人教备战中考数学专题复习分类练习 相似综合解答题

合集下载

人教全国中考数学相似的综合中考模拟和真题分类汇总附答案

人教全国中考数学相似的综合中考模拟和真题分类汇总附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

人教全国备战中考数学相似的综合备战中考模拟和真题分类汇总附答案

人教全国备战中考数学相似的综合备战中考模拟和真题分类汇总附答案

一、相似真题与模拟题分类汇编(难题易错题)1.正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以 cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.【答案】(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴= .∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=6 cm.∵点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为ts,∴BE= tcm,DE=(6 - t)cm,∴=,∴y= .②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴= .∵BN=2AN,AB=6cm,∴AN=2cm.∴=,∴t=2,∴BF==3(cm).又∵BN=4cm,∴FN==5(cm).【解析】【分析】(1)根据正方形的性质得出AD=AB,∠DAN=∠FBA=90°.再根据同角的余角相等得出∠NAH=∠NDA,进而证出△ABF≌△MAN即可解答,(2)根据正方形的性质得出两角相等证出△EBF∽△EDA,得出BD的长度,利用△EBF∽△EDA得出比例式,得出y和t之间的函数解析式,据正方形的性质得出两角相等证出△ABF∽△MAN,得出比例式,进而解答.2.在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E 是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE 的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=时,求AE的长.【答案】(1)解:现点E沿边AC从点A向点C运动过程中,始终有△ABE≅△CBF.由图1知,△ABC与△EBF都是等边三角形,∴AB=CB,BE=BF,∠ABC=∠EBF=60°,∴∠CBF=∠ABE=60°-∠CBE,∴△ABE≅△CBF.(2)解:由(1)知点E在运动过程中始终有△ABE≅△CBF,因四边形BECF的面积等于三角形BCF的面积与三角形BCE的面积之和,∴四边形BECF的面积等于△ABC的面积,因△ABC的边长为2,则,∴四边形BECF的面积为,又四边形ABFC的面积是,∴,在三角形ABE中,因∠A=60°,∴边AB上的高为AEsin60°,∴,则AE= .(3)解: .由图2知,△ABC与△EBF都是等边三角形,∴AB=CB,BE=BF,∠ABC=∠EBF=60°,又∠CBF=∠ABE=60°+∠CBE,∴△ABE≅△CBF,∴,∴,则,则(4)解:由(3)知,即,由得,∵△ABE≅△CBF,∴AE=CF,∠BAE=∠BCF=60°,又∠BAE=∠ABC=60°,得∠ABC=∠BCF,∴CF∥AB,则△BDF的边CF上的高与△ABC的高相等,即为,则DF= ,设CE=x,则2+x=CD+DF=CD+ ,∴CD=x- ,在△ABE中,由CD∥AB得,,即,化简得,∴x=1或x=− (舍),即CE=1,∴AE=3.【解析】【分析】(1)不难发现△ABE≅△CBF,由等边三角形的性质得到相应的条件,根据“SAS”判定三角形全等;(2)由(1)可得△ABE≅△CBF,则,则四边形ABFC= = ,由四边形ABFC的面积为和等边三角形ABC的边长为2,可求得△ABE的面积,由底AB×AEsin60°,构造方程可解出AE.(3)当E在AC的延长线上时,△ABE≅△CBF依然成立,则,即由等量关系即可得答案.(4)由(3)可求出△FBD的面积,由△ABE≅△CBF,则AE=CF,∠BAE=∠BCF=60°=∠ABC,则CF//AB,则对于△BDF的边CF上的高等于△ABC的高,则可求出DF的长度;由AE=CF,可设CE=x,且CD//AB可得,代入相关值解出x即可.3.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).(1)当t等于多少s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.【答案】(1)解:若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,即:5﹣t=3t,解得t=1.25;故答案为:1.25(2)解:分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=1.4;②若△EBF∽△GCF,则有,即,解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .∴当t=1.4s或t=(﹣7+ )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)解:假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=3﹣3t,OM=2.5,由勾股定理得:OM2+FM2=OF2,即:2.52+(3﹣3t)2=(3t)2解得:t=;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,由勾股定理得:ON2+EN2=OE2,即:32+(2.5﹣t)2=(5﹣t)2解得:t= .∵≠ ,∴不存在实数t,使得点B′与点O重合【解析】【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在4.