有限元法简介

合集下载

有限元法概述

有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。

汽车有限元法概述

汽车有限元法概述

汽车有限元法概述有限元法(Finite Element Method,FEM)是一种工程数值分析方法,广泛应用于汽车工程领域,用于模拟和预测汽车结构在受力下的行为和性能。

本文将对汽车有限元法进行概述。

有限元法的基本原理是将连续结构离散化为有限个子结构,每个子结构称为有限元。

每个有限元内的应力和变形可以用简单的方程表示。

通过求解这些方程,可以推导出整个结构的应力和变形情况。

汽车有限元法主要有以下几个步骤:1.建模:将汽车的零部件、结构和系统进行建模,将其分割成有限元。

这个过程需要根据实际情况选择适当的网格划分和元素类型。

常见的元素包括线元素、面元素和体元素。

建模的准确性和合理性对于后续的分析和计算结果具有重要影响。

2.边界条件:确定模型的边界条件,包括支撑条件和外部加载条件。

支撑条件包括固定支撑和弹性支撑。

外部加载条件包括重力、加速度、风压等。

准确描述和设置边界条件是模拟计算的关键步骤。

3.材料特性:为每种材料分配相应的材料特性参数。

常见的材料特性包括弹性模量、泊松比、材料密度等。

这些参数将决定材料在受力下的行为和响应。

4.模拟计算:利用有限元软件对建模后的汽车结构进行计算和模拟。

通过求解每个有限元的位移和应变,再结合材料特性进行力学分析,得到汽车结构在受力下的应力和变形情况。

5.结果评估:根据计算得到的应力和变形结果,对汽车结构的强度、刚度、耐久性等性能进行评估和分析。

如果发现问题或不合理现象,可以进行模型修正和参数优化,以提高结构的性能。

在汽车工程领域,有限元法主要应用于以下几个方面:1.结构强度分析:通过有限元法,可以对汽车结构的强度进行评估和分析。

例如,分析车身在碰撞时的变形情况,以及主要部件在受力下的应力情况。

2.动态响应分析:有限元法可以模拟汽车在动力加载下的振动和动态响应情况。

例如,模拟车辆在行驶过程中的悬挂系统振动,以及发动机振动对车身的影响。

3.疲劳寿命评估:通过有限元法,可以分析汽车结构在复杂工况下的疲劳寿命。

有限元法应用举例

有限元法应用举例

核反应堆运行过程中涉及高温、 高压、高辐射等极端条件,热工 水力学分析是确保安全性的重要
环节。
有限元法可以对核反应堆的热工 水力学进行模拟,评估冷却剂流 动、热能传递、压力容器应力分
布等关键参数。
通过模拟分析,可以优化反应堆 设计,提高运行效率,降低事故
风险。
建筑物的能耗模拟与优化
建筑物的能耗是节能减排的重要领域,能耗模拟与优化有助于降低能源消耗和碳排 放。
况,为设备的电磁兼容性设计和优化提供依据。
通过有限元分析,可以评估设备的电磁辐射是否符合相关标准
03
和规定,以及优化设备的天线布局和结构设计等。
高压输电线路的电场分析
高压输电线路在运行过程中会 产生电场和磁场,其强度和分 布情况对环境和人类健康具有 一定影响。
有限元法可以用来分析高压输 电线路的电场分布情况,包括 电场强度的计算和分布规律的 分析等。
通过有限元分析,可以评估高 压输电线路对环境和人类健康 的影响,为线路的规划、设计 和优化提供依据。
07
有限元法应用举例:声学分析
消声室的声学设计
消声室是用于测试和测量声音的特殊 实验室,其内部环境需要极低的噪音 水平。
通过模拟和分析,可以确定最佳的吸 音材料和布局,以及最佳的隔音结构, 以达到最佳的消声效果。
有限元法应用举例
• 有限元法简介 • 有限元法应用领域 • 有限元法应用举例:结构分析 • 有限元法应用举例:流体动力学分析 • 有限元法应用举例:热传导分析 • 有限元法应用举例:电磁场分析 • 有限元法应用举例:声学分析
01
有限元法简介
定义与原理
定义
有限元法是一种数值分析方法,通过将复杂的物理系统离散 化为有限数量的简单单元(或称为元素),并建立数学模型 ,对每个单元进行单独分析,再综合所有单元的信息,得到 整个系统的行为。

