij
C d ep ijkl kl
d x
d
y
d
d z d xy
d
yz
d zx
d x
d y
d
d d
z xy
d
yz
d zx
C ep ijkl
Ce ijkl
Cp ijkl
6
1.理想塑性材料的增量本构关系
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
f
ij
d ij
d
p ij
1 h
f
ij
f
kl
d kl
如何确定?
f
ij d ij
f ij k
16
2. 硬化材料的增量塑性本构关系
f ij ,ij , k 0
sx2 sysx
Cp ijkl
G k2
szsx
sxy sx
s
yz
sx
szxsx
sxsy
s
2 y
szsy
sxy sy
syz sy
szx sy
sxsz
sysz
s
2 z
sxy sz
syz sz
szx sz
sx sxy sy sxy sz sxy sx2y syz sxy szx sxy
sx syz

弹塑性力学第4章

弹塑性力学第4章
3
B 0,0,0
A 1 , 2 , 3
1
2
B点坐标原点,平均应力=0的应力状态
4.2.2屈服曲面:
f 上述屈服条件在应力空间所表达的曲面称之为屈服曲面。
1
, 2 , 3 C
f 1 , 2 , 3 C f 1 , 2 , 3 C
1 2k s , k s
2
Tresca 屈服条件可以表示为:

2 3 s 3 1 s 1 2 s
复杂应力状态下判断物体是否进入塑性阶段的公式。
Tresca 屈服条件的优缺点: 优点:当主应力顺序已知时,表达式简单 缺点: 1)当主应力顺序未知时,表达式复杂 2) 只考虑最大最小主应力 3) 屈服曲面为正六角柱面,棱边处切平面不唯一
Mises 屈服条件 用下列方程表示: 1 2 或
2
2 3 3 1 6B 2
2 2
2

x y

2
y z

2
2 2 2 6B 2 z x +6 xy yz zx


即:
f ij 0
加载过程 卸载过程
点在屈面上移动为加载过程
加载准则
f 0
f 0
f 0
理想材料 强化材料 加载
加载 中性变载
卸载 卸载
屈服条件为Mises的加载准则
J 2 0/ i 0
J 2 0/ i 0
J 2 0/ i 0
2s
3
Mises屈服条件的表达式:
x y y z z x +6 xy 2 yz 2 zx 2 2 s 2

塑性力学-简单弹塑性问题

塑性力学-简单弹塑性问题
ys
h2
理想弹塑性材料、矩形截面 b × h −σ s −
σ = Φ (ε ) = σ s
ys ys
其中:
⎤ ⎡ I (A ) M = σs ⎢ z e + Sp⎥ ⎦ ⎣ ys
2 3 I z ( Ae ) = b ⋅ y s 3
h2 2 S p = b( − y s ) 4
6
σs
+
M 3 1 y = − ( s )2 Me 2 2 h 2
+
ε=
y
+
σ

+
σs
σ
ρ
σ*
卸载前的应力、应变:σ 残余应力: σ * = σ − σ
ε
卸载过程应力改变量: σ = M y
I
10
2. 等截面梁的横向弯曲
•弯矩是变化的 M = M (x) •存在剪应力 忽略剪应力对屈服的影响
y ⎧ σs ⎪ σ ( x, y ) = ⎨ y s ( x ) ⎪Φ ( ε ) ⎩ 在 y ≤ ys ( x )时 在 y ≥ ys ( x )时
中性层曲率:
ρ
=
σs
Ey s
5
M = 2 ∫ σ ⋅ dA ⋅ y = 2 ∫ σ ⋅ dA ⋅ y + 2 ∫ σ ⋅ dA ⋅ y
0
h2
ys
h2
0
ys
= =
E
ρ σs
ys
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
ys
h2
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
z
该问题是球对称的。采用 球坐标 不为零的应力分量 σ θ σ ϕ σ r

第三章弹塑性本构关系

第三章弹塑性本构关系

O
张量(应力偏张量)的主方向保持不变,
这种加载方式称为简单加载或比例加载。 后继屈服曲面
在简单加载过程中,一点的应力状态在
(加载曲面)
应力空间中将沿矢径 移动,如图所示。
在复杂加载时,一点的应力张量各
分量不按比例增加, 在改变,应力张量
和应力偏张量的主方向也随之改变。一
点应力状态在应力空间中的运动轨迹就
第三章 弹塑性本构关系
3.1塑性位势理论 3.2硬化规律 3.3 弹塑性本构关系
3.1 塑性位势理论流动法则
模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
本节内容
3.1.1 加载与卸载准则
1 加载曲面(后继屈服面)


