最新中学《生活中的数学》校本课程教材
初中数学校本教材《生活中的数学》
中学八年级数学校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。
创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。
”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。
我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。
数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。
选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。
使学生成为学习的主人,学有兴趣,习有方法,必有成功。
学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。
课程纲要一、课程目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。
二、课程概况:本课程由八年数学教师具体负责实施。
本课程在八年实施。
三、课程内容与活动安排:让学生体会数学史可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。
授课对象:八年学生授课时间:周四下午第6节授课地点:各班教室目录生活中的数学问题几何就在你身边归纳与发现勾股定理(一)勾股定理(二)生活中的纳税问题生活中的节能问题镜子改变了什么第一节生活中的数学问题数学来源于生活,同时又服务于生活,例如下面几个问题:1、钟面上有1、2、3、4、…… 11、12共十二个数。
《生活中的数学》校本课程正文
第一讲象棋中运用的防守和进攻原理与学习高中数学的联系象棋与其他棋类不同。
它不像五子棋得个空,五子连线就胜利;也不像围棋非得下满,数子多的胜利;更不像军旗一板一眼,服从上下级。
象棋只需要取敌主将首级才算胜利,否则你便是杀他个精光,你的老将与之对脸,你也是输!五子棋相当于抱有侥幸心理学习数学,只是到考试时候努力一阵。
但数学是理科知识,不经历一定的训练,是难以达到融会贯通的。
即便真的“临阵磨枪”考得不错,那也难以找到自己错题的原因。
而且不知道为什么做对比不知道为什么做错更可怕!围棋相当于题海战术,使劲做题,恨不得做光所有难题。
可是根据心理学中“学习效率说”,并非学习次数越多越能掌握知识。
而是每次做完一题都要检验一下是否正确,如果错,错在哪。
要是把作业本做的满满的,你也没心情去考虑每个知识点的用法。
不过适用于工科,因为工科是动手实践能力,这个可是多多益善,只要你确信你做的每个步骤是对的。
军旗就相当于循规蹈矩,老师让做什么就做什么,而且有些练习册还把题分出了ABC三个难易等级。
其实数学基础要扎实,但是不见的说难题不能做。
现在的老师也把学生分成三六九等,分别做着ABC难度的题,这不只是侮辱,更是束缚了学生的发展空间。
我建议各种难度的题都做一下,干什么排长就不能活捉司令阿!只有象棋才会融汇特种作战的作风。
它容许偶尔偷奸耍滑,反正只要掌握要点就行,三十二个军中取得上将首级就够了。
但这只是用于高考使得应试能力!它也不是强调杀人吃子,因为即使你吃的再多,胜利只在乎考试好坏耳。
考试不给人解释的机会,现实也不给人这个机会。
它也没有上下级观念,卒子可以杀将。
新手可以做A 题!《最后一颗子弹留给我》里小庄当特种兵时,不也就是一个列兵吗?只要能抓住耗子,谁会在乎那是是不是猫!只要做对题,谁能在乎你是怎么学习的?还有,记住守住自己的老将,那是你的及格线。
一旦丢了老将,你的棋盘也就无意义了!我认为象棋与高中数学关系,不过于此!说实在的,玩棋要有棋德。
《生活中的数学》教案
《生活中的数学》教案一、教学内容本节课选自《数学》教材第四章第四节“生活中的数学”。
详细内容包括:1. 介绍比例尺在实际生活中的应用,如地图、建筑设计等;2. 讲解概率的基本概念,以彩票、抽奖等生活实例为例;3. 分析统计学在生活中的应用,如调查问卷、数据分析等。
二、教学目标1. 让学生了解比例尺、概率和统计学在生活中的实际应用,提高学生的数学应用意识;2. 培养学生运用数学知识解决实际问题的能力;3. 激发学生学习数学的兴趣,增强数学学习的积极性。
三、教学难点与重点教学难点:比例尺、概率和统计学在实际生活中的应用。
教学重点:掌握比例尺、概率和统计学的基本概念及其在实际生活中的运用。
四、教具与学具准备1. 教具:地图、建筑图纸、彩票、调查问卷等;2. 学具:计算器、直尺、圆规、铅笔、橡皮等。