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【答案】(1)解:∵PD平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE(2)解:如图,过点D作DF⊥PB于点F,作DG⊥AC于点G,∵PD平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC= ,∴cos∠BDF=cos∠APC= ,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=DF,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC= ,∴sin∠BAC= ,∴,∴DG= ,∴菱形ADME的面积为:DG•AE=2× = .【解析】【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC= ,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.5.如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.(1)当m=1时,该抛物线的解析式为:________.(2)求证:∠BCA=∠CAO;(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.【答案】(1)y=﹣ x2+x+1(2)证明:把点P、A的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线PA的表达式为:y= x+m,令y=0,解得:x=﹣m﹣1,即点B坐标为(﹣m﹣1,0),同理直线OP的表达式为:y=x…②,将①②联立得:a(x﹣m﹣1)2+2m﹣ x=0,其中a=﹣,该方程的常数项为:a(m+1)2+2m,由韦达定理得:x1x2=x C•x P===﹣(m+1)2,其中x P=m+1,则x C=﹣m﹣1=x B,∴BC∥y轴,∴∠BCA=∠CAO(3)解:如图当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,设:直线l与x轴的交点为D点,连接BB′、CC′,∵点C关于l的对称点为C′,∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,∵∠PB′C′+∠PB′B=180°,△PB′C′由△PBC旋转而得,∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,∴∠PBC+∠PB′B=180°,∵BC∥AO,∴∠ABC+∠BAO=180°,∴∠PB′B=∠BAO,∵PB=PB′,PC=PC′,∴∠PB′B=∠PBB′=,∴∠PCC′=∠PC′C=,∴∠PB′B=∠PCC′,∴∠BAO=∠PCC′,而∠POD=∠PCC′,∴∠BAO=∠POD,而∠POD=∠BAO=90°,∴△BAO∽△POD,∴,将BO=m+1,PD=2m,AO=m,OD=m+1代入上式并解得:m=1+ (负值已舍去)【解析】【解答】解:(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,则二次函数的表达式为:y=﹣(x﹣m﹣1)2+2m…①,则点P的坐标为(m+1,2m),点A的坐标为(0,m),把m=1代入①式,整理得:y=﹣ x2+x+1,故:答案为:y=﹣ x2+x+1;【分析】(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,把m=1代入上式,即可求解;(2)求出点B、C的坐标,即可求解;(3)当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,证△BAO∽△POD,即可求解.6.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)求∠AHC与∠ACG的大小关系(“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【答案】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC=,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)解:结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,∴,∴AC2=AG•AH.(3)解:①△AGH的面积不变.理由:∵S△AGH=•AH•AG=AC2= ×(4 )2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴ ,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=m,则CM=EM m,∴m+ m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4 ,综上所述,满足条件的m的值为或2或8﹣4 .【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.7.如图,半径为4且以坐标原点为圆心的圆O交x轴,y轴于点B、D、A、C,过圆上的动点不与A重合作,且在AP右侧.(1)当P与C重合时,求出E点坐标;(2)连接PC,当时,求点P的坐标;(3)连接OE,直接写出线段OE的取值范围.【答案】(1)解:当P与C重合时,,的半径为4,且在AP右侧,,点坐标为;(2)解:如图,作于点F,为的直径,,,∽,,,,,,点P的坐标为或;(3)解:如图,连结OP,OE,AB,BE,AE,,都为等腰直角三角形,,,,∽,,,,【解析】【分析】当P与C重合时,因为,的半径为4,且在AP右侧,所以,所以E点坐标为;作于点F,证明∽,可求得CF长,在中求得PF的长,进而得出点P的坐标;连结OP,OE,AB,BE,AE,证明∽,可得,根据,即可得出OE的取值范围.8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。