有限元法

有限元法

李中秋20111323 热能一班第一章有限元法简介有限元法是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

1.1 有限元法发展简史早在1870年,英国科学家Rayleigh就采用假想的“试函数”来求解复杂的微分方程,1909年Ritz将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。

20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法;1943年,Courant 发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文;1956年波音公司的Turner,Clough,Martin和Topp在分析飞机结构时系统研究了离散杆、梁、三角形的单元刚度表达式;1960年Clough在处理平面弹性问题,第一次提出并使用“有限元方法”(finite element met hod)的名称;1955年德国的Argyris出版了第一本关于结构分析中的能量原理和矩阵方法的书,为后续的有限元研究奠定了重要的基础,1967年Zienkiewicz和Cheung出版了第一本有关有限元分析的专著;1970年以后,有限元方法开始应用于处理非线性和大变形问题;我国的一些学者也在有限元领域做出了重要的贡献,如胡海昌于1954提出了广义变分原理[8],钱伟长最先研究了拉格朗日乘子法与广义变分原理之间关系,钱令希在20世纪五十年代就研究了力学分析的余能原理,冯康在20世纪六十年代就独立地、并先于西方奠定了有限元分析收敛性的理论基础。

1.2基本概念1.2.1 有限单元数值计算的思路是将复杂问题简单化,求近似解。

即将复杂的结构分解成若干相对简单的构件或部件,分别分析,然后求解。

而且这种近似解可以收敛于问题的精确解。

有限元法(FEM)简介

有限元法(FEM)简介

EA ( − cosθ sin θ u1 − sin 2 θ v1 + cosθ sin θ u2 + sin 2 θ v2 ) + EA ( v2 − v3 ) l1 l2
节点3的x方向 节点3的y方向
Fx 3 = Rx23 = 0 EA 2 Fy 3 = Ry 3 = ( −v2 + v3 ) l2
u12=1,u11= v11= v12= 0
EA R = k13 = − cos 2 θ l1
1 x1
v12=1,u11= v11= u12= 0
R11 = k14 = − x R11 = k24 = − y
1 Rx 2 = k34 =
EA cos θ sin θ l1 EA 2 sin θ l1
EA R = k23 = − cos θ sin θ l1
写成矩阵形式
R11 cos 2 θ x 1 Ry1 EA cos θ sin θ 1 = Rx 2 l1 − cos 2 θ R1 2 − cos θ sin θ y cos θ sin θ sin 2 θ − cos θ sin θ − sin 2 θ − cos 2 θ − cos θ sin θ cos 2 θ cos θ sin θ
EA ( cosθ sin θ u1 + sin 2 θ v1 − cosθ sin θ u2 − sin 2 v2 ) l1
EA ( − cos2 θ u1 − cosθ sin θ v1 + cos2 θ u2 + cosθ sin θ v2 ) l1
节点2的y方向
2 Fy 2 = R1 2 + Ry 2 = y