五、教学过程1. 导入:通过展示地图、建筑图纸等实例,引导学生思考比例尺在实际生活中的应用;2. 新课导入:讲解比例尺的概念,举例说明比例尺在地图、建筑设计中的应用;3. 实践活动:让学生分组讨论,举例说明生活中还有哪些地方使用了比例尺;4. 概率讲解:以彩票、抽奖为例,引入概率的基本概念,讲解概率的计算方法;5. 统计学应用:展示调查问卷,引导学生运用统计学知识分析数据;6. 随堂练习:布置相关习题,让学生运用所学知识解决实际问题;8. 作业布置:布置课后作业,巩固所学知识。
六、板书设计1. 比例尺的定义及应用;2. 概率的计算方法;3. 统计学在实际生活中的应用;4. 课后作业及答案。
七、作业设计1. 作业题目:(1)运用比例尺,计算地图上两地的实际距离;(2)计算彩票中奖的概率;(3)分析调查问卷数据,得出结论。
2. 答案:(1)比例尺为1:1000000,地图上两地距离为5cm,实际距离为5km;(2)彩票中奖概率为1/100;(3)根据调查问卷数据,得出结论。
八、课后反思及拓展延伸1. 反思:本节课通过生活实例引入数学知识,提高了学生的学习兴趣,培养了学生的数学应用意识;2. 拓展延伸:鼓励学生课后寻找更多生活中的数学实例,进一步巩固所学知识,提高数学素养。
《生活中的数学》教案及反思
《生活中的数学》教案及反思一、教学内容本节课选自《数学》教材第四章“概率与统计”的第二节“生活中的数学”。
具体内容包括:概率的基本概念,概率的计算方法,以及如何运用概率知识解决生活中的实际问题。
二、教学目标1. 让学生掌握概率的基本概念,理解概率的计算方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生的合作意识和实践操作能力。
三、教学难点与重点教学难点:概率的计算方法,运用概率知识解决实际问题。
教学重点:概率的基本概念,概率在实际生活中的应用。
四、教具与学具准备教具:PPT、黑板、粉笔、骰子、硬币等。
学具:练习本、计算器、直尺等。
五、教学过程1. 实践情景引入(5分钟)利用骰子和硬币进行游戏,让学生观察和记录每次游戏的结果,引导学生思考游戏结果的随机性和规律性。
2. 知识讲解(15分钟)(1)讲解概率的基本概念,如必然事件、不可能事件、随机事件等。
(2)介绍概率的计算方法,如频率法、理论法等。
3. 例题讲解(10分钟)(1)讲解如何利用概率知识解决实际问题,如彩票中奖概率的计算。
(2)引导学生运用所学知识分析生活中的概率问题。
4. 随堂练习(15分钟)设计一些与生活相关的概率题目,让学生独立完成,并及时给予指导和反馈。
5. 小组讨论(10分钟)六、板书设计1. 生活中的数学2. 内容:(1)概率的基本概念(2)概率的计算方法(3)概率在实际生活中的应用七、作业设计1. 作业题目:(1)计算一枚硬币抛掷两次,出现两个正面的概率。
(2)某彩票中奖概率为1%,现有100张该彩票,求至少中奖一张的概率。
2. 答案:(1)1/4(2)63.4%八、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入、例题讲解和随堂练习,让学生掌握了概率的基本概念和计算方法,并能运用概率知识解决实际问题。
但部分学生对概率的理解仍有困难,需要在今后的教学中加强引导和巩固。
2. 拓展延伸:(1)让学生收集生活中的概率问题,进行分析和解答。
(完整)《生活中的数学》校本课程
《生活中的数学》校本课程龚条枝目录第一讲:让数学帮你理财第二讲:导航的双曲线第三讲:电冰箱温控器的调节—-如何使电冰箱使用时间更长第四讲:赌马中的数学问题第五讲:对称-—自然美的基础第六讲:对数螺线与蜘蛛网第七讲:斐波那契数列第八讲:分数维的山峰与植物第九讲:蜂房中的数学第十讲:龟背上的学问第十一讲:Music 与数学A股诞生亿万第十二讲:e和银行业第十三讲:几何就在你的身边第十四讲:“压岁钱”与“赈灾小银行”第十五讲:建议班级购买一台饮水机第十六讲:巧用数学看现实第十七讲:商品调价中的数学问题第十八讲:煤商怎样进煤利润高第一讲:让数学帮你理财某银行为鼓励小朋友养成储蓄习惯,提供一个颇有心思的储蓄计划.参加者除可有较高年息优惠外(见附表),更可以特价换取手表一只。
先不论以低价换表是否真的超值,但这种宣传方法颇具心思。
手表与户口连在一起,正好意味着利息随时间递增的关系.储蓄计划优惠年息一览表每月存款(港币)$1,000存期(月)每年复息利率到期存款(港币)利息(港币)到期本息金额(港币)9 12 15 18 246.625%7。
125%7.375%7.75%8。
00%9,00012,00015,00018,00024,0002524737591,1462,1069,25212,47315,75919,14626,106银行的宣传小册子更注明十一岁至十七岁小朋友已可开个人户口。
这群“准客户”大致是接受中学教育的适龄儿童。
无论有兴趣参加与否,总希望他们或早或迟懂得储蓄计划背后的数学原理.这个储蓄计划是以每月存入定额存款来计算利息,而存款期限愈长,利率则愈高。