0 ij
)d

e
ij
0

0 ij
于是有:
WD WDp
( ij


0 ij
)d

p
ij

0

0 ij
(3) 德鲁克塑性公设的重要推论
WD WDp
( ij


0 ij
)d

p
ij
化时,称之为卸载过程,如果用φ (σij,Hα)=0表示后继屈服
条件,则:
卸载:ddH
0 0


ij
d ij

0

d
n

0
中性变载:ddH0 0 ijd ij

0

d
n

非线性有限元-9-弹塑性本构关系

非线性有限元-9-弹塑性本构关系

屈服面:
对于单向应力状态,其屈服条件可以写成 s
可以看出,描述一维问题的屈服条件需要应力-应变曲线上的一个临界点
(屈服点),描写多维问题的屈服条件就需要应力或应变空间的一个临界曲面,该
曲面称为屈服面。
考虑到塑性变形与静
水压力无关的特点
f 1,2,3 C
F J2, J3 C
至今已出现许多屈服理论。俞茂宏教授在这方面做出了重要贡献。 屈服函数:
最大剪应力屈服条件。 1870年:圣维南(Saint-Venant)提出在平面情
况下理想刚塑性的应力-应变关系。假设最大剪应 力方向和最大剪应变率方向一致,求解了柱体中发 生部分塑性变形的扭转和弯曲问题、以及厚壁筒受 内压问题。 1871年:莱维(Levy)将塑性应力-应变关系推广 到三维情况。
3) 塑性阶段:继续加载,材料可承受 更大应力,称为材料强化,并伴随 出现塑性应变。至A点以前卸载, 路径接近直线,即坏点:继续加载至可承受的最大 极限应力,试件出现颈缩而破坏,
称为强度极限。
单轴试验下材料的弹塑性性态 (3/3)
强度限 b
A
弹性限 s
其它:1)在强化规律方面,除等向强化模型外, 普拉格(Prager)提出随动强化等模型;2)在实 验分析方面,运用光塑性法、云纹法、散斑干涉法 等能测量大变形的手段。等等。
单轴试验下材料的弹塑性性态 (1/3)
对塑性变形基本规律的认识来自于实验: 1) 从实验中找出在应力超出弹性极限后材料的特性; 2) 将这些特性进行归纳并提出合理的假设和简化模型,
25
二、塑性力学的基本法则
将上述单轴应力状态的基本概念推广到一般的应力 状态,需要利用塑性力学的增量理论。
初始屈服条件

塑性力学第五章本构关系ppt课件

塑性力学第五章本构关系ppt课件

(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 2
( S ij c ij )( S ij c ij ) s ( c 可 据 简 单 拉 伸 试 验 确 定 )
p p
3.2.3 混合强化模型
运动硬化和等向硬化的组合,可以构成更一般的 硬化模型,称为混合强化模型
( ij , H ) F ( ij c ij ) K 0
( ij , H ) F ( ij ij ) 0 F ( ij ) 0 为 初 始 屈 服 面
t r e s c a 、 vo n m ises 、 M - C
移动张量
常 用 线 形 随 动 强 化 ij c ij
p
m is e s :


0 ij
ij

0 ij
d
ij
0
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件: ①ij0在塑性势面与屈服面 之内时,德鲁克公设成立; ②ij0在塑性势面与屈服面 之间时,德鲁克公设不成立;
势面线
屈服面
(5)金属材料的塑性势面与 屈服面基本一致。 附加应力功为非负的条件
在应变空间,流动规则可用下式表示:
d ij d
p
ij
d

d
都为非负的比例系数。
3.2 硬化规律
塑性模型三要素
屈服条件 流动法则 硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
• 硬化规律:加载面在应力空间中的位置、大小和 形状的变化规律。(确定加载面依据哪些具体的 硬化参量而产生硬化的规律称为硬化定律) • 硬化模型:实际土体硬化规律+简化假设(如采用 等值面硬化理论,主应力方向不旋转,加载面形 状不变等)
g I1 , J 2 , J 3 , H
g ij , H