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。

而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。

本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。

一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。

有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。

有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。

二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。

常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。

根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。

三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。

在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。

划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。

四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。

以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。

有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。

五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。

根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。

在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。

六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。

有限元结合格子boltzmann方法

有限元结合格子boltzmann方法

有限元结合格子boltzmann方法随着计算机技术的飞速发展,数值模拟方法在工程领域中的应用越来越广泛。

有限元法(FEM)和格子Boltzmann方法(LBM)作为两种常见的数值方法,各自具有独特的优势。

将这两种方法相结合,可以充分发挥它们在计算流体力学、材料科学等领域的潜力。

本文将简要介绍有限元结合格子Boltzmann方法的基本原理及其在工程中的应用。

一、有限元法与格子Boltzmann方法简介1.有限元法(FEM)有限元法是一种将连续域问题转化为离散问题求解的数值方法。

它通过将复杂的几何形状划分成简单的单元(如三角形或四边形),在每个单元内采用插值函数近似求解偏微分方程,从而实现整个域上的问题求解。

2.格子Boltzmann方法(LBM)格子Boltzmann方法是一种基于微观粒子的动力学行为的宏观现象模拟方法。

它通过离散化的Boltzmann方程,在格子网络上模拟粒子的碰撞和传播过程,从而得到宏观物理量(如速度、密度等)。

二、有限元结合格子Boltzmann方法的基本原理有限元结合格子Boltzmann方法的主要思想是将FEM的高精度与LBM 的微观模拟相结合,以解决复杂的流体力学问题。

具体步骤如下:1.划分网格:在计算域内同时采用有限元和格子Boltzmann方法进行网格划分,其中有限元网格主要用于求解宏观物理量,而格子Boltzmann网格则用于模拟微观粒子的运动。

2.确定边界条件:根据实际问题,为有限元和格子Boltzmann方法设置相应的边界条件。

3.求解宏观物理量:利用有限元法求解宏观物理量,如速度、压力等。

4.更新微观粒子分布函数:在格子Boltzmann网格上,根据微观粒子的碰撞和传播过程,更新粒子的分布函数。

5.反向映射:将格子Boltzmann方法得到的微观粒子信息映射到有限元网格上,更新宏观物理量。

6.迭代求解:重复步骤3-5,直至满足收敛条件。

三、有限元结合格子Boltzmann方法在工程中的应用有限元结合格子Boltzmann方法在工程领域具有广泛的应用前景,以下列举几个典型应用:1.计算流体力学:结合FEM的高精度和LBM的微观模拟,可以更准确地预测复杂流场中的流动现象。

有限元法概述

有限元法概述
但真正的应用实际问题是到1960年以后,随着电子数 值计算机的广泛应用和发展,有限单元法的发展速度才显 著加快。现代有限元法第一个成功的尝试,是将刚架位移 法推广应用于弹性力学平面问题,这是Turner,Clough 等人在分析飞机结构时于1956年得到的成果。他们第一 次给出了用三角形单元求得平面应力问题的正确解答。
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。

有限元

有限元

有限元结课作业班级:071221姓名:王丹学号:07122032一、有限元法简介有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。

求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。

它通过变分方法,使得误差函数达到最小值并产生稳定解。

类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

二、有限元法的基本思想和特点有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。

20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。

不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

有限元法,有限差分法,有限体积法

有限元法,有限差分法,有限体积法

有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法都是数值计算方法,用于求解偏微分方程的数值解。

有限元法是一种将连续问题离散化为有限个简单子问题的方法,将连续的物理问题转化为离散的数学问题,通过求解离散问题得到连续问题的近似解。

它将求解区域分割成有限个小区域,每个小区域内的解用一组基函数表示,通过求解基函数系数得到整个求解区域的解。

有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。

有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到整个求解区域的解。

这三种方法各有优缺点,适用于不同类型的问题。

在实际应用中,需要根据具体问题的特点选择合适的数值计算方法。

有限元课件ppt

有限元课件ppt
整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等

线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量

有限元法简介

有限元法简介

有限元法简介
有限元法(Finite Element Method,FEM),也称有限单元法或有限元素法,基本思想是将求解区域离散为一组有限的且按一定方式相互连接在一起的单元组合体。

有限单元法分析问题的思路是从结构矩阵分析推广而来的。

起源于50年代的杆系结构矩阵分析,是把每一杆件作为一个单元,整个结构就看作是由有限单元(杆件)连接而成的集合体,分析每个单元的力学特性后,再集中起来就能建立整体结构的力学方程式,然后利用计算机求解。

有限元离散化是假想把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连(如图1所示)。

根据物体的几何形状特征、载荷特征、边界约束特征等,把单元划分为各种类型。

节点一般都在单元边界上,节点的位移分量是作为结构的基本未知量。

这样组成的有限单元结合体,在引进等效节点力及节点约束条件后,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体。