为了更有效理解表中“到期本息金额”如何计算出来,且让我们设为每月存款的金额,而则为月息利率。
月息利率是由“每年复息利率”除以12而来的。
譬如说,存款期限为9个月,从表中得知每年复息利率是6.625%,因此月息利率为6.625%÷12,即约是0.5521%.存款1个月后,到期本息金额:存款2个月后,到期本息金额:存款3个月后,到期本息金额:余此类推,存款个月后,到期本息金额应为:为了简化这数式,设。
校本教材《生活中的数学》
目录第1课时“集合”与“模糊数学……………………………张安宁 2 第2课时函数—一份购房合同…………………江居明 3 第3课时函数—孙悟空大战牛魔王……………………江居明 5 第4课时三角函数—直角三角形………………………王宏利7 第5课时三角函数—月平均气温问题…………………王宏利9 第6课时数列—柯克曼女生问题………………………张安宁11 第7课时数列—数列的应用……………………………张安宁13 第8课时不等式性质应用―两边夹不等式的推广……叶剑斌15 第9课时不等式性质应用―均值不等式的应用…………叶剑斌18 第10课时立几—正多面体拼接构成新多面体面数问题…管光应19 第11课时立体几何—球在平面上的投影…………………管光应22 第12课时解析几何―神奇的莫比乌斯圈………………胡长才25 第13课时解析几何―最短途问题…………………………胡长才26 第14课时排列组合―抽屉原理……………………………崔海涛27 第15课时排列组合―摸球游戏……………………………崔海涛28 第16课时概率………………………………………………王宏利29 第17课时简易逻辑…………………………………………江居明33 第18课时解数学题的策略……………………………张安宁36第1课时 “集合”与“模糊数学”教学要求:启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;教学过程:一、 情境引入1965年,美国数学家扎德发表论文《模糊集合》,开辟了一门新的数学分支——模糊数学。
二、 实例尝试,探求新知模糊数学是经典集合概念的推广。
在经典集合论当中,每一个集合都必须由确定的元素构成,元素对于集合的隶属关系是明确的,这一性质可以用特征函数:(){)(,1)(,0A x A x A x ∈∉=χ来描述。
扎德将特征函数)(x A χ改成所谓的“隶属函数”,1)(0:)(≤≤x x A A μμ,这里A 称为“模糊函数”,()x A μ称为x 对A 的“隶属度”。
校本课程 生活中的数学
校本课程系列十一
生活中的数学编者:夏敏
目录
课程开发与实施安排表
校本课程实施纲要
一、数列在分期付款中的应用
二、数学在足球比赛射门中的应用
三、福利彩票中的数字
四、多面体欧拉定理的发现
五、“概率”在丰富多彩的现实生活中的应用
六、向量在物理学中的应用
七、解生活中的斜三角形(一)
八、解生活中的斜三角形(二)
九、解生活中的斜三角形(三)
十、线性规划在实际生活中的应用
校本课程开发与实施安排表
《生活中的数学》
校本课程纲要
一、基本项目
课程名称:《生活中的数学》
授课教师:夏敏
授课对象:高一、高二年级部分学生
教学材料: 相关网站、资料
授课时间: 07年1月----07年12月
二、课程目标
以全面贯彻落实课改精神为宗旨,以生活中的数学为载体,提高学生学习数学的兴趣,全面推进素质教育。
1.通过教学,增强学生学习数学的兴趣;
2.通过教学,让学生了解数学来源于生活,应用于生活;
3.通过教学,培养学生发现问题、解决问题等自主学习的能力;
4.通过教学,增强数学美的意识。
三、课程内容
一、数列在分期付款中的应用。
《生活中的数学》课件
《生活中的数学》课件一、教学内容本节课我们将探讨《生活中的数学》这一主题,内容主要涉及教材第七章第三节“生活中的几何图形”以及第四节“生活中的数学问题”。
详细内容包括识别日常生活中的几何形状,如圆形、方形、三角形等,并探讨这些形状在生活中的应用;同时,我们将解决一些生活中的实际问题,如计算面积、体积、比例等。
二、教学目标1. 知识目标:学生能够识别并描述日常生活中的各种几何图形,掌握计算面积、体积的基本方法。
2. 能力目标:培养学生运用数学知识解决实际问题的能力,提高观察、分析、推理等数学思维能力。
3. 情感目标:激发学生对数学的兴趣,使学生认识到数学与生活的密切联系。
三、教学难点与重点教学难点:计算不规则图形的面积和体积,解决生活中的实际问题。
教学重点:识别生活中的几何图形,掌握计算面积、体积的基本方法。
四、教具与学具准备教具:PPT课件、黑板、粉笔、几何模型等。
学具:直尺、圆规、三角板、计算器等。
五、教学过程1. 导入:通过PPT展示一组生活中的几何图形,引导学生观察并说出它们的特点。
2. 新课内容:(1)生活中的几何图形:介绍圆形、方形、三角形等基本几何图形,并让学生举例说明在生活中的应用。