人教备战中考数学综合题专题复习【相似】专题解析附详细答案

人教备战中考数学综合题专题复习【相似】专题解析附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

人教全国中考数学相似的综合中考模拟和真题分类汇总含答案解析

人教全国中考数学相似的综合中考模拟和真题分类汇总含答案解析

一、相似真题与模拟题分类汇编(难题易错题)1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

人教中考数学专题复习分类练习 相似综合解答题附详细答案

人教中考数学专题复习分类练习 相似综合解答题附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)【答案】(1)(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN∴由PG∥AB,PH∥AD可得, ,∵AB=a,BC=b∴,即 ,∴,故答案为(3)【解析】【解答解:(1)∵四边形ABCD是矩形,∴AB⊥BC,∵PM⊥BC,∴△PMC∽△ABC∴∵四边形ABCD是矩形,∴∠BCD=90°,∵PM⊥BC,PN⊥CD,∴∠PMC=∠PNC=90°=∠BCD,∴四边形CNPM是矩形,∴CM=PN,∴,故答案为;( 3 )∵PM⊥BC,AB⊥BC∴△PMC∽△ABC∴当AP=nPC时(n是正实数),∴PM= a∴四边形PMCN的面积= ,故答案为:.【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;(3)由(2)的方法可得,则四边形PMCN的面积= .2.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.根据上述条件,回答下列问题:(1)当矩形OEDC的顶点D在直线AB上时,求t的值;(2)当t=4时,求S的值;(3)直接写出S与t的函数关系式(不必写出解题过程);(4)若S=12,则t=________.【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,∴△BCD∽△BOA,∴而CD=OE=t,BC=8−CO=8− ,OA=4,则8− ,解得t=,∴当点D在直线AB上时,t=(2)解:当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得,即,解得CF=3,∴S= OC(OE+CF)= ×2×(3+4)=7(3)解:①当0<t≤时,S= t2②当<t≤4时,S=-t2+10t−16③当4<t≤16时,S=t2+2t(4)8【解析】【解答】解:(3)①当0﹤t≤时,如图(1),②当<t≤4时,如图(2),∵A(4,0),B(0,8)∴直线AB的解析式为y=-2x+8,∴G(t,-2t+8),F(4-,),∴DF=t-4,DG=t-8,∴S=S矩形COED-S△DFG=t·③当4<t≤16时,如图(3)∵CD∥OA,∴△BCF∽△BOA,∴∴,∴CF=4-,∴S=S△BOA-S△BCF=(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8−CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积公式即可得出函数关系式;②当<t≤4时,如图(2),利用待定系数法,求出直线AB 的解析式,根据和坐标轴平行的直线上的点的坐标特点及直线上的点的坐标特点分别表示出G,F的坐标,进而表示出DF的长,DG的长,根据S=S矩形COED-S△DFG即可得出函数关系式;③当4<t≤16时,如图(3)根据矩形的性质得出CD∥OA,根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似得出△BCF∽△BOA,由相似三角形的对应边成比例得出BC:BO=CF:OA,根据比例式表示出CF的长,再根据S=S△BOA-S△BCF即可得出函数关系式。

人教备战中考数学专题复习分类练习 相似综合解答题附答案

人教备战中考数学专题复习分类练习 相似综合解答题附答案

一、相似真题与模拟题分类汇编(难题易错题)1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。

人教中考数学专题复习分类练习 相似综合解答题含答案

人教中考数学专题复习分类练习 相似综合解答题含答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。

(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。

(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

2.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.【答案】(1)证明:∵直径AB经过弦CD的中点E,, = ,即是的切线(2)解:猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴ = , = ,∴∵∴∴∵∴∵∵∴∴∴MN∥AB.【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。