图1 二维有限元离散图
1
在此基础上,对每一单元根据分块近似的思想,假设一个简单的函数来近似模拟其位移分量的分布规律,即选择位移模式,再通过虚功原理(或变分原理或其他方法)求得每个单元的平衡方程,就是建立单元节点力与节点位移之间的关系。

最后,把所有单元的这种特性关系,按照保持节点位移连续和节点力平衡的方式集合起来,就可以得到整个物体的平衡方程组。

引入边界约束条件后,解此方程就求得节点位移,并计算出各单元应力。

完整的有限元分析(FEA)流程图如图2所示。

图2 有限元分析流程
2。

《有限元法及其应用》课件

《有限元法及其应用》课件
实例
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点

有限元法介绍

有限元法介绍

有限元法介绍周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。

有限元法是一种高效能、常用的数值计算方法。

科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。

有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。

一、基本思想有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。

根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。

由有限元的发展,该法具有下列的特色:1、整个系统散为有限个元素;2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;3、处理过程简明;4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;5、线性、非线性均适用;6、无限区域的问题较难仿真。

二、基本概念1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;2、这些单元仅在顶角处相互联接,这些联接点称为结点。

离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。

但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。

通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。

当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。

在有限元中,常以结点位移作为基本未知量。

并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。

有限元法的基本概念和特点

有限元法的基本概念和特点

边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。

有限元法_精品文档

有限元法_精品文档
这种方法要求能建立微分方程,并能给出边 界条件的数学表达式,因此,对于一些不规则的 几何形状和不规则的特殊边界条件难以应用。
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。

有限元法发展综述

有限元法发展综述

有限元法发展综述有限元法是一种数值分析方法,用于计算连续体力学问题的近似解。

它通过将连续体划分成一个个小的子区域,称为有限元,然后在每个有限元上建立一个数学模型,最终通过求解这些模型得到整个问题的解。

有限元法的发展可追溯到二十世纪五十年代,经过多年的发展,目前已经成为实际工程领域中最常用的数值分析方法之一有限元法的发展主要经历了以下几个阶段:第一阶段:有限元法的发展始于二十世纪五十年代。