(2)计算面积和体积:讲解计算规则图形和不规则图形面积、体积的方法,结合实例进行讲解。
3. 例题讲解:讲解一道关于计算生活中不规则图形面积和体积的例题,让学生跟随老师一起解题。
4. 随堂练习:布置几道与新课内容相关的练习题,让学生独立完成,并进行讲解。
5. 小组讨论:将学生分成小组,讨论生活中遇到的数学问题,并尝试解决。
六、板书设计1. 《生活中的数学》2. 内容:(1)生活中的几何图形:圆形、方形、三角形等。
(2)计算面积和体积的方法。
(3)例题及解答。
七、作业设计(1)一个圆形花坛的半径为3米,求花坛的面积。
(2)一个长方形房间的长为6米,宽为4米,求房间的面积和周长。
2. 答案:八、课后反思及拓展延伸1. 课后反思:本节课通过生活中的实例,让学生感受到数学的实用性,提高了学生的学习兴趣。
初三数学校本课程教案-生活中的数学
校本课程3生活中的数学(储蓄、保险与纳税)储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.1.储蓄银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.利息=本金×利率×存期,本利和=本金×(1+利率经×存期).如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(1+rn).例1设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?解i=2000×0.0171×3=102.6(元).s=2000×(1+0.0171×3)=2102.6(元).答某人得到利息102.6元,本利和为2102.6元.以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金.相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.用复利法计算本利和,如果设本金是p元,年利率是r,存期是n 年,那么若第1年到第n年的本利和分别是s1,s2,…,s n,则s1=p(1+r),s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,……,s n=p(1+r)n.例2小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?解按表22.1的利率计算.(1)连续存五个1年期,则5年期满的本利和为20000(1+0.0522)5≈25794(元).(2)先存一个2年期,再连续存三个1年期,则5年后本利和为20000(1+0.0558×2)·(1+0.0522)3≈25898(元).(3)先连续存二个2年期,再存一个1年期,则5年后本利和为20000(1+0.0558×2)2·(1+0.0552)≈26003(元).(4)先存一个3年期,再转存一个2年期,则5年后的本利和为20000(1+0.0621×3)·(1+0.0558×2)≈26374(元).(5)先存一个3年期,然后再连续存二个1年期,则5年后本利和为20000(1+0.0621×3)·(1+0.0522)2≈26268(元).(6)存一个5年期,则到期后本利和为20000(1+0.0666×5)≈26660(元).显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存款方案,利率是合理的.2.保险保险是现代社会必不可少的一种生活、生命和财产保护的金融事业.例如,火灾保险就是由于火灾所引起损失的保险,人寿保险是由于人身意外伤害或养老的保险,等等.下面举两个简单的实例.例3 假设一个小城镇过去10年中,发生火灾情况如表22.2所示.试问:(1)设想平均每年在1000家中烧掉几家?(2)如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本?解(1)因为1+0+1+2+0+2+1+2+0+2=11(家),365+371+385+395+412+418+430+435+440+445=4096(家).11÷4096≈0.0026.(2)300000×0.0026=780(元).答(1)每年在1000家中,大约烧掉2.6家.(2)投保30万元的保险费,至少需交780元的保险费.例4财产保险是常见的保险.假定A种财产保险是每投保1000元财产,要交3元保险费,保险期为1年,期满后不退保险费,续保需重新交费.B种财产保险是按储蓄方式,每1000元财产保险交储蓄金25元,保险一年.期满后不论是否得到赔款均全额退还储蓄金,以利息作为保险费.今有兄弟二人,哥哥投保8万元A种保险一年,弟弟投保8万元B种保险一年.试问兄弟二人谁投的保险更合算些?