人教全国中考数学相似的综合中考模拟和真题分类汇总及详细答案

人教全国中考数学相似的综合中考模拟和真题分类汇总及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.综合题(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】(1)解:∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF= BC,ED= AB,又∠B=90°,∴四边形FEDB是矩形,则;(2)解:∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a- PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,∴当PQ= 时,S矩形PQMN最大值为 .(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI= =24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,答:该矩形的面积为720;(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC= ,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH= BC=54cm,∵tanB= = ,∴EH= BH= ×54=72cm,在Rt△BHE中,BE= =90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF= BC,ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以;(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式,即,解得,设PQ=x,则S矩形PQMN=PQ•PN=x(),因为0,所以函数有最大值,即当PQ=时,S矩形PQMN有最大值为;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得△CDG≌△HDE,则CG=HE=20,所以=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为×BG• BF=×(40+20)×(32+16)=720;(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,则EB=EC,由等腰三角形的三线合一可得BH=CH=BC=54cm;由tanB可求得EH=BH=×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为BC•EH=1944cm2。

人教中考数学复习相似专项综合练附详细答案

人教中考数学复习相似专项综合练附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。

使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。

(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。

(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。

2.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。

人教备战中考数学复习相似专项综合练及详细答案

人教备战中考数学复习相似专项综合练及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, =________;②当α=180°时, =________.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【答案】(1);(2)解:如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴(3)解:①如图3,,∵AC=4 ,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC= .②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC= ,CD=4,CD⊥AD,∴AD= ,∵点D、E分别是边BC、AC的中点,∴DE= =2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD= .综上所述,BD的长为或.【解析】【解答】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC= ,∵点D、E分别是边BC、AC的中点,∴ ,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴【分析】(1)①当α=0°时,Rt△ABC中,根据勾股定理算出AC的长,根据中点的定义得出AE,BD的长,从而得出答案;②如图1,当α=180°时,根据平行线分线段成比例定理得出AC∶AE=BC∶BD,再根据比例的性质得出AE∶BD=AC∶BC,从而得出答案。

(2)当0°≤α<360°时,A E∶ B D 的大小没有变化,由旋转的性质得出∠ECD=∠ACB,进而得出∠ECA=∠DCB,又根据EC∶DC=AC∶BC=,根据两边对应成比例,及夹角相等的三角形相似得出△ECA∽△DCB,根据相似三角形对应边成比例得出AE∶BD=EC∶DC=;(3)①如图3,在Rt△ADC中,根据勾股定理得出AD的长,根据两组对边分别相等,且有一个角是直角的四边形是矩形得出四边形ABCD是矩形,根据矩形对角线相等得出BD=AC=;②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,在Rt△ADC中,利用勾股定理得出AD的长,根据中点的定义得出DE的长,根据AE=AD-DE算出AE的长,由(2),可得AE∶BD=,从而得出BD的长度。

人教中考数学综合题专练∶相似含答案解析

人教中考数学综合题专练∶相似含答案解析

一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。

人教中考数学复习《相似》专项综合练习附详细答案

人教中考数学复习《相似》专项综合练习附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y= x2+ x+4;(2)解:由题意可设P(t,4),则E(t, t2+ t+4),∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),∴ t =(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。