0

0
为硬化参数。 式中, H 塑性应变增量可以用塑性位势函数对应力微分的表达 式来表示,即: g
d ij d
p
ij
d ij d
p
g ij
上式就称为塑性位势理论。它表明一点的塑性应变 增量与通过该点的塑性势面存在着正交关系,这就确 定了应变增量的方向,也就确定了塑性应变增量各分 量的比值。 流动规则也称为正交定律,是确定塑性应变增量 各分量的比值,也即塑性增量方向的一条规定。上式 是流动规则的一种表示形式,另外还有另一种表示形 式:
0
由于弹性应变εije在应力循
环中是可逆的,因而
于是有:
( ij ij ) d
0
e
ij
0
ij
0
WD WD
p
( ij ij ) d
0
p
ij
0
ij
0
(3) 德鲁克塑性公设的重要推论
WD WD
p
( ij ij ) d
3.1.3 依留申塑性公设的表述
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。 设材料单元体经历任意应力 历史后,在应力σij0下处于平衡, 即初始的应变εij0在加载面内,然 后在单元体上缓慢地施加荷载,使 εij达到屈服面,再继续加载达到 应变点εij+dεij,此时产生塑性应 变dεijp 。后卸载使应变又回到 原先的应变状态εij0,并产生了与 塑性变量所对应的残余应力增量 dσijp。
0 0 p
W D ( ij ij ) d ij 0
0 p
由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外 部作用在应变循环内做功WI和应力循环所作的外部功之间仅差 一个正的附加项: 1
d
p
d
p
2
因此可将应变循环所作的外部功,写成
WI WD 1 2 d ij d
3.2.2 随动强化模型
图中OABCDE代表随动强化 模型,弹性卸载区间是衬始屈服 应力σs的两倍。根据这种模型, 材料的弹性区间保持不变,但是 由于拉伸时的强化而使压缩屈服 应力幅值减小。 与等向强化模型不同,随动 强化模型是考虑包辛格效应的。 在单向拉压情况下,随动强化模 型可以用下式表示:
s s 2 s
(应变硬化和理想塑性材料) (应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。 设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继 续加载到σij+dσij,在这一阶段,将产生塑性 应变dεijp,最后应力又卸回到σij0。若整个 应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
弹塑性力学本构关系
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
非稳定材料
附加应力对附加应变做功 附加应力对附加应变负做 为非负,即有 0 功,即 0
0
p
ij
0
ij
0
W D ( ij a d ij ij ) d
0
p
ij
0
1 a
1 2
当 ij ij时 , 略 去 无 穷 小 量
0
( ij ij ) d ij 0
0 p
屈服面的外凸性 塑性应变增量方向 与加载曲面正交

0 ij
d
p


2 3
d e ij d e ij
p
p
m ises : q s H ( d W
p
)[ 或 H ( d
p
p
)] 0
p
tresca : m ax s H ( d W
)[ 或 H ( d
)] 0
在应力空间中,这种后 继屈服面的大小 只与最大 的应力状态有关,而与中 间的加载路径无关。在右 图中,路径1与路径2的最 终应力 状态都刚好对应于 加载过程中最大应力状态, 因此两者的最终后继屈服 是一样的;而路径3的最 终后继屈服面由加载路径 中最大应力状态来定。
包辛格逆效应(Bauschinger)分直接包辛格效应及 包辛格逆效应。直接包辛格效应指拉伸后钢材纵向 压缩屈服强度小于纵向拉伸屈服强度,如图1所示; 包辛格逆效应在相反的方向产生相反的结果,如图 2所示。
普拉格将随动强化模型推广到复 杂应力状态中,他假定在塑性变 形过程中,屈服面形状和大小都 不改变,只是在应力空间内作刚 体平移。
p d ij d ij 0 d σ n 0
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
德鲁克公设的适用条件:
(1)应力循环中外载所作 的真实功与ij0起点无关;

p ij
ij d ij 0
(2)附加应力功不符合功的 定义,并非真实功
在应力循环中,外载所作的 功为:
W

0 ij
ij d ij 0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
W

0 ij
ij ij d ij 0
( ij , H ) F ( I 1 , J 2 , J 3 ) K 0 初始屈服面 硬化系数
p p
t r e s c a 、 vo n m ises 、 M - C K H ( d W ) 或 H ( d
)

dW
p

ij d ij
p

d ij d
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
ij D
p
ij d ij d
p
结合
d ij D d ij
p
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性 位势理论。他假设经过应力空间的任何一点M,必有 一塑性位势等势面存在,其数学表达式称为塑性位势 函数,记为:
p
这时,后继屈服面既有位置的改变,也产生均匀的膨 胀。 等向强化 混合强化 随动强化(运动强化) 初始屈服面
3.2.4 加工硬化规律
加工硬化规律是决定一个给定的应力增量引起的 塑性应变增量的一条规则,在流动规律中,dλ这个因 素可以假定为:
ij 时 , d ij d ij 0
p
1 屈服曲面的外凸性
( ij ij ) d ij | A 0 A || d
0 p p
| cos 0
ij
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向 与塑性应变向量之间所成的夹角不应 该大于90° 稳定材料的屈服面必须是凸的.
相关文档
最新文档