(假定定期存款1年期利率为5.22%)解哥哥投保8万元A种财产保险,需交保险费80000÷1000×3=80×3=240(元).弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交80000÷1000×25=2000(元),而2000元一年的利息为2000×0.0522=104.4(元).兄弟二人相比较,弟弟少花了保险费约240-104.4=135.60(元).因此,弟弟投的保险更合算些.3.纳税纳税是每个公民的义务,对于每个工作人员来说,除了工资部分按国家规定纳税外,个人劳务增收也应纳税.现行劳务报酬纳税办法有三种:(1)每次取得劳务报酬不超过1000元的(包括1000元),预扣率为3%,全额计税.(2)每次取得劳务报酬1000元以上、4000元以下,减除费用800元后的余额,依照20%的比例税率,计算应纳税额.(3)每次取得劳务报酬4000元以上的,减除20%的费用后,依照20%的比例税率,计算应纳税额.每次取得劳务报酬超过20000元的(暂略).由(1),(2),(3)的规定,我们如果设个人每次劳务报酬为x元,y为相应的纳税金额(元),那么,我们可以写出关于劳务报酬纳税的分段函数:例5小王和小张两人一次共取得劳务报酬10000元,已知小王的报酬是小张的2倍多,两人共缴纳个人所得税1560元,问小王和小张各得劳务报酬多少元?解根据劳务报酬所得税计算方法(见函数①),从已知条件分析可知小王的收入超过4000元,而小张的收入在1000~4000之间,如果设小王的收入为x元,小张的收入为y元,则有方程组:由①得y=10000-x,将之代入②得x(1-20%)20%+(10000-x-800)20%=1560,化简、整理得0.16x-0.2x+1840=1560,所以0.04x=280,x=7000(元).则y=10000-7000=3000(元).所以答小王收入7000元,小张收入3000元.例6如果对写文章、出版图书所获稿费的纳税计算方法是其中y(x)表示稿费为x元应缴纳的税额.那么若小红的爸爸取得一笔稿费,缴纳个人所得税后,得到6216元,问这笔稿费是多少元?解设这笔稿费为x元,由于x>4000,所以,根据相应的纳税规定,有方程x(1-20%)·20%×(1-30%)=x-6216,化简、整理得0.112x=x-6216,所以0.888x=6216,所以x=7000(元).答这笔稿费是7000元.练习八1.按下列三种方法,将100元存入银行,10年后的本利和各是多少?(设1年期、3年期、5年期的年利率分别为5.22%,6.21%,6.66%保持不变)(1)定期1年,每存满1年,将本利和自动转存下一年,共续存10年;(2)先连续存三个3年期,9年后将本利和转存1年期,合计共存10年;(3)连续存二个5年期.2.李光购买了25000元某公司5年期的债券,5年后得到本利和为40000元,问这种债券的年利率是多少?3.王芳取得一笔稿费,缴纳个人所得税后,得到2580元,问这笔稿费是多少元?4.把本金5000元存入银行,年利率为0.0522,几年后本利和为6566元(单利法)?。
生活中的数学校本教材
编者的话同学们,生活是数学的发源地,是数学的根,因此,数学都能在生活中找到其产生的踪迹。
《数学课程标准》指出:“数学是人们生活、劳动和学习必不可少的工具。
”既然数学来源于生活,那么我们的数学教学就不应该只是单纯的知识传授,而应遵循源于生活,寓于生活的理念,让学生体会到数学就在他们身边,感受到数学的趣味和作用。
长期以来,为什么一些学生对数学不感兴趣,甚至对数学学习产生恐惧心理?其主要原因是:数学离学生的生活太远,故使学生感到数学枯燥、抽象难学。
现在的新教材克服了这一弊端。
它将数学与生活联系起来,题材丰富多采,呈现形式多样,并引导学生去探究一些数学问题。
这一切正符合学生好奇、好思、喜新的心理特点。
根据新教材的要求,我在教学中竭力让数学贴近我们的生活,注重满足学生身心发展的需要。
祝同学们身心健康,学业有成!《生活中的数学》校本课程————《校本课程》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。
这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。
现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。
有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。
《生活中的数学》教案及反思
《生活中的数学》教案及反思一、教学内容本节课选自《数学》教材第四章第三节,主题为“生活中的数学”。
详细内容包括:生活中的几何图形、生活中的数据统计、生活中的概率问题。
通过分析日常生活中的实际问题,让学生感受数学的应用价值,培养其运用数学知识解决实际问题的能力。