人教中考数学复习相似专项综合练含详细答案

人教中考数学复习相似专项综合练含详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。

人教备战中考数学相似的综合复习及详细答案

人教备战中考数学相似的综合复习及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。

人教备战中考数学专题复习分类练习 相似综合解答题附详细答案

人教备战中考数学专题复习分类练习 相似综合解答题附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。

(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。

2.如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;(2)求S与t之间的函数关系式;(3)当t为何值时,S有最大值,最大值是多少?(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.【答案】(1)解:过点C作CE⊥AB,垂足为E,如图1,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∴CE∥DM.∵DC∥ME,CE∥DM,∴四边形DCEM是矩形,∴CE=DM=4,ME=DC=1.∵AM=BM,AB=8,∴AM=BM=4.∴BE=BM−ME=3.∵∴CB=5.∵当t=4时,点P与点M重合,不能构成△MPQ,∴t≠4.∴当且t≠4(s)时,点Q在BC上运动;当 (s)时,点Q在CD上运动.(2)解:①当0<t<4时,点P在线段AM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图2,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AM−AP=4−t,∴②当时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AP−AM=t−4,∴③当时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=4.∵PM=AP−AM=t−4,∴综上所述:当0<t<4时当时, 当时,S=2t−8.(3)解:①当0<t<4时,∵ 0<2<4,∴当t=2时,S取到最大值,最大值为②当时, 对称轴为x=2.∵∴当x>2时,S随着t的增大而增大,∴当t=5时,S取到最大值,最大值为③当时,S=2t−8.∵2>0,∴S随着t的增大而增大,∴当t=6时,S取到最大值,最大值为2×6−8=4.综上所述:当t=6时,S取到最大值,最大值为4(4)解:当点Q在CD上运动即时,如图5,则有,即∵MP=t−4<6−4,即MP<2,∴QM≠MP,QP≠MP.若△MPQ是等腰三角形,则QM=QP.∵QM=QP,QF⊥MP,∴MF=PF=12MP.∵MF=DQ=5+1−t=6−t,MP=t−4,∴解得:∴当t= 秒时,△MPQ是等腰三角形【解析】【分析】(1)过点C作CE⊥AB于E,结合题中条件得出四边形DCEM是矩形,结合矩形性质和勾股定理求出BC的长,最后考虑不能构成△MPQ,即可解决问题。

2020-2021备战中考数学专题复习分类练习 相似综合解答题含详细答案

2020-2021备战中考数学专题复习分类练习 相似综合解答题含详细答案

2020-2021备战中考数学专题复习分类练习相似综合解答题含详细答案一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。

人教备战中考数学 相似综合试题及详细答案

人教备战中考数学 相似综合试题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

人教备战中考数学 相似综合试题含答案

人教备战中考数学 相似综合试题含答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。

(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。

人教备战中考数学专题复习分类练习 相似综合解答题及详细答案

人教备战中考数学专题复习分类练习 相似综合解答题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)(2)解:如图1,过F作FG⊥x轴于点G,设F(x, x2+2x+6),则FG= ,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,∴当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),综上可知F点的坐标为(-1,)或(-3,)(3)解:如图2,不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6解得k1= 或k2=∴满足条件的点Q有两个,Q1(2,)或Q2(2,).【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。

人教中考数学专题复习相似的综合题含答案

人教中考数学专题复习相似的综合题含答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。

2.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答案.3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形【解析】【分析】(1)要证△BEF∽△DCB,根据有两对角对应相等的两个三角形相似可得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)1.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,∴ .连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。

2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形ABCD是矩形,∴ AD∥BC,在中,∵别是的中点,∴EF∥AD,∴ EF∥BC,∴∴(2)解:如图1,过点Q作于,∴QM∥BE,∴∴∴(舍)或秒(3)解:当点Q在DF上时,如图2,∴∴ .当点Q在BF上时,,如图3,∴∴时,如图4,∴∴时,如图5,∴∴综上所述,t=1或3或或秒时,△PQF是等腰三角形【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。

(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。

(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

3.在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.(1)如图1,当点与点重合时,求的长;(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.【答案】(1)解:由题意,得 ,在Rt△中,∴∵∴∴∴∵∴∴∵∴△∽△∴∴∴(2)解:答:的比值随点的运动没有变化理由:如图,∵∥∴ ,∵∴∵∴∴∴△∽△∴∵,∴∴的比值随点的运动没有变化,比值为(3)解:延长交的延长线于点∵∥∴∵∴∴∴∵∥ , ∥∴∥∴∵ ,∴又 ,∴∴它的定义域是【解析】【分析】(1)根据正方形的性质得出 A B = B C = C D = A D = 8 , ∠ C = ∠ A = 90 °,在Rt△ B C P 中,根据正切函数的定义得出tan ∠ P B C = P C ∶B C,又 tan ∠ P B C=,从而得出PC的长,进而得出RP的长,根据勾股定理得出PB的长,然后判断出△P B C ∽△ P R Q,根据相似三角形对应边成比例得出PB∶RP=PC∶PQ,从而得出PQ的长;(2)RM∶MQ的比值随点 Q 的运动没有变化,根据二直线平行同位角相等得出∠ 1 = ∠ A B P , ∠ Q M R = ∠ A,根据等量代换得出∠ Q M R = ∠ C = 90 °,根据根据等角的余角相等得出∠ R Q M = ∠ P B C ,从而判断出△ R M Q ∽△ P C B,根据相似三角形对应边成比例,得出PM∶MQ=PC∶BC,从而得出答案;(3)延长 B P 交 A D 的延长线于点N,根据平行线分线段成比例定理得出PD∶AB=ND∶NA,又N A = N D + A D = 8 + N D ,从而得出关于ND的方程,求解即可得出ND,根据勾股定理得出PN,根据平行线的判定定理得出PD∥MQ,再根据平行线分线段成比例定理得出PD∶MQ=NP∶NQ,又RM∶MQ=3∶4,RM=y,从而得出MQ=y,又 P D = 2 , N Q = P Q + P N = x +,根据比例式,即可得出y与x之间的函数关系式。