当时有限元法主要应用于结构力学问题的数值求解,如桁架和梁的应力分析。

有限元法通过将结构划分成更小的元素,用简单的数学形式表示每个元素,并采用插值函数来近似整个结构的解。

这一阶段的代表性工作是鲍里斯·加勒金的计算机程序MATRIX和雷蒙德·C·贝恩的有限元程序BEND。

第二阶段:有限元法在工程领域的广泛应用开始于六十年代初。

在这一阶段,有限元法在结构力学以外的领域得到了应用,如热传导、电磁场和流体力学等。

有限元法的发展得益于计算机技术的进步,使得大规模和复杂的问题可以得到解决。

代表性的工作包括查尔斯·T·斯特鲁卡的作品《变分法和有限元法》,该书系统地阐述了有限元法的数学基础和应用。

第三阶段:有限元法在七十年代迅速发展,主要应用于多学科问题的数值分析。

在这一阶段,有限元法的应用逐渐扩展到了更广泛的领域,如声学、流体力学、电磁场和地下水流动等。

有限元法的发展推动了计算机辅助工程(CAE)的兴起,使得工程师可以更加方便地进行工程设计和分析。

值得一提的是,约瑟夫·奥尔格尔斯庞在这一阶段提出了有限元法中的重要概念,有限元误差分析。

第四阶段:有限元法在八十年代末期至九十年代进一步发展,主要集中在改进数值方法和提高计算效率。

在这一阶段,有限元法的数学基础得到了进一步发展,特别是在非线性和动力学问题的数值分析方面。

同时,有限元法的计算技术不断提高,如并行计算、自适应网格和多尺度分析等,大大提高了计算效率和准确性。

有限元法简介

有限元法简介

电磁学中有限元法简介摘要:本文简单介绍了有限元法的历史、优点、基本原理及一维的有限元法,并用使用HFSS软件设计了一个各项参数都符合要求的3dB 的功率分配器。

1.有限元法的历史有限元法起源于航空力学,最早思想是由Courant在1943年提出,但真正确定有限元的学科和命名的则是Clough 在1960年给出。

我国著名学者冯康也对有限元法做了开创性贡献。

20世纪70年代开始,开始在电磁领域移植有限元法,由于其本身的优点,逐渐成为了电磁场数值分析的一个主要分支。

有限元法,简称FEM。

有限元法有着扎实的理论基础,所给出的结果是变分稳定的。

2.有限元法的优点▪有限元法采用物理上离散与分片多项式插值,因此具有对材料、边界、激励的广泛适应性。

▪有限元法基于变分原理,将数理方程求解变成代数方程组的求解,因此非常简易▪有限元法采用矩阵形式和单元组装方法,其各个环节易于标准化,程序通用性强,且有较高的计算精度,便于编制程序和维护,适宜于制作商业软件。

▪国际学术界对有限元法的理论、计算技术、以及各方面的应用做了大量的工作,许多问题均有现成的程序,可用的商业软件资源相对较多。

3.泛函和变分最速降线问题问题的提出:设点A与原点重合,点B的坐标是(a,b),重物从A点下落,求出A,B之间的使重物从A运动到B的时间最短的路径。

可以求出A 到B 的总时间:T 中只含有y 和'y 。

变分命题的描述 :T 是(),'y x y 的泛函;y 满足边界条件(0)0,()y y a b == ;求一个函数y 使得泛函T 有最小值,也就是有极值。

泛函T 取极值的时候其变分为0,记为:0T δ=4. 一维有限元法有限元法就是变分问题的数值解法,其基本思想是把场方程转化为能量积分的变分问题(能量最小)。

静电场中,所有满足相同边界条件的位函数u 中,真实的u 将保持能量最小。

在这里,通过研究平板电容器的电位分布问题来介绍有限元法的基本思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法的孕育过程及诞生和发展 牛顿(Newton) 莱布尼茨(Leibniz G. W.)
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
技术路线:
发展过程: 如何处理 对象的离散化过程
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
..
轴对称实体)
. .
...
. .
...
线性
二次
. . 线(弹簧,梁,杆,间隙)
有限元法介绍
有限元法的基本思想是将结构离散化,用 有限个容易分析的单元来表示复杂的对象, 单元之间通过有限个结点相互连接,然后 根据变形协调条件综合求解。由于单元的 数目是有限的,结点的数目也是有限的, 所以称为有限元法(FEM,Finite Element Method)。
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
X
0.056
0.058
X
0.06
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
受垂直载荷的托架
体单元
•线性单元 / 二次单元 – 更高阶的单元模拟曲面的精度就越高。
各( 力对 学象 学、 科变 分量 支、 的方 关程 系、
求 解 途 径 )
任意变形体力学分析的基本变量及方程 研究对象:任意形状的变形体 几种典型的对象 (1) 桥梁隧道问题
圆形隧道
三维模型
(2) 中华和钟 (3) 矿山机械
(4) 压力容器的成形
变形体及受力情况的描述
求解方法
有限元方法的思路及发展过程
瑞利(Rayleigh)
在19世纪末及 20世纪初,数 学家瑞利和里 兹(Rayleigh Ritz)首先提出 可对全定义域 运用展开函数 来表达其上的 未知函数。
1915年,数学家伽辽金(Galerkin)提出了选 择展开函数中形函数的伽辽金法,该方法 被广泛地用于有限元。1943年,数学家库 朗德第一次提出了可在定义域内分片地使 用展开函数来表达其上的未知函数。这实 际上就是有限元的做法。
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
高斯(Gauss)
在牛顿之后约一百年, 著名数学家高斯提出了 加权余值法及线性代数 方程组的解法。这两项 成果的前者被用来将微 分方程改写为积分表达 式,后者被用来求解有 限元法所得出的代数方 程组。
拉格朗日(Lagrange J.)
在18世纪,另 一位数学家拉 格朗日提出泛 函分析。泛函 分析是将偏微 分方程改写为 积分表达式的 另一途径。
低阶单元
更高阶单元
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
.. .体..(三..维实.体..).............
单元
线 单元
线 单元
点 单元
面 单元
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
相关文档
最新文档