二、教学目标1. 让学生掌握生活中常见的几何图形、数据统计和概率问题的基本知识。
2. 培养学生运用数学知识解决实际问题的能力,提高数学思维。
3. 激发学生学习数学的兴趣,使其体会数学与生活的紧密联系。
三、教学难点与重点教学难点:生活中的概率问题。
教学重点:生活中的几何图形、数据统计及概率问题的解决方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、计算器。
五、教学过程1. 导入(5分钟)实践情景引入:展示生活中的几何图形、数据统计和概率问题实例,引导学生观察、思考。
2. 新课导入(15分钟)(1)生活中的几何图形① 展示实例:建筑物、家具、交通工具等。
② 分析特点:讲解几何图形在实际生活中的应用。
(2)生活中的数据统计① 展示实例:气温变化、人口普查、消费水平等。
② 分析方法:介绍数据收集、整理、描述和分析的基本方法。
(3)生活中的概率问题① 展示实例:彩票、抽奖、游戏等。
② 分析原理:讲解概率的定义和计算方法。
3. 例题讲解(15分钟)(1)几何图形例题:求一个长方形和一个圆形的面积。
(2)数据统计例题:分析班级同学的身高分布情况。
(3)概率问题例题:计算掷骰子得到偶数点的概率。
4. 随堂练习(10分钟)(1)让学生练习计算生活中常见的几何图形的面积、周长等。
(2)让学生收集、整理数据,描述和分析生活中的实际问题。
(3)让学生计算生活中常见的概率问题。
强调本节课的重点知识,回顾生活中的数学问题解决方法。
六、板书设计1. 生活中的几何图形2. 生活中的数据统计3. 生活中的概率问题4. 例题及解答5. 随堂练习七、作业设计1. 作业题目:(1)计算自己房间的面积。
高中校本教材《生活中的数学》
目录第1课时“集合”与“模糊数学……………………………宁 2 第2课时函数—一份购房合同…………………江 3 第3课时函数—孙悟空大战牛魔王……………………江 5第4课时三角函数—直角三角形………………………王7第5课时三角函数—月平均气温问题…………………王9第6课时数列—柯克曼女生问题...........................张11 第7课时数列—数列的应用.................................张13 第8课时不等式性质应用―两边夹不等式的推广......叶15 第9课时不等式性质应用―均值不等式的应用............叶18 第10课时立几—正多面体拼接构成新多面体面数问题 (19)第11课时立体几何—球在平面上的投影 (22)第12课时解析几何―神奇的莫比乌斯圈 (25)第13课时解析几何―最短途问题...........................才26 第14课时排列组合―抽屉原理 (27)第15课时排列组合―摸球游戏..............................涛28 第16课时概率......................................................利29 第17课时简易逻辑 (33)第18课时解数学题的策略……………………………宁36第1课时 “集合”与“模糊数学”教学要求:启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;教学过程:一、 情境引入1965年,美国数学家扎德发表论文《模糊集合》,开辟了一门新的数学分支——模糊数学。
二、 实例尝试,探求新知模糊数学是经典集合概念的推广。
在经典集合论当中,每一个集合都必须由确定的元素构成,元素对于集合的隶属关系是明确的,这一性质可以用特征函数:(){)(,1)(,0A x A x A x ∈∉=χ来描述。
扎德将特征函数)(x A χ改成所谓的“隶属函数”,1)(0:)(≤≤x x A A μμ,这里A 称为“模糊函数”,()x A μ称为x 对A 的“隶属度”。
中学《生活中的数学》校本课程教材共9页文档
《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。
小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。
”爸爸踌躇一下,有些为难。
你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2019美元,以后每半年增加200美元。
校本课程--生活中的数学
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式《生活中的数学》校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。
创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。