4.如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若 = ﹣1,求的值.【答案】(1)解:作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD= ,∴D到点D1所经过路径的长度=(2)解:∵△BCE∽△BA2D2,∴,∴CE=∵ -1∴,∴A1C= • ,∴BH=A1C= • ,∴m2-n2=6• ,∴m4-m2n2=6n4,1- =6•,∴(负根已经舍弃)【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.根据矩形的对边相等得出AD=HA1=n=1,在Rt△A1HB中,根据三角形边之间的关系判断出∠ABA1=30°,即旋转角为30°,根据勾股定理算出BD的长,D到点D1所经过路径的长度,其实质就是以点B为圆心,BD为半径,圆心角为30°的弧长,根据弧长公式,计算即可;(2)首先判断出△BCE∽△BA2D2,根据相似三角形对应边成比例得出,故CE=,根据,故进而得出,由BH=A1C列出方程,求解得出的值。

5.如图,抛物线与坐标轴交点分别为,,,作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;(3)条件同,若与相似,求点P的坐标.【答案】(1)解:把,,代入得:,解得:,,,抛物线的解析式为(2)解:设点P的坐标为(t,- t×2+ t+2),∵A(-1,0),B(3,0),∴AB=4,∴S=(3)解:当∽时,,即,整理得:,解得:或舍去,,,点P的坐标为;当∽,则,即,整理得,解得:或舍去,,,点P的坐标为,综上所述点P的坐标为或【解析】【分析】(1)利用待定系数法,将点A、B、C三点坐标分别代入函数解析式,建立方程组,就可求出a、b、c的值,即可解答;或设函数解析式为交点式,即y=a(x+1)(x-3),再将点C的坐标代入可解答。

(2)点P为抛物线上第一象限内一动点,因此利用二次函数解析式,由P的横坐标为t表示出点P的坐标,利用三角形的面积公式,就可得出s与t的函数解析式。

(3)分两种情况讨论:当△ ODP ∽△ COB 时;当△ ODP ∽△ BOC ,分别利用相似三角形的性质,分别得出对应边成比例,建立关于t的方程,求出t的值,就可得出点P的坐标。

6.如图(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO= ,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=________°,AB=________.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO= ,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【答案】(1)75;4(2)解:过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴ = = .∵BO:OD=1:3,∴ = = .∵AO=3 ,∴EO= ,∴AE=4 .∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4 )2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4【解析】【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴ = = .又∵AO= ,∴OD= AO= ,∴AD=AO+OD=4 .∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4 .故答案为:75;4 .【分析】(1)利用平行线的性质,可求出∠ADB的度数,证明∠ADB=∠OAC,利用相似三角形的判定定理证明△BOD∽△COA,得出对应边成比例,求出OD的长,再求出AD的长,然后证明∠ABD=∠ADB,可求得AB的长。

(2)过点B作BE∥AD交AC于点E,先证明△AOD∽△EOB,得出对应边成比例,求出EO、AE的长,再证明AB=2BE,利用勾股定理求出BE的长,就可得出AC、AD的长,然后在Rt△CAD中,利用勾股定理求出CD的长即可解答。

7.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)(2)在(1)的条件下,①若tan∠APB ,求点P的坐标。

相关文档
最新文档