”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。
我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。
数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。
选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。
使学生成为学习的主人,学有兴趣,习有方法,必有成功。
学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。
目录第一课:让数学帮你理财第二课:导航的双曲线第三课:电冰箱温控器的调节——如何使电冰箱使用时间更长第四课:赌马中的数学问题第五课:对称——自然美的基础第六课:对数螺线与蜘蛛网第七课:斐波那契数列第八课:分数维的山峰与植物第九课:蜂房中的数学第十课:龟背上的学问第十一课:Music 与数学第十二课:e和银行业第十三课:几何就在你的身边第十四课:巧用数学看现实第十五课:商品调价中的数学问题第十六课:煤商怎样进煤利润高第十七课:把握或然,你会更聪明第十八课:顺水推舟,克“敌”致胜——例谈反证法的应用第十九课:抽屉原理和六人集会问题第二十课:数独游戏与数学第二十一课:集合与生活第二十二课:生活中的立体几何第二十三课:排列组合处理问题第二十四课:算法妙用第二十五课:世界数学难题欣赏——四色猜想第二十六课:世界数学难题欣赏——哥尼斯堡七桥问题第二十七课:世界数学难题欣赏——费马大定理第二十八课:世界数学难题欣赏——哥德巴赫猜想第一课:让数学帮你理财某银行为鼓励小朋友养成储蓄习惯,提供一个颇有心思的储蓄计划。
最新校本课程--生活中的数学优秀名师资料
《生活中的数学》校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。
创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。
”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。
我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。
数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。
选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。
使学生成为学习的主人,学有兴趣,习有方法,必有成功。
学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。
目录第一课:让数学帮你理财第二课:导航的双曲线第三课:电冰箱温控器的调节——如何使电冰箱使用时间更长第四课:赌马中的数学问题第五课:对称——自然美的基础第六课:对数螺线与蜘蛛网第七课:斐波那契数列第八课:分数维的山峰与植物第九课:蜂房中的数学第十课:龟背上的学问第十一课:Music 与数学第十二课:e和银行业第十三课:几何就在你的身边第十四课:巧用数学看现实第十五课:商品调价中的数学问题第十六课:煤商怎样进煤利润高第十七课:把握或然,你会更聪明第十八课:顺水推舟,克“敌”致胜——例谈反证法的应用第十九课:抽屉原理和六人集会问题第二十课:数独游戏与数学第二十一课:集合与生活第二十二课:生活中的立体几何第二十三课:排列组合处理问题第二十四课:算法妙用第二十五课:世界数学难题欣赏——四色猜想第二十六课:世界数学难题欣赏——哥尼斯堡七桥问题第二十七课:世界数学难题欣赏——费马大定理第二十八课:世界数学难题欣赏——哥德巴赫猜想第一课:让数学帮你理财某银行为鼓励小朋友养成储蓄习惯,提供一个颇有心思的储蓄计划。
生活中的数学校本课程备课样版
谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
你能发现什么?
把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?
2.再次设问:为什么会想到一起煮呢?
3.教师小结:当5个鸡蛋一起放进锅里面煮时,既可以节约时间,又能节约能源。看来,煮鸡蛋是要讲究方法的!生活中这类问题还有很多,我们就一起来研究其中的一个数学问题——也需要讲究方法的“烙饼问题〞。板书课题:烙饼问题。
二、自主探索,探究烙法。
预设生成1:一个一个的煮,一个8分钟,5个要40分钟时间。
〔2〕预设学生生成:①先烙2,再烙2,最后烙1。
②先烙2,然后3按3的最正确方法烙。
〔3〕引导学生算出两种方法的时间来比拟这两种方法,哪种方法最节省时间
〔4〕追问:“18分钟〞的这种方法在哪里浪费时间?
学生思考后答复。师小结:只要把后面的2饼和1饼合成一组按照3饼的最正确方法来烙,最节省时间。
3.画图分析6-9饼的烙法
〔1〕设问:如果烙饼的数是6、7、8、9饼时,怎样烙最节省时间?请按照烙4饼、5饼的方法,在练习纸上写一写、算一算。
〔2〕根据学生反应,形成板书
比拟烙6饼的两种方法:
方法一:分两组,每组按3饼的最正确方法烙,共要烙18分钟。
方法二:分三组,每组按2饼的最正确方法烙,共要烙18分钟。
师指出:两种方法的时间一样,但是在实际操作中,用3饼的方法来烙时,需要不停地翻转烙饼,增加难度。所以我们一般选择一种容易操作的方法,把6分成2、2、2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。
小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。
”爸爸踌躇一下,有些为难。
你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。
你选择哪一种方案?为什么?答案:第二种方案要比第一种方案好得多4.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。
每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入;扣除50间房的支出40*50=2000元,每日净赚16000元。
而客满时净利润160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
第二讲数学中的悖论“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。
悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。
正因为如此,悖论就成了一种十分有价值的教学手段。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。
这就是说它带有强烈的游戏色彩。
然而,切莫以为大数学家都看不起“趣味数学”问题。
欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。
莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。
希尔伯特证明了切割几何图形中的许多重要定理。
冯·纽曼奠基了博弈论。
最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。
爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
悖论一览1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。
试问:理发师给不给自己理发?如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。
这样,理发师陷入了两难的境地。
2.芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。
假定阿基里斯能够跑得比乌龟快10倍。
比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。
”如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。
”同上,这又是难以自圆其说!4.跟无限相关的悖论:{1,2,3,4,5,…}是自然数集:{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?5.伽利略悖论:我们都知道整体大于部分。
由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。
为什么?6.谷堆悖论:显然,1粒谷子不是堆;如果1粒谷子不是堆,那么2粒谷子也不是堆;如果2粒谷子不是堆,那么3粒谷子也不是堆;……如果99999粒谷子不是堆,那么100000粒谷子也不是堆;7、“意外绞刑”悖论:“一名囚犯被法官告知将于周一到周五间的某一天被绞死。
法官并且声明说:绞刑的具体日期将是完全出人意料的。
这个囚犯非常聪明 (也许以前是逻辑学教授),他由此推断出他根本不会被绞死,为什么?他由此推断出绞刑一定不会安排在周五,因为否则的话,前四天一过他就知道绞刑的具体日期了,但法官说过具体日期会是完全出人意料的。
法官是不会撒谎的,因此绞刑不可能在周五。
排除了周五,就只剩下四天了。
但是依据同样的推理,周四也可以被排除掉,...,以此类推,最终每一天都可以排除掉。
于是他得出令人欣慰的结论:他根本不会被绞死。
可是到了周二法官却突然宣布执行绞刑,大大出乎了他的意料!而这,恰恰证明法官的确没有撒谎。
”1、小丁和小明、小红三个小朋友并排在有灰尘的楼梯上同时从顶上向下走。
小明一步下2阶,小红一步下3阶,小丁一步下4阶,如果楼顶和楼底均有所有三个人的脚印,那么仅有一个人脚印的楼梯最少有几级?2、偶数的难题在很久以前,一个年迈的国王要为自己的独生公主选女婿,一时应者如云。
国王于是想出了比武招亲的办法。
经过文试、武试,三个英俊的小伙子成为最后的人选。
要从这三个难分高下的小伙子中选出一个女婿来,可真难为了国王。
他绞尽脑汁想出了一个方法。
国王命人拿出一个4*4的方格,将16枚棋子依次放在16个方格中。
国王对三个小伙子说:“现在你们从这16枚棋子中随便拿去6个,但要保证纵、横行列中留下的都是偶数枚棋子。
这三个小伙子犯难了,最后,其中一个小伙子终于解开了这道难题,迎娶了公主。
请问这个小伙子是怎样解开这道难题的?第三讲:对称——自然美的基础在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。
它们引起人们的注意,令人赏心悦目。
每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。
仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。
花朵具有旋转对称的性征。
花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。
旋转时达到自相重合的最小角称为元角。
不同的花这个角不一样。
例如梅花为72°,水仙花为60°。
“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。
我国最早记载了雪花是六角星形。
其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。
既是中心对称,又是轴对称。
很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的初始位置重合。
例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。
这种有趣的现象叫叶序。
向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。
“晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。
无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。
在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。
第四讲:斐波那契数列斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的。
(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。
(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。
斐波那契数经常与花瓣的数目相结合:3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草8………………………翠雀花13………………………金盏草21………………………紫宛34,55,84……………雏菊(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。
例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。